Как по маске подсети найти адрес сети

Текущая версия страницы пока не проверялась опытными участниками и может значительно отличаться от версии, проверенной 8 сентября 2022 года; проверки требуют 6 правок.

Маска подсети — битовая маска для определения по IP-адресу адреса подсети и адреса узла (хоста, компьютера, устройства) этой подсети. В отличие от IP-адреса маска подсети не является частью IP-пакета.

Благодаря маске можно узнать, какая часть IP-адреса узла сети относится к адресу сети, а какая — к адресу самого узла в этой сети.

Например, узел с IP-адресом 12.34.56.78 и маской подсети 255.255.255.0, с длиной префикса 24 бита (/24), находится в сети 12.34.56.0.

В случае адресации IPv6 адрес 2001:0DB8:1:0:6C1F:A78A:3CB5:1ADD с длиной префикса 32 бита (/32) находится в сети 2001:0DB8::/32.

Другой вариант определения — это определение подсети IP-адресов. Например, с помощью маски подсети можно сказать, что один диапазон IP-адресов будет в одной подсети, а другой диапазон соответственно в другой подсети.

Чтобы получить адрес сети, зная IP-адрес и маску подсети, необходимо применить к ним операцию поразрядной конъюнкции (побитовое И). Например, в случае более сложной маски:

IP-адрес:       11000000 10101000 00000001 00000010 (192.168.1.2)
Маска подсети:  11111111 11111111 11111110 00000000 (255.255.254.0)
Адрес сети:     11000000 10101000 00000000 00000000 (192.168.0.0)

Легенда:

  • часть маски, определяющая адрес сети и состоящая из единиц;
  • адрес сети, который определяется маской подсети;
  • диапазон адресов устройств в этой сети.

Разбиение одной большой сети на несколько маленьких подсетей позволяет упростить маршрутизацию. Например, пусть таблица маршрутизации некоторого маршрутизатора содержит следующую запись:

Сеть назначения Маска сети Адрес шлюза
192.168.1.0 255.255.255.0 10.20.30.1

Пусть теперь маршрутизатор получает пакет данных с адресом назначения 192.168.1.2. Обрабатывая построчно таблицу маршрутизации, он обнаруживает, что при наложении (применении операции «побитовое И») на адрес 192.168.1.2 маски 255.255.255.0 получается адрес сети 192.168.1.0. В таблице маршрутизации этой сети соответствует шлюз 10.20.30.1, которому и отправляется пакет.

Битовые операции при расчёте адреса сети в IPv6 выглядят аналогично. Но в IPv6 можно просто рассчитать адрес сети по длине префикса, применив формулу: «длина префикса в битах» / 4 = «кол-во 0xF у адреса сети». Взяв полученное количество 0xF из адреса узла, получаем адрес сети.

Маски при бесклассовой маршрутизации (CIDR)[править | править код]

Маски подсети являются основой метода бесклассовой маршрутизации (англ. CIDR). При этом подходе маску подсети записывают вместе с IP-адресом в формате «IP-адрес/количество единичных бит в маске». Число после знака дроби ( длина префикса сети) означает количество единичных разрядов (бит) в маске подсети.

Рассмотрим пример записи диапазона IP-адресов в виде 10.96.0.0/11. В этом случае маска подсети будет иметь двоичный вид 1111_1111.1110_0000.0000_0000.0000_0000, или то же самое в десятичном виде: 255.224.0.0. 11 разрядов IP-адреса отводятся под адрес сети, а остальной 32-11=21 разряд полного адреса (1111_1111.1110_0000.0000_0000.0000_0000) — под локальный адрес в этой сети. Итого, 10.96.0.0/11 означает диапазон адресов от 10.96.0.0 до 10.127.255.255.

