Как правильно найти значение корня


Загрузить PDF


Загрузить PDF

До появления калькуляторов студенты и преподаватели вычисляли квадратные корни вручную. Существует несколько способов вычисления квадратного корня числа вручную. Некоторые из них предлагают только приблизительное решение, другие дают точный ответ.

  1. Изображение с названием Calculate a Square Root by Hand Step 1

    1

    Разложите подкоренное число на множители, которые являются квадратными числами. В зависимости от подкоренного числа, вы получите приблизительный или точный ответ. Квадратные числа – числа, из которых можно извлечь целый квадратный корень. Множители – числа, которые при перемножении дают исходное число.[1]
    Например, множителями числа 8 являются 2 и 4, так как 2 х 4 = 8, числа 25, 36, 49 являются квадратными числами, так как √25 = 5, √36 = 6, √49 = 7. Квадратные множители – это множители, которые являются квадратными числами. Сначала попытайтесь разложить подкоренное число на квадратные множители.

    • Например, вычислите квадратный корень из 400 (вручную). Сначала попытайтесь разложить 400 на квадратные множители. 400 кратно 100, то есть делится на 25 – это квадратное число. Разделив 400 на 25, вы получите 16. Число 16 также является квадратным числом. Таким образом, 400 можно разложить на квадратные множители 25 и 16, то есть 25 х 16 = 400.
    • Записать это можно следующим образом: √400 = √(25 х 16).
  2. Изображение с названием Calculate a Square Root by Hand Step 2

    2

    Квадратные корень из произведения некоторых членов равен произведению квадратных корней из каждого члена, то есть √(а х b) = √a x √b.[2]
    Воспользуйтесь этим правилом и извлеките квадратный корень из каждого квадратного множителя и перемножьте полученные результаты, чтобы найти ответ.

    • В нашем примере извлеките корень из 25 и из 16.
      • √(25 х 16)
      • √25 х √16
      • 5 х 4 = 20
  3. Изображение с названием Calculate a Square Root by Hand Step 3

    3

    Если подкоренное число не раскладывается на два квадратных множителя (а так происходит в большинстве случаев), вы не сможете найти точный ответ в виде целого числа. Но вы можете упростить задачу, разложив подкоренное число на квадратный множитель и обыкновенный множитель (число, из которого целый квадратный корень извлечь нельзя). Затем вы извлечете квадратный корень из квадратного множителя и будете извлекать корень из обыкновенного множителя.

    • Например, вычислите квадратный корень из числа 147. Число 147 нельзя разложить на два квадратных множителя, но его можно разложить на следующие множители: 49 и 3. Решите задачу следующим образом:
      • √147
      • = √(49 х 3)
      • = √49 х √3
      • = 7√3
  4. Изображение с названием Calculate a Square Root by Hand Step 4

    4

    Если нужно, оцените значение корня. Теперь можно оценить значение корня (найти приблизительное значение), сравнив его со значениями корней квадратных чисел, находящихся ближе всего (с обеих сторон на числовой прямой) к подкоренному числу. Вы получите значение корня в виде десятичной дроби, которую необходимо умножить на число, стоящее за знаком корня.

    • Вернемся к нашему примеру. Подкоренное число 3. Ближайшими к нему квадратными числами будут числа 1 (√1 = 1) и 4 (√4 = 2). Таким образом, значение √3 расположено между 1 и 2. Та как значение √3, вероятно, ближе к 2, чем к 1, то наша оценка: √3 = 1,7. Умножаем это значение на число у знака корня: 7 х 1,7 = 11,9. Если вы сделаете расчеты на калькуляторе, то получите 12,13, что довольно близко к нашему ответу.
      • Этот метод также работает с большими числами. Например, рассмотрим √35. Подкоренное число 35. Ближайшими к нему квадратными числами будут числа 25 (√25 = 5) и 36 (√36 = 6). Таким образом, значение √35 расположено между 5 и 6. Так как значение √35 намного ближе к 6, чем к 5 (потому что 35 всего на 1 меньше 36), то можно заявить, что √35 немного меньше 6. Проверка на калькуляторе дает нам ответ 5,92 – мы были правы.
  5. Изображение с названием Calculate a Square Root by Hand Step 5

    5

    Еще один способ – разложите подкоренное число на простые множители. Простые множители – числа, которые делятся только на 1 и самих себя. Запишите простые множители в ряд и найдите пары одинаковых множителей. Такие множители можно вынести за знак корня.

    • Например, вычислите квадратный корень из 45. Раскладываем подкоренное число на простые множители: 45 = 9 х 5, а 9 = 3 х 3. Таким образом, √45 = √(3 х 3 х 5). 3 можно вынести за знак корня: √45 = 3√5. Теперь можно оценить √5.
    • Рассмотрим другой пример: √88.
      • √88
      • = √(2 х 44)
      • = √ (2 х 4 х 11)
      • = √ (2 х 2 х 2 х 11). Вы получили три множителя 2; возьмите пару из них и вынесите за знак корня.
      • = 2√(2 х 11) = 2√2 х √11. Теперь можно оценить √2 и √11 и найти приблизительный ответ.

    Реклама

При помощи деления в столбик

  1. Изображение с названием Calculate a Square Root by Hand Step 6

    1

    Этот метод включает процесс, аналогичный делению в столбик, и дает точный ответ. Сначала проведите вертикальную линию, делящую лист на две половины, а затем справа и немного ниже верхнего края листа к вертикальной линии пририсуйте горизонтальную линию. Теперь разделите подкоренное число на пары чисел, начиная с дробной части после запятой. Так, число 79520789182,47897 записывается как “7 95 20 78 91 82, 47 89 70”.

    • Для примера вычислим квадратный корень числа 780,14. Нарисуйте две линии (как показано на рисунке) и слева сверху напишите данное число в виде “7 80, 14”. Это нормально, что первая слева цифра является непарной цифрой. Ответ (корень из данного числа) будете записывать справа сверху.
  2. Изображение с названием Calculate a Square Root by Hand Step 7

    2

    Для первой слева пары чисел (или одного числа) найдите наибольшее целое число n, квадрат которого меньше или равен рассматриваемой паре чисел (или одного числа). Другими словами, найдите квадратное число, которое расположено ближе всего к первой слева паре чисел (или одному числу), но меньше ее, и извлеките квадратный корень из этого квадратного числа; вы получите число n. Напишите найденное n сверху справа, а квадрат n запишите снизу справа.

    • В нашем случае, первым слева числом будет число 7. Далее, 4 < 7, то есть 22 < 7 и n = 2. Напишите 2 сверху справа – это первая цифра в искомом квадратном корне. Напишите 2×2=4 справа снизу; вам понадобится это число для последующих вычислений.
  3. Изображение с названием Calculate a Square Root by Hand Step 8

    3

    Вычтите квадрат числа n, которое вы только что нашли, из первой слева пары чисел (или одного числа). Результат вычисления запишите под вычитаемым (квадратом числа n).

    • В нашем примере вычтите 4 из 7 и получите 3.
  4. Изображение с названием Calculate a Square Root by Hand Step 9

    4

    Снесите вторую пару чисел и запишите ее около значения, полученного в предыдущем шаге. Затем удвойте число сверху справа и запишите полученный результат снизу справа с добавлением “_×_=”.

    • В нашем примере второй парой чисел является “80”. Запишите “80” после 3. Затем, удвоенное число сверху справа дает 4. Запишите “4_×_=” снизу справа.
  5. Изображение с названием Calculate a Square Root by Hand Step 10

    5

    Заполните прочерки справа. Найдите такое наибольшее число на место прочерков справа (вместо прочерков нужно подставить одно и тоже число), чтобы результат умножения был меньше или равен текущему числу слева.

    • В нашем случае, если вместо прочерков поставить число 8, то 48 х 8 = 384, что больше 380. Поэтому 8 – слишком большое число, а вот 7 подойдет. Напишите 7 вместо прочерков и получите: 47 х 7 = 329. Запишите 7 сверху справа – это вторая цифра в искомом квадратном корне числа 780,14.
  6. Изображение с названием Calculate a Square Root by Hand Step 11

    6

    Вычтите полученное число из текущего числа слева. Запишите результат из предыдущего шага под текущим числом слева, найдите разницу и запишите ее под вычитаемым.