IPv4 CIDR

CIDR Последний IP-адрес в подсети Маска подсети Количество адресов в подсети Количество хостов в подсети Класс подсети
a.b.c.d/32 0.0.0.0 255.255.255.255 1 1* 1/256 C
a.b.c.d/31 0.0.0.1 255.255.255.254 2 2* 1/128 C
a.b.c.d/30 0.0.0.3 255.255.255.252 4 2 1/64 C
a.b.c.d/29 0.0.0.7 255.255.255.248 8 6 1/32 C
a.b.c.d/28 0.0.0.15 255.255.255.240 16 14 1/16 C
a.b.c.d/27 0.0.0.31 255.255.255.224 32 30 1/8 C
a.b.c.d/26 0.0.0.63 255.255.255.192 64 62 1/4 C
a.b.c.d/25 0.0.0.127 255.255.255.128 128 126 1/2 C
a.b.c.0/24 0.0.0.255 255.255.255.000 256 254 1 C
a.b.c.0/23 0.0.1.255 255.255.254.000 512 510 2 C
a.b.c.0/22 0.0.3.255 255.255.252.000 1024 1022 4 C
a.b.c.0/21 0.0.7.255 255.255.248.000 2048 2046 8 C
a.b.c.0/20 0.0.15.255 255.255.240.000 4096 4094 16 C
a.b.c.0/19 0.0.31.255 255.255.224.000 8192 8190 32 C
a.b.c.0/18 0.0.63.255 255.255.192.000 16 384 16 382 64 C
a.b.c.0/17 0.0.127.255 255.255.128.000 32 768 32 766 128 C
a.b.0.0/16 0.0.255.255 255.255.000.000 65 536 65 534 256 C = 1 B
a.b.0.0/15 0.1.255.255 255.254.000.000 131 072 131 070 2 B
a.b.0.0/14 0.3.255.255 255.252.000.000 262 144 262 142 4 B
a.b.0.0/13 0.7.255.255 255.248.000.000 524 288 524 286 8 B
a.b.0.0/12 0.15.255.255 255.240.000.000 1 048 576 1 048 574 16 B
a.b.0.0/11 0.31.255.255 255.224.000.000 2 097 152 2 097 150 32 B
a.b.0.0/10 0.63.255.255 255.192.000.000 4 194 304 4 194 302 64 B
a.b.0.0/9 0.127.255.255 255.128.000.000 8 388 608 8 388 606 128 B
a.0.0.0/8 0.255.255.255 255.000.000.000 16 777 216 16 777 214 256 B = 1 A
a.0.0.0/7 1.255.255.255 254.000.000.000 33 554 432 33 554 430 2 A
a.0.0.0/6 3.255.255.255 252.000.000.000 67 108 864 67 108 862 4 A
a.0.0.0/5 7.255.255.255 248.000.000.000 134 217 728 134 217 726 8 A
a.0.0.0/4 15.255.255.255 240.000.000.000 268 435 456 268 435 454 16 A
a.0.0.0/3 31.255.255.255 224.000.000.000 536 870 912 536 870 910 32 A
a.0.0.0/2 63.255.255.255 192.000.000.000 1 073 741 824 1 073 741 822 64 A
a.0.0.0/1 127.255.255.255 128.000.000.000 2 147 483 648 2 147 483 646 128 A
0.0.0.0/0 255.255.255.255 000.000.000.000 4 294 967 296 4 294 967 294 256 A

* Чтобы в сетях с такой размерностью маски возможно было разместить хосты, отступают от правил, принятых для работы в остальных сетях.

Возможных узлов подсети меньше количества адресов на два: начальный адрес сети резервируется для идентификации подсети, последний адрес используется в качестве широковещательного адреса (возможны исключения в виде адресации в IPv4 сетей /32 и /31).

Выбор маски для подсети[править | править код]

Если n — количество компьютеров в подсети, округлённое до ближайшей большей степени двойки, и {displaystyle nleqslant 254} (для сетей класса C), то маска подсети вычисляется по следующей формуле: {displaystyle 2^{8}-n-2}, где двойка вычитается, так как один IP-адрес (первый в задаваемом маской диапазоне) является IP-адресом подсети и ещё один IP-адрес (последний в задаваемом маской диапазоне) является широковещательным адресом (для отправки данных всем узлам подсети). Для {displaystyle n>254} будет другая формула.

Пример: в некой подсети класса C есть 30 компьютеров; маска для такой сети вычисляется следующим образом:

28 - 30 - 2 = 224 = E0h;
маска: 255.255.255.224 = 0xFF.FF.FF.E0.

См. также[править | править код]

  • Бесклассовая адресация

Примечания[править | править код]

Литература[править | править код]

  • Олифер В. Г., Олифер Н. А. Компьютерные сети. Принципы, технологии, протоколы: Учебник для вузов = Computer Networks. Principles, Technologies and Protocols for Network Design. — 3-е изд. — СПб.: Издательский дом «Питер», 2006. — С. 572—576. — 958 с. — ISBN 5-469-00504-6.