    • В нашем примере, вычтите 329 из 380, что равно 51.
  7. Изображение с названием Calculate a Square Root by Hand Step 12

    7

    Повторите шаг 4. Если сносимой парой чисел является дробная часть исходного числа, то поставьте разделитель (запятую) целой и дробной частей в искомом квадратном корне сверху справа. Слева снесите вниз следующую пару чисел. Удвойте число сверху справа и запишите полученный результат снизу справа с добавлением “_×_=”.

    • В нашем примере следующей сносимой парой чисел будет дробная часть числа 780.14, поэтому поставьте разделитель целой и дробной частей в искомом квадратном корне сверху справа. Снесите 14 и запишите снизу слева. Удвоенным числом сверху справа (27) будет 54, поэтому напишите “54_×_=” снизу справа.
  8. Изображение с названием Calculate a Square Root by Hand Step 13

    8

    Повторите шаги 5 и 6. Найдите такое наибольшее число на место прочерков справа (вместо прочерков нужно подставить одно и тоже число), чтобы результат умножения был меньше или равен текущему числу слева.

    • В нашем примере 549 х 9 = 4941, что меньше текущего числа слева (5114). Напишите 9 сверху справа и вычтите результат умножения из текущего числа слева: 5114 – 4941 = 173.
  9. Изображение с названием Calculate a Square Root by Hand Step 14

    9

    Если для квадратного корня вам необходимо найти больше знаков после запятой, напишите пару нулей у текущего числа слева и повторяйте шаги 4, 5 и 6. Повторяйте шаги, до тех пор пока не получите нужную вам точность ответа (число знаков после запятой).

    Реклама

Понимание процесса

  1. Изображение с названием Calculate a Square Root by Hand Step 15

    1

    Для усвоения данного метода представьте число, квадратный корень которого необходимо найти, как площадь квадрата S. В этом случае вы будете искать длину стороны L такого квадрата. Вычисляем такое значение L, при котором L² = S.

  2. Изображение с названием Calculate a Square Root by Hand Step 16

    2

    Задайте букву для каждой цифры в ответе. Обозначим через A первую цифру в значении L (искомый квадратный корень). B будет второй цифрой, C – третьей и так далее.

  3. Изображение с названием Calculate a Square Root by Hand Step 17

    3

    Задайте букву для каждой пары первых цифр. Обозначим через Sa первую пару цифр в значении S, через Sb – вторую пару цифр и так далее.

  4. Изображение с названием Calculate a Square Root by Hand Step 18

    4

    Уясните связь данного метода с делением в столбик. Как и в операции деления, где каждый раз нас интересует только одна следующая цифра делимого числа, при вычислении квадратного корня мы последовательно работаем с парой цифр (для получения одной следующей цифры в значении квадратного корня).

  5. Изображение с названием Calculate a Square Root by Hand Step 19

    5

    Рассмотрим первую пару цифр Sa числа S (Sa = 7 в нашем примере) и найдем ее квадратный корень. В этом случае первой цифрой A искомого значения квадратного корня будет такая цифра, квадрат которой меньше или равен Sa (то есть ищем такое A, при котором выполняется неравенство A² ≤ Sa < (A+1)²). В нашем примере, S1 = 7, и 2² ≤ 7 < 3²; таким образом A = 2.

    • Допустим, что нужно разделить 88962 на 7; здесь первый шаг будет аналогичным: рассматриваем первую цифру делимого числа 88962 (8) и подбираем такое наибольшее число, которое при умножении на 7 дает значение меньшее или равное 8. То есть ищем такое число d, при котором верно неравенство: 7×d ≤ 8 < 7×(d+1). В этом случае d будет равно 1.
  6. Изображение с названием Calculate a Square Root by Hand Step 20

    6

    Мысленно представьте квадрат, площадь которого вам нужно вычислить. Вы ищите L, то есть длину стороны квадрата, площадь которого равна S. A, B, C – цифры в числе L. Записать можно иначе: 10А + B = L (для двузначного числа) или 100А + 10В + С = L (для трехзначного числа) и так далее.

    • Пусть (10A+B)² = L² = S = 100A² + 2×10A×B + B². Запомните, что 10A+B – это такое число, у которого цифра B означает единицы, а цифра A – десятки. Например, если A=1 и B=2, то 10A+B равно числу 12.(10A+B)² – это площадь всего квадрата, 100A² – площадь большого внутреннего квадрата, – площадь малого внутреннего квадрата, 10A×B – площадь каждого из двух прямоугольников. Сложив площади описанных фигур, вы найдете площадь исходного квадрата.
  7. Изображение с названием Calculate a Square Root by Hand Step 21

    7

    Вычтите A² из Sa. Для учета множителя 100 снесите одну пару цифр (Sb) из S: вам нужно, чтобы “SaSb” было равным общей площади квадрата, и из нее вычтите 100A² (площадь большого квадрата). В результате получите число N1, стоящее слева в шаге 4 (N = 380 в нашем примере). N1 = 2×10A×B + B² (площадь двух прямоугольников плюс площадь малого квадрата).

  8. Изображение с названием Calculate a Square Root by Hand Step 22

    8

    Выражение N1 = 2×10A×B + B² можно записать как N1 = (2×10A + B) × B. В нашем примере вам известно значение N1 (=380) и A(=2) и необходимо вычислить B. Скорее всего, B не является целым числом, поэтому необходимо найти наибольшее целое B, удовлетворяющее условию: (2×10A + B) × B ≤ N1. При этом B+1 будет слишком большим, поэтому N1 < (2×10A + (B+1)) × (B+1).

  9. Изображение с названием Calculate a Square Root by Hand Step 23

    9

    Решите уравнение. Для решения умножьте A на 2, переведите результат в десятки (что эквивалентно умножению на 10), поместите B в положение единиц, и умножьте это число на B. Это число (2×10A + B) × B и это выражение абсолютно идентичны записи “N_×_=” (где N=2×A) сверху справа в шаге 4. А в шаге 5 вы находите наибольшее целое B, которое ставится на место прочерков и соответствует неравенству: (2×10A + B) × B ≤ N1.

  10. Изображение с названием Calculate a Square Root by Hand Step 24

    10

    Вычтите площадь (2×10A + B) × B из общей площади (слева в шаге 6). Так вы получите площадь S-(10A+B)², которая еще не учитывалась (и которая поможет вычислить следующие цифры).

  11. Изображение с названием Calculate a Square Root by Hand Step 25

    11

    Для вычисления следующей цифры C повторите процесс. Слева снесите следующую пару цифр (Sc) из S для получения N2 и найдите наибольшее C, удовлетворяющее условию (2×10×(10A+B)+C) × C ≤ N2 (что эквивалентно двукратному написанию числа из пары цифр “A B” с соответствующим “_×_=”, и нахождению наибольшего числа, которое можно подставить вместо прочерков).

    Реклама

Советы

  • Перемещение десятичного разделителя при увеличении числа на 2 цифры (множитель 100), перемещает десятичный разделить на одну цифру в значении квадратного корня этого числа (множитель 10).
  • В нашем примере, 1,73 может считаться остатком: 780,14 = 27,9² + 1,73.
  • Данный метод верен для любых чисел.
  • Записывайте процесс вычисления в том виде, который вам наиболее удобен. Например, некоторые записывают результат над исходным числом.
  • Альтернативный метод с использованием непрерывных дробей включает формулу: √z = √(x^2+y) = x + y/(2x + y/(2x + y/(2x + …))). Например, для вычисления квадратного корня из 780,14, целым числом, квадрат которого близок к 780,14 будет число 28, поэтому z=780,14, x=28, y=-3,86. Подставляя эти значения в уравнение и решая его в упрощении до х+у/(2x), уже в младших членах получаем результат 78207/2800 или около 27,931(1), а в следующих членах 4374188/156607 или около 27,930986(5). Решение каждого последующего члена добавляет около 3 цифр к дробной доли по сравнению с предыдущем членом.

Реклама

Предупреждения

  • Не забудьте разделить число на пары, начиная с дробной части числа. Например, разделяя 79520789182,47897 как “79 52 07 89 18 2,4 78 97″, вы получите бессмысленное число.

Реклама

Похожие статьи

Источники

Об этой статье

Эту страницу просматривали 928 113 раз.

Была ли эта статья полезной?