Ссылки[править | править код]

  • Ivan Pascal. «Вычисление сетевой маски для подсети». OpenNet.ru (3 июня 2002). Дата обращения: 21 февраля 2011.
  • Сергей Верещагин. «Wildcard Mask (шаблонная маска)» (30 мая 2009). Дата обращения: 21 февраля 2011. Архивировано 25 августа 2011 года.

С помощью нашего IP калькулятора вы можете вычислить ip адрес сети, широковещательный адрес, ip адрес первого узла (хоста), ip адрес последнего узла (хоста), количество рабочих узлов (хостов) в заданной сети, маску сети, обратную маску (wildcard mask) и сетевой префикс.

Все вычисления будут представлены в трёх системах счисления – десятичной, двоичной и шестнадцатеричной.

✓ Новый IP калькулятор подсетей

IP адрес:

Сетевая маска:

Удобный калькулятор подсетей с дополнительными функциями (добавляйте в закладки и делитесь с друзьями):

IP Калькулятор сети онлайн

Калькулятор производит расчет адреса сети IPv4, широковещательного адреса, ip-адрес первого узла, ip-адрес последнего узла, количество узлов в заданной сети, маску подсети и инверсию маски (wildcard mask).

Данные представлены в десятичной и двоичных системах исчисления.

При построении сети, классы подсетей выбираются исходя из предполагаемого количества узлов в компьютерной сети. Если изначально выбрана подсеть вмещающая малое количество узлов (например, класс С c маской 255.255.255.0), при большом росте компьютерной сети часто приходится менять подсеть и маску подсети, чтобы не усложнять адресацию.

И наоборот, если изначально выбрана подсеть включающая в себя огромное количество хостов (например, класса А с маской 255.0.0.0), то при возникновении в компании филиальной сети, приходится сжимать подсети чтобы выделять подсети под филиалы.

Использование:

Для того, чтобы рассчитать сетевые параметры, укажите IP-адрес хоста и маску подсети.

Справочная информация для IPv4:

Адреса зарезервированные для особых целей:

Подсеть Назначение
0.0.0.0/8 Адреса источников пакетов “этой” (“своей”) сети, предназначены для локального использования на хосте при создании сокетов IP. Адрес 0.0.0.0/32 используется для указания адреса источника самого хоста.
10.0.0.0/8 Для использования в частных сетях.
127.0.0.0/8 Подсеть для коммуникаций внутри хоста.
169.254.0.0/16 Канальные адреса; подсеть используется для автоматического конфигурирования адресов IP в случает отсутствия сервера DHCP.
172.16.0.0/12 Для использования в частных сетях.
100.64.0.0/10 Для использования в сетях сервис-провайдера.
192.0.0.0/24 Регистрация адресов специального назначения.
192.0.2.0/24 Для примеров в документации.
192.168.0.0/16 Для использования в частных сетях.
198.51.100.0/24 Для примеров в документации.
198.18.0.0/15 Для стендов тестирования производительности.
203.0.113.0/24 Для примеров в документации.
240.0.0.0/4 Зарезервировано для использования в будущем.
255.255.255.255 Ограниченный широковещательный адрес.

Зарезервированные адреса, которые маршрутизируются глобально.

Подсеть Назначение
192.88.99.0/24 Используются для рассылки ближайшему узлу. Адрес 192.88.99.0/32 применяется в качестве ретранслятора при инкапсуляции IPv6 в IPv4 (6to4)
224.0.0.0/4 Используются для многоадресной рассылки.