Nuvola apps edu mathematics blue-p.svg

Квадра́тный ко́рень из числа a (корень 2-й степени) — число x, дающее a при возведении в квадрат[1]: {displaystyle xcdot x=a.} Равносильное определение: квадратный корень из числа a — решение уравнения {displaystyle x^{2}=a.} Операция вычисления значения квадратного корня из числа a называется «извлечением квадратного корня» из этого числа.

Наиболее часто под x и a подразумеваются вещественные числа, но существуют и обобщения [⇨] для комплексных чисел и других математических объектов, например, матриц и операторов.

У каждого положительного вещественного числа существуют два противоположных по знаку квадратных корня. Например, квадратными корнями из числа 9 являются {displaystyle +3} и {displaystyle -3,} у обоих этих чисел квадраты совпадают и равны 9. Это затрудняет работу с корнями. Чтобы обеспечить однозначность, вводится понятие арифметического корня, значение которого при ageqslant 0 всегда неотрицательно (а на положительных a положительно); арифметический корень из числа a обозначается с помощью знака корня (радикала)[2][3]: {sqrt {a}}.

Пример для вещественных чисел: {displaystyle {sqrt {16}}=4,} потому что {displaystyle { 4}^{2}=16.}

Если требуется учесть двузначность корня, перед радикалом ставится знак плюс-минус[2]; например, так делается в формуле решения квадратного уравнения ax^{2}+bx+c=0:

{displaystyle x_{1,2}={frac {-bpm {sqrt {b^{2}-4ac}}}{2a}}}

Например, 25 = 5, поскольку

25 = 5 ⋅ 5, или

52 (5 «в квадрате»)

История[править | править код]

Первые задачи, связанные с извлечением квадратного корня, обнаружены в трудах вавилонских математиков. Среди таких задач[4]:

  • Применение теоремы Пифагора для нахождения стороны прямоугольного треугольника по известным двум другим сторонам.
  • Нахождение стороны квадрата, площадь которого задана.
  • Решение квадратных уравнений.

Вавилонская глиняная табличка YBC 7289 с пометками. Диагональ отображает приближение {sqrt {2}} четырьмя 60-ричными цифрами, 1 24 51 10

Вавилонская глиняная табличка YBC 7289 из вавилонской коллекции Йельского университета была создана между 1800 и 1600 годами до н. э. и демонстрирует √2 и √2/2 соответственно в шестидесятиричной системе счисления: 1;24,51,10 и 0;42,25,35 на квадрате, пересечённом двумя диагоналями[5]. (1;24,51,10) по основанию 60 соответствует 1,41421296, что является правильным значением с точностью до 5 десятичных знаков: {displaystyle 1+24/60+51/60^{2}+10/60^{3}=1{,}41421296.} Вавилонские математики (II тысячелетие до н. э.) разработали для извлечения квадратного корня особый численный метод[6], изложенный ниже[⇨]. Аналогичные задачи и методы встречаются в древнекитайской «Математике в девяти книгах»[7].

Древние греки сделали важное открытие: {sqrt {2}} — иррациональное число. Детальное исследование, выполненное Теэтетом Афинским (IV век до н. э.), показало, что если корень из натурального числа не извлекается нацело, то его значение иррационально[8].

Средневековые европейские математики (например, Кардано) обозначали квадратный корень[9] символом Rx, сокращение от слова «radix». Современное обозначение впервые употребил немецкий математик Кристоф Рудольф, из школы коссистов (то есть алгебраистов), в 1525 году[10]. Происходит этот символ от стилизованной первой буквы того же слова «radix». Черта над подкоренным выражением вначале отсутствовала; её позже ввёл Декарт («Геометрии», 1637) для иной цели (вместо скобок), и эта черта вскоре слилась со знаком корня.

После появления формулы Кардано (XVI век) началось применение в математике мнимых чисел, понимаемых как квадратные корни из отрицательных чисел[11]. Основы техники работы с комплексными числами разработал в XVI веке Рафаэль Бомбелли, который также предложил оригинальный метод вычисления корней (с помощью цепных дробей). Открытие формулы Муавра (1707) показало, что извлечение корня любой степени из комплексного числа всегда возможно и не приводит к новому типу чисел[12].

Комплексные корни произвольной степени в начале XIX века глубоко исследовал Гаусс, хотя первые результаты принадлежат Эйлеру[13]. Чрезвычайно важным открытием (Галуа) стало доказательство того факта, что не все алгебраические числа (корни многочленов) могут быть получены из натуральных с помощью четырёх действий арифметики и извлечения корней[14].

Квадратные корни из чисел[править | править код]

Рациональные числа[править | править код]

При рациональных a уравнение x^2=a не всегда разрешимо в рациональных числах. Более того, такое уравнение, даже при положительном a, разрешимо в рациональных числах тогда и только тогда, когда и числитель и знаменатель числа a, представленного в виде несократимой дроби, являются квадратными числами.

Непрерывная дробь для корня из рационального числа всегда является периодической (возможно, с предпериодом), что позволяет, с одной стороны, легко вычислять хорошие рациональные приближения к рациональным числам с помощью линейных рекурсий, а с другой стороны ограничивает точность приближения: |{sqrt  {r}}-p/q|>{frac  {1}{Cq^{2}}}, где C зависит от r[15][16]. Верно и то, что любая периодическая непрерывная дробь является квадратичной иррациональностью.

Примеры разложения корней из натуральных чисел от 2 до 10 в непрерывные дроби:

{sqrt {2}} = [1; 2, 2, …]
sqrt{3} = [1; 1, 2, 1, 2, …]
{displaystyle {sqrt {4}}} = [2]
{sqrt {5}} = [2; 4, 4, …]
{sqrt  {6}} = [2; 2, 4, 2, 4, …]
{displaystyle {sqrt {7}}} = [2; 1, 1, 1, 4, 1, 1, 1, 4, …]
{displaystyle {sqrt {8}}} = [2; 1, 4, 1, 4, …]
{displaystyle {sqrt {9}}} = [3]
{sqrt {10}} = [3; 6, 6, …]

Действительные (вещественные) числа[править | править код]

Для любого положительного числа a существуют ровно два вещественных корня, которые равны по модулю и противоположны по знаку[17].

Неотрицательный квадратный корень из неотрицательного числа a называется арифметическим квадратным корнем и обозначается с использованием знака радикала[3]: {sqrt  a}.

Основные свойства вещественного квадратного корня (все подкоренные выражения считаются неотрицательными):

К комплексным числам, учитывая двузначность корня, все эти свойства неприменимы (см. ниже пример ошибки).

Комплексные числа[править | править код]

Квадратных корней из любого ненулевого комплексного числа всегда ровно два, они противоположны по знаку. Для корней в комплексной области понятие арифметического корня не вводится, знак радикала обычно либо не используется, либо обозначает не функцию корня, а множество всех корней. В последнем случае, во избежание ошибок, знак радикала не должен использоваться в арифметических операциях. Распространённая ошибка:

{displaystyle -1=({sqrt {-1}})^{2}={sqrt {(-1)^{2}}}={sqrt {1}}=1} (что, конечно, неверно)

Ошибка возникла из-за того, что комплексный квадратный корень является двузначной функцией, и его нельзя использовать в арифметических действиях.

Для извлечения квадратного корня из комплексного числа удобно использовать экспоненциальную форму записи комплексного числа: если

{displaystyle a=|a|e^{iphi }},

то (см. Формула Муавра)

{displaystyle {sqrt {a}}={sqrt {|a|}}cdot e^{i(phi +2pi k)/2}},

где корень из модуля понимается в смысле арифметического значения, а k может принимать значения k = 0 и k = 1, таким образом, в итоге получаются два различных результата.

Существует и чисто алгебраическое представление для корня из a+bi; оба значения корня имеют вид {displaystyle pm (c+di)} где:

{displaystyle c={sqrt {frac {a+{sqrt {a^{2}+b^{2}}}}{2}}}}
{displaystyle d=operatorname {sgn}(b){sqrt {frac {-a+{sqrt {a^{2}+b^{2}}}}{2}}}}

Здесь sgn — функция «знак». Формула легко проверяется возведением {displaystyle c+di} в квадрат[18].

Пример: для квадратного корня из {displaystyle 3+4i} формулы дают два значения: {displaystyle 2+i;;-2-i.}

Квадратный корень как элементарная функция[править | править код]

Квадратный корень является элементарной функцией и частным случаем степенной функции {displaystyle x^{alpha }} с alpha=1/2. Арифметический квадратный корень является гладким при {displaystyle x>0,} в нуле же он непрерывен справа, но не дифференцируем[19].

Производная функции квадратного корня вычисляется по формуле:

{displaystyle {frac {d({sqrt {x}})}{dx}}={frac {1}{2{sqrt {x}}}}}

Как функция комплексного переменного корень — двузначная функция, два листа которой соединяются в нуле (см. подробнее Комплексный анализ).

В элементарной геометрии[править | править код]

Квадратные корни тесно связаны с элементарной геометрией: если дан отрезок длины 1, то с помощью циркуля и линейки можно построить те и только те отрезки, длина которых записывается выражениями, содержащими целые числа, знаки четырёх действий арифметики, квадратные корни и ничего сверх того[20].

В информатике[править | править код]

Во многих языках программирования функционального уровня (а также языках разметки типа LaTeX) функция квадратного корня обозначается как sqrt (от англ. square root «квадратный корень»).

Применение[править | править код]

Квадратные корни используются повсеместно в математике и естественных науках, например:

Алгоритмы нахождения квадратного корня[править | править код]

Разложение в ряд Тейлора[править | править код]

{displaystyle {sqrt {1+x}}=sum _{n=0}^{infty }{frac {(-1)^{n}(2n)!}{(1-2n)(n!)^{2}(4^{n})}}x^{n}=1+textstyle {frac {1}{2}}x-{frac {1}{8}}x^{2}+{frac {1}{16}}x^{3}-{frac {5}{128}}x^{4}+dots ,} при {displaystyle |x|leqslant 1}.

Грубая оценка[править | править код]

Многие алгоритмы вычисления квадратных корней из положительного действительного числа S требуют некоторого начального значения. Если начальное значение слишком далеко от настоящего значения корня, вычисления замедляются. Поэтому полезно иметь грубую оценку, которая может быть очень неточна, но легко вычисляется. Если S ≥ 1, пусть D будет числом цифр S слева от десятичной запятой. Если S < 1, пусть D будет числом нулей, идущих подряд, справа от десятичной запятой, взятое со знаком минус. Тогда грубая оценка выглядит так:

Если D нечётно, D = 2n + 1, тогда используем {sqrt  {S}}approx 2cdot 10^{n}.
Если D чётно, D = 2n + 2, тогда используем {sqrt  {S}}approx 6cdot 10^{n}.

Два и шесть используются потому, что {displaystyle {sqrt {sqrt {1cdot 10}}}={sqrt[{4}]{10}}approx 2} и {sqrt  {{sqrt  {10cdot 100}}}}={sqrt[ {4}]{1000}}approx 6,.

При работе в двоичной системе (как внутри компьютеров), следует использовать другую оценку 2^{{leftlfloor D/2rightrfloor }} (здесь D это число двоичных цифр).

Геометрическое извлечение квадратного корня[править | править код]

Построение для геометрического извлечения квадратного корня

Так как треугольники {displaystyle Delta ABH} и {displaystyle Delta BCH} подобны по признаку подобия треугольников по 2 равным углам, то {displaystyle {frac {|AH|}{|BH|}}={frac {|BH|}{|HC|}},~} откуда {displaystyle |BH|^{2}=|AH|cdot |HC|} и {displaystyle |BH|={sqrt {|AH|cdot |HC|}}.}

В частности, если {displaystyle |AH|=1}, а {displaystyle |HC|=x}, то |BH|={sqrt  {x}}[21].

Итерационный аналитический алгоритм[править | править код]

Данный способ был известен уже в Древнем Вавилоне. Он позволяет найти приближённое значение квадратного корня с любой точностью,

Последовательные приближения рассчитываются по формуле:
{displaystyle {begin{cases}x_{0}=a\x_{n+1}={frac {1}{2}}left(x_{n}+{frac {a}{x_{n}}}right)end{cases}}}
тогда lim _{{nto infty }}x_{n}={sqrt  {a}}

Этот метод сходится очень быстро. Например, если для {sqrt {5}} взять начальное приближение {displaystyle x_{0}=2,} то получим:

{displaystyle x_{1}={frac {9}{4}}=2{,}25; x_{2}={frac {161}{72}}=2{,}23611dots ; x_{3}={frac {51841}{23184}}=2{,}2360679779dots }

В заключительном значении верны все приведённые цифры, кроме последней.

Столбиком[править | править код]

Этот способ позволяет найти приближённое значение корня из любого действительного числа с любой наперёд заданной точностью. К недостаткам способа можно отнести увеличивающуюся сложность вычисления с увеличением количества найденных цифр.

Для ручного извлечения корня применяется запись, похожая на деление столбиком. Выписывается число, корень которого ищем. Справа от него будем постепенно получать цифры искомого корня. Пусть извлекается корень из числа N с конечным числом знаков после запятой. Для начала мысленно или метками разобьём число N на группы по две цифры слева и справа от десятичной точки. При необходимости группы дополняются нулями — целая часть дополняется слева, дробная справа. Так, 31234,567 можно представить как 03 12 34, 56 70. В отличие от деления, снос производится такими группами по 2 цифры.

  1. Записать число N (в примере — 69696) на листке.
  2. Найти a, квадрат которого меньше или равен группе старших разрядов числа N (старшая группа — самая левая, не равная нулю), а квадрат a+1 больше группы старших разрядов числа. Записать найденное a справа от N (это очередная цифра искомого корня). (На первом шаге примера a^{2}=2^{2}=2cdot 2=4<6, а (a+1)^{2}=3^{2}=3cdot 3=9>6).
  3. Записать квадрат a под старшей группой разрядов. Провести вычитание из старшей группы разрядов N выписанного квадрата числа a и записать результат вычитания под ними.
  4. Слева от этого результата вычитания провести вертикальную черту и слева от черты записать число, равное уже найденным цифрам результата (мы их выписываем справа от N), умноженное на 20. Назовём это число b. (На первом шаге примера это число просто есть b=2cdot 20=40, на втором b=26cdot 20=520).
  5. Произвести снос следующей группы цифр, то есть дописать следующие две цифры числа N справа от результата вычитания. Назовем c число, полученное соединением результата вычитания и очередной группы из двух цифр. (На первом шаге примера это число c=296, на втором c=2096). Если сносится первая группа после десятичной точки числа N, то нужно поставить точку справа от уже найденных цифр искомого корня.
  6. Теперь нужно найти такое a, что (b+a)cdot a меньше или равно c, но (b+(a+1))cdot (a+1) больше, чем c. Записать найденное a справа от N как очередную цифру искомого корня. Вполне возможно, что a окажется равным нулю. Это ничего не меняет — записываем 0 справа от уже найденных цифр корня. (На первом шаге примера это число 6, так как (40+6)cdot 6=46cdot 6=276<296, но (40+7)cdot 7=47cdot 7=329>296) Если число найденных цифр уже удовлетворяет искомой точности, прекращаем процесс вычисления.
  7. Записать число (b+a)cdot a под c. Провести вычитание столбиком числа (b+a)cdot a из c и записать результат вычитания под ними. Перейти к шагу 4.

Наглядное описание алгоритма:

SquareRoot.png

Вариации и обобщения[править | править код]

Квадратный корень из a определяется как решение уравнения {displaystyle x^{2}=a,} и его в принципе можно определить не только для чисел, но и всюду, где такое уравнение имеет смысл. В общей алгебре применяется следующее формальное определение:

Чаще всего рассматривают такие обобщения в алгебраических кольцах.

Если кольцо есть область целостности, то квадратных корней из ненулевого элемента может быть либо два, либо ни одного. В самом деле, если имеются два корня a,b, то {displaystyle a^{2}=b^{2},} откуда: {displaystyle (a-b)(a+b)=0}, то есть, в силу отсутствия делителей нуля, {displaystyle a=pm b}. В более общем случае, когда в кольце имеются делители нуля или оно некоммутативно, число корней может быть любым.

В теории чисел рассматривается конечное кольцо вычетов по модулю m: если сравнение {displaystyle x^{2}equiv a{pmod {m}}} имеет решение, то целое число a называется квадратичным вычетом (в противном случае — квадратичным невычетом). Решение указанного сравнения вполне аналогично извлечению квадратного корня в кольце вычетов[22].