Маски и размеры подсетей

Маска подсети Префикс, бит Количество подсетей Количество хостов Количество адресов Класс подсети
128.0.0.0 /1   2147483646 2147483648 А
192.0.0.0 /2   1073741822 1073741824 А
224.0.0.0 /3   536870910 536870912 А
240.0.0.0 /4   268435454 268435456 А
248.0.0.0 /5   134217726 134217728 А
252.0.0.0 /6   67108862 67108864 А
254.0.0.0 /7   33554430 33554432 А
255.0.0.0 /8   16777214 16777216 А
255.128.0.0 /9   8388606 8388608 B
255.192.0.0 /10   4194302 4194304 B
255.224.0.0 /11   2097150 2097152 B
255.240.0.0 /12   1048574 1048576 B
255.248.0.0 /13   524286 524288 B
255.252.0.0 /14   262142 262144 B
255.254.0.0 /15   131070 131072 B
255.255.0.0 /16   65534 65536 B
255.255.128.0 /17 2 32766 32768 C
255.255.192.0 /18 4 16382 16384 C
255.255.224.0 /19 8 8190 8192 C
255.255.240.0 /20 16 4094 4096 C
255.255.248.0 /21 32 2046 2048 C
255.255.252.0 /22 64 1022 1024 C
255.255.254.0 /23 128 510 512 C
255.255.255.0 /24 256 254 256 C
255.255.255.128 /25 2 126 128 C
255.255.255.192 /26 4 62 64 C
255.255.255.224 /27 8 30 32 C
255.255.255.240 /28 16 14 16 C
255.255.255.248 /29 32 6 8 C
255.255.255.252 /30 64 2 4 C
255.255.255.254 /31   2* 2 C
255.255.255.255 /32   1* 1 C

Параметр Десятичная запись Шестнадцатеричная запись Двоичная запись
IP адрес 178.205.120.57 B2.CD.78.39 10110010.11001101.01111000.00111001
Префикс маски подсети /24
Маска подсети 255.255.255.0 FF.FF.FF.00 11111111.11111111.11111111.00000000
Обратная маска подсети (wildcard mask) 0.0.0.255 00.00.00.FF 00000000.00000000.00000000.11111111
IP адрес сети 178.205.120.0 B2.CD.78.00 10110010.11001101.01111000.00000000
Широковещательный адрес 178.205.120.255 B2.CD.78.FF 10110010.11001101.01111000.11111111
IP адрес первого хоста 178.205.120.1 B2.CD.78.01 10110010.11001101.01111000.00000001
IP адрес последнего хоста 178.205.120.254 B2.CD.78.FE 10110010.11001101.01111000.11111110
Количество доступных адресов 256
Количество рабочих адресов для хостов 254

Ссылка на эту страницу: shootnick.ru/ip_calc/178.205.120.57/24

Так же у нас есть IPv6 калькулятор подсетей


Познавательное о IPv4 …

IPv4 (англ. Internet Protocol version 4) — четвёртая версия интернет протокола (IP). Первая широко используемая версия. Протокол описан в RFC 791 (сентябрь 1981 года), заменившем RFC 760 (январь 1980 года).

IPv4 использует 32-битные (четырёхбайтные) адреса, ограничивающие адресное пространство 4 294 967 296 (232) возможными уникальными адресами.

Традиционной формой записи IPv4 адреса является запись в виде четырёх десятичных чисел (от 0 до 255), разделённых точками. Через дробь указывается длина маски подсети.

IP-адрес состоит из двух частей: номера сети и номера узла. В случае изолированной сети её адрес может быть выбран администратором из специально зарезервированных для таких сетей блоков адресов (10.0.0.0/8, 172.16.0.0/12 или 192.168.0.0/16). Если же сеть должна работать как составная часть Интернета, то адрес сети выдаётся провайдером либо региональным интернет-регистратором (Regional Internet Registry, RIR). Согласно данным на сайте IANA, существует пять RIR: ARIN, обслуживающий Северную Америку, а также Багамы, Пуэрто-Рико и Ямайку; APNIC, обслуживающий страны Южной, Восточной и Юго-Восточной Азии, а также Австралии и Океании; AfriNIC, обслуживающий страны Африки; LACNIC, обслуживающий страны Южной Америки и бассейна Карибского моря; и RIPE NCC, обслуживающий Европу, Центральную Азию, Ближний Восток. Региональные регистраторы получают номера автономных систем и большие блоки адресов у IANA, а затем выдают номера автономных систем и блоки адресов меньшего размера локальным интернет-регистраторам (Local Internet Registries, LIR), обычно являющимся крупными провайдерами. Номер узла в протоколе IP назначается независимо от локального адреса узла. Маршрутизатор по определению входит сразу в несколько сетей. Поэтому каждый порт маршрутизатора имеет собственный IP-адрес. Конечный узел также может входить в несколько IP-сетей. В этом случае компьютер должен иметь несколько IP-адресов, по числу сетевых связей. Таким образом, IP-адрес характеризует не отдельный компьютер или маршрутизатор, а одно сетевое соединение.