Корни для кватернионов имеют много общего с комплексными, но есть и существенные особенности. Квадратный кватернионный корень обычно имеет 2 значения, но если подкоренное выражение — отрицательное вещественное число, то значений бесконечно много. Например, квадратные корни из -1 образуют трёхмерную сферу, определяемую формулой[23]:

{ai+bj+ckmid a^{2}+b^{2}+c^{2}=1},.

Для кольца квадратных матриц доказано, что если матрица положительно определена, то положительно определённый квадратный корень из матрицы существует и единственен[24]. Для матриц других типов корней может быть сколько угодно (в том числе ни одного).

Квадратные корни вводятся также для функций[25], операторов[26] и других математических объектов.

См. также[править | править код]

  • Быстрый инверсный квадратный корень
  • Вложенные радикалы
  • День квадратного корня
  • Кубический корень

Примечания[править | править код]

  1. Математическая энциклопедия (в 5 томах), 1982.
  2. 1 2 Элементарная математика, 1976, с. 49.
  3. 1 2 Корн Г., Корн Т. Справочник по математике, 1970, с. 33.
  4. История математики, 1970—1972, Том I, С. 42—46.
  5. Analysis of YBC 7289 (англ.). ubc.ca. Дата обращения: 19 января 2015. Архивировано 12 марта 2020 года.
  6. История математики, 1970—1972, Том I, С. 47.
  7. История математики, 1970—1972, Том I, С. 169—171.
  8. Башмакова И. Г. Становление алгебры (из истории математических идей). — М.: Знание, 1979. — С. 23. — (Новое в жизни, науке, технике. Математика, кибернетика, № 9).
  9. Никифоровский В. А. Из истории алгебры XVI-XVII вв. — М.: Наука, 1979. — С. 81. — 208 с. — (История науки и техники).
  10. Знаки математические // Математическая энциклопедия. — М.: Советская Энциклопедия, 1982. — Т. 2. Архивировано 20 ноября 2012 года.
  11. История математики, 1970—1972, Том I, С. 296—298.
  12. История математики, 1970—1972, Том III, С. 56—59.
  13. История математики, 1970—1972, Том III, С. 62.
  14. Колмогоров А. Н., Юшкевич А. П. (ред.). Математика XIX века. Математическая логика, алгебра, теория чисел, теория вероятностей. — М.: Наука, 1978. — Т. I. — С. 58—66.
  15. Теорема Лиувилля о приближении алгебраических чисел
  16. Хинчин, 1960.
  17. Фихтенгольц, 4.
  18. Cooke, 2008.
  19. Фихтенгольц, 2.
  20. Курант, Роббинс, 2000.
  21. Курант, Роббинс, 2000, с. 148.
  22. Виноградов И. М. Основы теории чисел. — М.Л.: ГИТТЛ, 1952. — С. 71. — 180 с. Архивировано 4 ноября 2011 года.
  23. Porteous, Ian R. Clifford Algebras and the Classical Groups. Cambridge, 1995, page 60.
  24. См., например: Гантмахер Ф. Р. Теория матриц. М.: ГИТТЛ, 1953, С. 212—219, или: Воеводин В., Воеводин В. Энциклопедия линейной алгебры. Электронная система ЛИНЕАЛ. Спб.: БХВ-Петербург, 2006.
  25. См., например: Ершов Л. В., Райхмист Р. Б. Построение графиков функций. М.: Просвещение, 1984, или: * Каплан И. А. Практические занятия по высшей математике. — Харьков: Изд-во ХГУ, 1966.
  26. См., например: Хатсон В., Пим Дж. Приложения функционального анализа и теории операторов. М.: Мир, 1983, или: Халмош П. Гильбертово пространство в задачах. М.: Мир, 1970.

Литература[править | править код]

  • Воеводин В. В. Энциклопедия линейной алгебры. Электронная система ЛИНЕАЛ. — Санкт-Петербург: БХВ-Петербург, 2006.
  • Ершов Л. В., Райхмист Р. Б. Построение графиков функций. — Москва: Просвещение, 1984.
  • Зайцев В. В., Рыжков В. В., Сканави М. И. Элементарная математика. Повторительный курс. — Издание третье. — М.: Наука, 1976. — 591 с.
  • История математики, в трёх томах / Под редакцией А. П. Юшкевича. — М.: Наука, 1970—1972.
  • Корень // Математическая энциклопедия (в 5 томах). — Москва: Советская Энциклопедия, 1982. — Т. 3.
  • Корн Г., Корн Т. Справочник по математике (для научных работников и инженеров). — 2-е изд.. — Москва: Наука, 1970. — 720 с.
  • Курант Р., Роббинс Г. ГЛАВА III Геометрические построения. Алгебра числовых полей // Что такое математика?. — Москва: МЦНМО, 2000.
  • Понятов А. Откуда вырос арифметический корень? // Наука и жизнь. — 2022. — № 8. — С. 81—89.
  • Фихтенгольц Г. М. Введение, § 4 // [Мат. анализ на EqWorld Курс дифференциального и интегрального исчисления]. — Т. 1.
  • Фихтенгольц Г. М. Глава 2, § 1 // [Мат. анализ на EqWorld Курс дифференциального и интегрального исчисления]. — Т. 1.
  • Халмош П. Гильбертово пространство в задачах. — Москва: Мир, 1970.
  • Хатсон В., Пим Дж. Приложения функционального анализа и теории операторов. — Москва: Мир, 1983.
  • Хинчин А. Я. §§ 4, 10 // Цепные дроби. — Москва: ГИФМЛ, 1960.
  • Cooke, Roger. Classical algebra: its nature, origins, and uses (англ.). — John Wiley and Sons, 2008. — P. 59. — ISBN 0-470-25952-3.

Ссылки[править | править код]

  • Алгоритмы вычисления квадратного корня (англ.). Дата обращения: 12 октября 2006. Архивировано 19 ноября 2010 года.
  • Соловьев Ю. Старый алгоритм. Дата обращения: 6 ноября 2006. Архивировано 3 марта 2016 года.

Благодаря прочтению этой статьи вы научитесь:

  1. Извлекать корни из разных чисел;
  2. Решать разнообразные задания по этой тематике;
  3. Применять удобные таблицы на практике.

А также пополните свой мозг новыми знаниями, что всегда хорошо и полезно! Приятным бонусом для вас будут задания для отработки материала с ответами, которые вы сможете найти в конце этой статьи. Что значит понятие: «Извлечение корня из числа»?

Определение

Извлечение корня из числа — это нахождение значения корня, т.е. действие, обратное возведению в степень.

Числа b и a равны, ведь при извлечении корня n-ной степени одного из чисел, мы, соответственно, находим и второе.

  • n — натуральное число, являющиеся степенью корня.
  • a — подкоренное значение.

Интересно

При помощи разложения функции в ряд можно показать, что сумма всех натуральных чисел равна:

1/12[18]

Когда следует извлекать корень? Если вы видите, что a можно представить в виде n-ной степени какого-либо числа b, то корень a можно извлечь.

Определение

Квадратный корень из числа — это неизвестное число, которое дает это же число при возведении его в квадрат.

Пример извлечения корня:

√25=5×5 — из этого становится ясно, что квадратный корень числа равен 5.

В обратной ситуации, когда нельзя представить корень n-ной степени из числа a, в виде n-ной степени числа b, корень не извлекается или находится лишь приближенное значение этого корня.

Пример:

√6≈√2,44949

Для этого используют различные виды решений, начиная с калькулятора, заканчивая формулами. Калькулятор хоть и посчитает все вместо нас, но не всегда мы можем его применить. Поэтому важно знать другие варианты нахождения приближенного значения корня.

Способы извлечения корня

Для того, чтобы найти значение корня, существуют такие способы извлечения корня, как:

  1. Применение различных таблиц.
  2. Разложение чисел или выражений на простые множители.
  3. Извлечение корней из дробных чисел.
  4. Извлечение отрицательного корня.
  5. Поразрядное нахождение значения корня.

Они основываются на свойствах корней. Далее рассмотрим таблицы, которые могут помочь в процессе извлечения корней.

Квадраты натуральных чисел

Основной является таблица квадратов натуральных чисел:

0 1 2 3 4 5 6 7 8 9
0 0 1 4 9 16 25 36 49 64 81
1 100 121 144 169 196 225 256 289 324 361
2 400 441 484 529 576 625 676 729 784 841
3 900 961 1024 1089 1156 1225 1296 1369 1444 1521
4 1600 1681 1764 1849 1936 2025 2116 2209 2304 2401
5 2500 2601 2704 2809 2916 3025 3136 3249 3364 3481
6 3600 3721 3844 3969 4096 4225 4356 4489 4624 4761
7 4900 5041 5184 5329 5476 5625 5776 5929 6084 6241
8 6400 6561 6724 6889 7056 7225 7396 7569 7744 7921
9 8100 8281 8464 8649 8836 9025 9216 9409 9604 9801

Она, пожалуй, самая распространенная среди школьников. Если в какой-то важный момент она вам необходима, но у вас отсутствует к ней доступ, можно воспользоваться несколькими хитростями:

  1. Чтобы быстро возвести в квадрат число, на конце которого 0, можно добавить к нему парочку нулей: 80×80=6400; 30×30=900. Т.е., первые цифры умножаем и дописываем два 0 к этому числу.
  2. Теперь возьмём какое-нибудь число так, чтобы вторая его цифра оканчивалась на 5. Так, например, число 75. Чтобы быстро возвести его в квадрат, прибавьте к первой цифре единицу, из чего получаются цифры 7 и 8.
  3. Умножаем их и приписываем в конец число 25 и получаем конечный результат в виде числа 5625.

Квадратные корни

Вторая таблица — это таблица квадратных корней:

√x 0 1 2 3 4 5 6 7 8 9
0 0 1 1,41421 1,73205 2 2,23607 2,44949 2,64575 2,82843 3
1 3,16228 3,31662 3,4641 3,60555 3,74166 3,87298 4 4,12311 4,24264 4,3589
2 4,47214 4,58258 4,69042 4,79583 4,89898 5 5,09902 5,19615 5,2915 5,38516
3 5,47723 5,56776 5,65685 5,74456 5,83095 5,91608 6 6,08276 6,16441 6,245
4 6,32456 6,40312 6,48074 6,55744 6,63325 6,7082 6,78233 6,85565 6,9282 7
5 7,07107 7,14143 7,2111 7,28011 7,34847 7,4162 7,48331 7,54983 7,61577 7,68115
6 7,74597 7,81025 7,87401 7,93725 8 8,06226 8,12404 8,18535 8,24621 8,30662
7 8,3666 8,42615 8,48528 8,544 8,60233 8,66025 8,7178 8,77496 8,83176 8,88819
8 8,94427 9 9,05539 9,11043 9,16515 9,21954 9,27362 9,32738 9,38083 9,43398
9 9,48683 9,53939 9,59166 9,64365 9,69536 9,74679 9,79796 9,84886 9,89949 9,94987

Числа в кубе

И, конечно же, третья — таблица кубов, при помощи которой осуществляется извлечение кубического корня.

0 1 2 3 4 5 6 7 8 9
0 0 1 8 27 64 125 216 343 512 729
1 1000 1331 1728 2197 2744 3375 4096 4913 5832 6859
2 8000 9261 10648 12167 13824 15625 17576 19683 21952 24389
3 27000 29791 32768 35937 39304 42875 46656 50653 54872 59319
4 64000 68921 74088 79507 85184 91125 97336 103823 110592 117649
5 125000 132651 140608 148877 157464 166375 175716 185193 195112 205379
6 216000 226981 238328 250047 262144 274625 287496 300763 314432 328509
7 343000 357911 373248 389017 405224 421875 438976 456533 474552 493039
8 512000 531441 551368 571787 592704 614125 636056 658503 681472 704969
9 729000 753571 778688 804357 830584 857375 884736 912673 941192 970299
Эти числа возводятся в третью степень.

Интересно

Название «Куб» приобрелось из-за того, что такая операция проводится для нахождения объема куба. Т.е., для этого нужно возвести длину ребра куба в третью степень.

Такие таблицы достаточно просты в использовании. Слева — десятки, а справа —  единицы. С их помощью можно быстро и легко извлечь корень числа от 0 до 99. Это был один из методов извлечения корней, как мне кажется, самый простой после вычислительного средства — калькулятора, но, зачастую, мы не всегда можем им воспользоваться, как говорилось ранее. Так давайте же перейдем к другим интересным и сложным на первый взгляд вариантам решения.

Разложение подкоренного числа на простые множители

Двигаясь от наиболее удобного и быстрого способа к более сложному, давайте разберемся во втором из них — разложение подкоренного числа на простые множители.

Этот метод состоит в том, чтобы представить какое-либо число в виде степени с нужным нам показателем, из чего мы можем получить значение этого корня.

Пример 1:

Возьмём число 196. Для извлечения его квадратного корня, разложим это число на простые множители: √196=2×2×7×7=2²×7²

Теперь делаем следующие действия: 2×7=14.

Ответ: √196=14.

Объяснение:

Множители находятся так: 196 делим на 2, а полученное число 98 мы тоже делим на 2. Делим до тех пор, пока деление станет невозможным. Так, число 49 нельзя поделить пополам, поэтому мы действуем методом подбора. Находим такое число, которое делится. В данном случае — это 7. Два числа, что у нас получились (2 и 7), мы умножаем друг на друга, но уже без степени и получаем число 14, что есть извлечённый корень из числа 196.

Пример 2:

Для того, чтобы лучше понять, как раскладывать на множители, приведем ещё одно число и перейдем к действиям. Деление 441 на 2 невозможно, поэтому подбираем число. Оно делится на 3 два раза. Опять выходит число 49, которое мы делим 2 раза на 7. Из этого следует: √441=3×3×7×7=3²×7²

3×7=21. Значит, ответ: √441=21.

Объяснение:

3 мы умножили на 7, так как это два числа, имеющих 2 степень. Будь у одного из них 4 степень, например: 3⁴×7² — нужно было бы сделать так: 3×3×7. Проще сказать, что мы сокращаем степени ⁴ и ².

Интересно

Подкоренные числа, разложенные на простые множители, могут иметь лишь чётную степень.

Извлечение корней из дробных чисел

Перед тем, как начать вычисления, убедитесь, что дробное число представлено в виде обыкновенной дроби.

Перейдем к свойству корня из частного:

[sqrt[n]{frac{a}{b}}=frac{sqrt[n]{a}}{sqrt[n]{b}}]

Далее нужно воспользоваться правилом извлечения корня из дроби, которое гласит: корень из дроби равен от деления корня числителя на корень знаменателя.

Пример 1:

Давайте возьмем любую десятичную дробь и на её примере посмотрим, как нужно извлекать корень.

Так, например, найдем кубический корень из 373,248.

Первый ход — это представление десятичной дроби в виде обыкновенной:

³√373248/³√1000. После этого найдем кубический корень в числе и знаменателе:

³√373248=2×2×2×2×2×2×2×2×2×3×3×3×3×3×3=2⁹×3⁶=72³

Эти действия происходят как с квадратными корнями, но здесь уже мы считаем числа 2 и 3 не по двойке, а тройке, т.е. 2⁹=2×2×2, а 3⁶=3×3. Или же сокращаем ⁹ и ⁶.

Проверим таким образом: из 9 вычитаем тройки до тех пор, пока не придем к 0: 9-3-3-3 – это значит, что двоек у нас будет именно 3. Так и с 3⁶. Если от 6 отнять 3 два раза, то будет 0. Выходит, что троек у нас именно две.

А 1000=10³.

Получается, ³√373248/³√1000=72/10=7,2.

Извлечение отрицательного корня

Существуют вещественные числа, из которых невозможно извлечь корень, т.е. решения нет. А вот из комплексных чисел можно извлекать корень. Для начала узнаем, что это за числа.

Определение

Вещественные (действительные) числа— это рациональные и иррациональные числа, которые можно записать в форме конечной или бесконечной десятичной дроби.

Комплексные числа — это выражение, в котором есть:

  • вещественные числа a и b;
  • i — мнимая единица.

Итак, чтобы извлечь корень из отрицательного числа, нужно помнить, что если знаменатель является нечётным, то число под знаком корня может оказаться отрицательным.

Далее, чтобы провести эту операцию с отрицательным числом, перейдем к следующим действиям:

  1. Извлекаем корень из противоположного ему положительного числа.
  2. Ставим перед полученным числом знак минус.