Есть два способа определения того, сколько бит отводится на маску подсети, а сколько — на IP-адрес. Изначально использовалась классовая адресация (INET), но со второй половины 90-х годов XX века она была вытеснена бесклассовой адресацией (CIDR), при которой количество адресов в сети определяется маской подсети.

Иногда встречается запись IP-адресов вида «192.168.5.0/24». Данный вид записи заменяет собой указание диапазона IP-адресов. Число после косой черты означает количество единичных разрядов в маске подсети. Для приведённого примера маска подсети будет иметь двоичный вид 11111111 11111111 11111111 00000000 или то же самое в десятичном виде: «255.255.255.0». 24 разряда IP-адреса отводятся под номер сети, а остальные 32-24=8 разрядов полного адреса — под адреса хостов этой сети, адрес этой сети и широковещательный адрес этой сети. Итого, 192.168.5.0/24 означает диапазон адресов хостов от 192.168.5.1 до 192.168.5.254, а также 192.168.5.0 — адрес сети и 192.168.5.255 — широковещательный адрес сети. Для вычисления адреса сети и широковещательного адреса сети используются формулы:

  • адрес сети = IP.любого_компьютера_этой_сети AND MASK (адрес сети позволяет определить, что компьютеры в одной сети)
  • широковещательный адрес сети = IP.любого_компьютера_этой_сети OR NOT(MASK) (широковещательный адрес сети воспринимается всеми компьютерами сети как дополнительный свой адрес, то есть пакет на этот адрес получат все хосты сети как адресованные лично им. Если на сетевой интерфейс хоста, который не является маршрутизатором пакетов, попадёт пакет, адресованный не ему, то он будет отброшен).

Запись IP-адресов с указанием через слэш маски подсети переменной длины также называют CIDR-адресом в противоположность обычной записи без указания маски, в операционных системах типа UNIX также именуемой INET-адресом.

В протоколе IP существует несколько соглашений об особой интерпретации IP-адресов: если все двоичные разряды IP-адреса равны 1, то пакет с таким адресом назначения должен рассылаться всем узлам, находящимся в той же сети, что и источник этого пакета. Такая рассылка называется ограниченным широковещательным сообщением (limited broadcast). Если в поле номера узла назначения стоят только единицы, то пакет, имеющий такой адрес, рассылается всем узлам сети с заданным номером сети. Например, в сети 192.168.5.0 с маской 255.255.255.0 пакет с адресом 192.168.5.255 доставляется всем узлам этой сети. Такая рассылка называется широковещательным сообщением (direct broadcast).

IP-адрес называют статическим (постоянным, неизменяемым), если он назначается пользователем в настройках устройства, либо назначается автоматически при подключении устройства к сети и не может быть присвоен другому устройству.

IP-адрес называют динамическим (непостоянным, изменяемым), если он назначается автоматически при подключении устройства к сети и используется в течение ограниченного промежутка времени, указанного в сервисе назначавшего IP-адрес (DHCP).

Для получения IP-адреса клиент может использовать один из следующих протоколов:

  • DHCP (RFC 2131) — наиболее распространённый протокол настройки сетевых параметров.
  • BOOTP (RFC 951) — простой протокол настройки сетевого адреса, обычно используется для бездисковых станций.
  • IPCP (RFC 1332) в рамках протокола PPP (RFC 1661).
  • Zeroconf (RFC 3927) — протокол настройки сетевого адреса, определения имени, поиск служб.
  • RARP (RFC 903) Устаревший протокол, использующий обратную логику (из аппаратного адреса — в логический) популярного и поныне в широковещательных сетях протокола ARP. Не поддерживает распространения информации о длине маски (не поддерживает VLSM).

Адреса, используемые в локальных сетях, относят к частным. К частным относятся IP-адреса из следующих сетей:

  • 10.0.0.0/8
  • 172.16.0.0/12
  • 192.168.0.0/16

Также для внутреннего использования:

  • 127.0.0.0/8 — используется для коммуникаций внутри хоста.
  • 169.254.0.0/16 — используется для автоматической настройки сетевого интерфейса в случае отсутствия DHCP (за исключением первой и последней /24 подсети).

Полный список описания сетей для IPv4 представлен в RFC 6890.

Добавить комментарий