Пример 1:

1. Преобразуем выражение ⁵√-12 640/32 так, чтобы вместо отрицательного числа под корнем оказалось положительное:

⁵√-12 640/32 = -⁵√12 640/32

2. Избавимся от смешанного числа, заменив его обыкновенной дробью:

 -⁵√12 640/32= -⁵√1024/32

3. С помощью правила извлечения корней из обыкновенной дроби, начнем извлекать:

-⁵√1024/32 = — ⁵√1024/⁵√32.

4. Теперь нужно вычислить корни в числителе и знаменателе:

— ⁵√1024/⁵√32 = — ⁵√4⁵/⁵√2⁵ = — 4/2 = -2.

Нет времени решать самому?

Наши эксперты помогут!

Поразрядное нахождение значения корня

Мы разобрали несколько методов, которые вы можете выбрать на своё усмотрение. Однако, есть еще один, который может понадобиться в таких ситуациях, когда нужно знать полное значение корня, а число, находящееся под корнем нельзя представить в виде n-ной степени определенного числа.

Для таких случаев существует алгоритм поразрядного нахождения значения корня, который нужно использовать, чтобы получить нужное количество значений определяемого числа.

Пример 1:

Итак, чтобы в этом разобраться, найдем значение квадратного корня из 7:

1. Находим значение разряда единиц, перебирая значения 0, 1, 2, …, 9, в это же время вычисляя их во 2 степени до нужного значения, которое больше подкоренного числа 7. Значение ряда единиц равняется 2 (потому как 2² < 7, а 2³ > 7).

2. Следующий на очереди — разряд десятых. Здесь мы будем возводить в квадрат числа: 2.0, 2.1, 2.2, …, 2.9, сравнивая результат с нужным нам числом 7. Так как 2.6² < 7, а 2.7² > 7, то значение десятых равняется 6.

3. Значение сотых. По аналогии находим приближенное значение к 7.

2.64² = 6,9696 подходит нам, так как 2.65²=7.0225, а это больше 7. Действуя таким же образом, можно и дальше находить значение √7 ≈ 2.64.

Теперь, когда мы разобрались с извлечением корней, перейдем к практике. Специально для вас составлены задания с ответами, чтобы вы попробовали воспользоваться приобретенными знаниями. Решайте без таблиц и калькулятора.

Задания для отработки материала

1 задание

а)√324

б)√900

в)√1369

2 задание

а)³√531,441

б)³√166,375

3 задание

а) ⁵√-14 2471/1024

б) ⁵√-5 1182/3125

4 задание

а)Найдите квадратный корень из 3.

б)Найдите квадратный корень из 5.

в)Найдите квадратный корень из 9.

Ответы с решением

1 задание

а)√324

1)2×2×3×3×3×3=2²×3⁴=√324, а чтобы извлечь, мы умножаем:

2)2×3×3=18. Получается, √324=18.

б)√900

1)2×2×3×3×5×5=2²×3²×5²=√900.

Извлекаем:

2)2×3×5=30. Мы получили √900=30.

в)√1369

1)37×37=37²=√1369.

А здесь мы оставляем 37, так как это единственное число в квадрате. Конечным ответом будет: √1369=37.

2 задание

а)³√531441.

1)3×3×3×3×3×3×3×3×3×3×3×3=3¹²=³√531441.

Разложили на простые множители, а теперь найдем квадратный корень.

2)3¹² это 3×3×3×3, т.к. 3 у нас в 12 степени. Это можно проверить, отняв из 12 столько троек, чтобы вышел 0: 12-3-3-3-3. Так что, 3⁴=81; ³√531441=81.

3)1000=10³.  

4)³√531441/³√1000=81/10=8,1.

б)³√166,375.

1) 5×5×5×11×11×11=5³×11³=³√166375.

2)5³×11³=55. Так как числа в кубе – они в степени 1.

3) 1000=10³.  

4)³√166375/³√1000=55/10=5,5.

3 задание

а)

1) ⁵√-14 2471/1024 = -⁵√14 2471/1024.

2) -⁵√14 2471/1024= -⁵√16801/1024.

3) -⁵√16801/1024 = — ⁵√16801/⁵√1024.

4) ⁵√16801/⁵√1024 = — ⁵√6⁵/⁵√4⁵ = — 6/4 = — 1,5.

б)

1) ⁵√-5 1182/3125 = -⁵√5 1182/3125.

2) -⁵√5 1182/3125= -⁵√16807/3125.

3) -⁵√16807/3125 = — ⁵√16807/⁵√3125.

4) ⁵√16807/⁵√3125 = — ⁵√7⁵/⁵√5⁵ = — 7/5 = — 1,4.

4 задание

а)√3≈1,73.

б√5≈2,23.

в)√8≈2,82.

Факт 1.
(bullet) Возьмем некоторое неотрицательное число (a) (то есть (ageqslant 0)). Тогда (арифметическим) квадратным корнем из числа (a) называется такое неотрицательное число (b), при возведении которого в квадрат мы получим число (a): [sqrt a=bquad text{то же самое, что }quad a=b^2] Из определения следует, что (ageqslant 0, bgeqslant 0). Эти ограничения являются важным условием существования квадратного корня и их следует запомнить!
Вспомним, что любое число при возведении в квадрат дает неотрицательный результат. То есть (100^2=10000geqslant 0) и ((-100)^2=10000geqslant 0).
(bullet) Чему равен (sqrt{25})? Мы знаем, что (5^2=25) и ((-5)^2=25). Так как по определению мы должны найти неотрицательное число, то (-5) не подходит, следовательно, (sqrt{25}=5) (так как (25=5^2)).
Нахождение значения (sqrt a) называется извлечением квадратного корня из числа (a), а число (a) называется подкоренным выражением.
(bullet) Исходя из определения, выражения (sqrt{-25}), (sqrt{-4}) и т.п. не имеют смысла.
 

Факт 2.
Для быстрых вычислений полезно будет выучить таблицу квадратов натуральных чисел от (1) до (20): [begin{array}{|ll|}
hline
1^2=1 & quad11^2=121 \
2^2=4 & quad12^2=144\
3^2=9 & quad13^2=169\
4^2=16 & quad14^2=196\
5^2=25 & quad15^2=225\
6^2=36 & quad16^2=256\
7^2=49 & quad17^2=289\
8^2=64 & quad18^2=324\
9^2=81 & quad19^2=361\
10^2=100& quad20^2=400\
hline end{array}]

Факт 3.
Какие действия можно выполнять с квадратными корнями?
(bullet) Сумма или разность квадратных корней НЕ РАВНА квадратному корню из суммы или разности, то есть [sqrt apmsqrt bne sqrt{apm b}] Таким образом, если вам нужно вычислить, например, (sqrt{25}+sqrt{49}), то первоначально вы должны найти значения (sqrt{25}) и (sqrt{49}), а затем их сложить. Следовательно, [sqrt{25}+sqrt{49}=5+7=12] Если значения (sqrt a) или (sqrt b) при сложении (sqrt
a+sqrt b)
найти не удается, то такое выражение дальше не преобразуется и остается таким, как есть. Например, в сумме (sqrt
2+ sqrt {49})
мы можем найти (sqrt{49}) – это (7), а вот (sqrt
2)
никак преобразовать нельзя, поэтому (sqrt 2+sqrt{49}=sqrt
2+7)
. Дальше это выражение, к сожалению, упростить никак нельзя

 
(bullet) Произведение/частное квадратных корней равно квадратному корню из произведения/частного, то есть [sqrt acdot sqrt b=sqrt{ab}quad text{и}quad
sqrt a:sqrt b=sqrt{a:b}]
(при условии, что обе части равенств имеют смысл)
Пример: (sqrt{32}cdot sqrt 2=sqrt{32cdot
2}=sqrt{64}=8)
;
 
(sqrt{768}:sqrt3=sqrt{768:3}=sqrt{256}=16);
 
(sqrt{(-25)cdot (-64)}=sqrt{25cdot 64}=sqrt{25}cdot sqrt{64}=
5cdot 8=40)
.
 
(bullet) Пользуясь этими свойствами, удобно находить квадратные корни из больших чисел путем разложения их на множители.
Рассмотрим пример. Найдем (sqrt{44100}). Так как (44100:100=441), то (44100=100cdot 441). По признаку делимости число (441) делится на (9) (так как сумма его цифр равна 9 и делится на 9), следовательно, (441:9=49), то есть (441=9cdot 49).
Таким образом, мы получили: [sqrt{44100}=sqrt{9cdot 49cdot 100}=
sqrt9cdot sqrt{49}cdot sqrt{100}=3cdot 7cdot 10=210]
Рассмотрим еще один пример: [sqrt{dfrac{32cdot 294}{27}}=
sqrt{dfrac{16cdot 2cdot 3cdot 49cdot 2}{9cdot 3}}= sqrt{
dfrac{16cdot4cdot49}{9}}=dfrac{sqrt{16}cdot sqrt4 cdot
sqrt{49}}{sqrt9}=dfrac{4cdot 2cdot 7}3=dfrac{56}3]

(bullet) Покажем, как вносить числа под знак квадратного корня на примере выражения (5sqrt2) (сокращенная запись от выражения (5cdot
sqrt2)
). Так как (5=sqrt{25}), то [5sqrt2=sqrt{25}cdot sqrt2=sqrt{25cdot 2}=sqrt{50}] Заметим также, что, например,
1) (sqrt2+3sqrt2=4sqrt2),
2) (5sqrt3-sqrt3=4sqrt3)
3) (sqrt a+sqrt a=2sqrt a).

Почему так? Объясним на примере 1). Как вы уже поняли, как-то преобразовать число (sqrt2) мы не можем. Представим, что (sqrt2) – это некоторое число (a). Соответственно, выражение (sqrt2+3sqrt2) есть не что иное, как (a+3a) (одно число (a) плюс еще три таких же числа (a)). А мы знаем, что это равно четырем таким числам (a), то есть (4sqrt2).
 

Факт 4.
(bullet) Часто говорят “нельзя извлечь корень”, когда не удается избавиться от знака (sqrt {} ) корня (радикала) при нахождении значения какого-то числа. Например, извлечь корень из числа (16) можно, потому что (16=4^2), поэтому (sqrt{16}=4). А вот извлечь корень из числа (3), то есть найти (sqrt3), нельзя, потому что нет такого числа, которое в квадрате даст (3).
Такие числа (или выражения с такими числами) являются иррациональными. Например, числа (sqrt3, 1+sqrt2, sqrt{15}) и т.п. являются иррациональными.
Также иррациональными являются числа (pi) (число “пи”, приблизительно равное (3,14)), (e) (это число называют числом Эйлера, приблизительно оно равно (2,7)) и т.д.
(bullet) Обращаем ваше внимание на то, что любое число будет либо рациональным, либо иррациональным. А вместе все рациональные и все иррациональные числа образуют множество, называющееся множеством действительных (вещественных) чисел. Обозначается это множество буквой (mathbb{R}).
Значит, все числа, которые на данный момент мы знаем, называются вещественными числами.
 

Факт 5.
(bullet) Модуль вещественного числа (a) – это неотрицательное число (|a|), равное расстоянию от точки (a) до (0) на вещественной прямой. Например, (|3|) и (|-3|) равны 3, так как расстояния от точек (3) и (-3) до (0) одинаковы и равны (3).
(bullet) Если (a) – неотрицательное число, то (|a|=a).
Пример: (|5|=5); (qquad |sqrt2|=sqrt2).
 
(bullet) Если (a) – отрицательное число, то (|a|=-a).
Пример: (|-5|=-(-5)=5); (qquad |-sqrt3|=-(-sqrt3)=sqrt3).
Говорят, что у отрицательных чисел модуль “съедает” минус, а положительные числа, а также число (0), модуль оставляет без изменений.
НО такое правило годится только для чисел. Если у вас под знаком модуля находится неизвестная (x) (или какая-то другая неизвестная), например, (|x|), про которую мы не знаем, положительная она, равна нулю или отрицательная, то избавиться от модуля мы не можем. В этом случае это выражение таким и остается: (|x|).
 
(bullet) Имеют место следующие формулы: [{large{sqrt{a^2}=|a|}}] [{large{(sqrt{a})^2=a}},
text{ при условии } ageqslant 0]
Очень часто допускается такая ошибка: говорят, что (sqrt{a^2}) и ((sqrt a)^2) – одно и то же. Это верно только в том случае, когда (a) – положительное число или ноль. А вот если (a) – отрицательное число, то это неверно. Достаточно рассмотреть такой пример. Возьмем вместо (a) число (-1). Тогда (sqrt{(-1)^2}=sqrt{1}=1), а вот выражение ((sqrt {-1})^2) вообще не существует (ведь нельзя под знак корня помещать отрицательные числа!).
Поэтому обращаем ваше внимание на то, что (sqrt{a^2}) не равен ((sqrt a)^2)!
 
Пример: 1) (sqrt{left(-sqrt2right)^2}=|-sqrt2|=sqrt2), т.к. (-sqrt2<0);

(phantom{00000}) 2) ((sqrt{2})^2=2).
 
(bullet) Так как (sqrt{a^2}=|a|), то [sqrt{a^{2n}}=|a^n|] (выражение (2n) обозначает четное число)
То есть при извлечении корня из числа, находящегося в какой-то степени, эта степень уменьшается в два раза.
Пример:
1) (sqrt{4^6}=|4^3|=4^3=64)
2) (sqrt{(-25)^2}=|-25|=25) (заметим, что если модуль не поставить, то получится, что корень из числа равен (-25); но мы помним, что по определению корня такого быть не может: у нас всегда при извлечении корня должно получаться положительное число или ноль)
3) (sqrt{x^{16}}=|x^8|=x^8) (так как любое число в четной степени неотрицательно)

Факт 6.
Как сравнить два квадратных корня?
(bullet) Для квадратных корней верно: если (sqrt a<sqrt b), то (a<b); если (sqrt a=sqrt b), то (a=b).
Пример:
1) сравним (sqrt{50}) и (6sqrt2). Для начала преобразуем второе выражение в (sqrt{36}cdot sqrt2=sqrt{36cdot 2}=sqrt{72}). Таким образом, так как (50<72), то и (sqrt{50}<sqrt{72}). Следовательно, (sqrt{50}<6sqrt2).
2) Между какими целыми числами находится (sqrt{50})?
Так как (sqrt{49}=7), (sqrt{64}=8), а (49<50<64), то (7<sqrt{50}<8), то есть число (sqrt{50}) находится между числами (7) и (8).
3) Сравним (sqrt 2-1) и (0,5). Предположим, что (sqrt2-1>0,5): [begin{aligned}
&sqrt 2-1>0,5 big| +1quad text{(прибавим единицу к обеим
частям)}\[1ex]
&sqrt2>0,5+1 big| ^2 quadtext{(возведем обе части в
квадрат)}\[1ex]
&2>1,5^2\
&2>2,25 end{aligned}]
Видим, что мы получили неверное неравенство. Следовательно, наше предположение было неверным и (sqrt 2-1<0,5).
Заметим, что прибавление некоторого числа к обеим частям неравенства не влияет на его знак. Умножение/деление обеих частей неравенства на положительное число также не влияет на его знак, а умножение/деление на отрицательное число меняет знак неравенства на противоположный!
Возводить обе части уравнения/неравенства в квадрат можно ТОЛЬКО ТОГДА, когда обе части неотрицательные. Например, в неравенстве из предыдущего примера возводить обе части в квадрат можно, в неравенстве (-3<sqrt2) нельзя (убедитесь в этом сами)!
 
(bullet) Следует запомнить, что [begin{aligned}
&sqrt 2approx 1,4\[1ex]
&sqrt 3approx 1,7 end{aligned}]
Знание приблизительного значения данных чисел поможет вам при сравнении чисел!
 
(bullet) Для того, чтобы извлечь корень (если он извлекается) из какого-то большого числа, которого нет в таблице квадратов, нужно сначала определить, между какими “сотнями” оно находится, затем – между какими “десятками”, а потом уже определить последнюю цифру этого числа. Покажем, как это работает, на примере.
Возьмем (sqrt{28224}). Мы знаем, что (100^2=10,000), (200^2=40,000) и т.д. Заметим, что (28224) находится между (10,000) и (40,000). Следовательно, (sqrt{28224}) находится между (100) и (200).
Теперь определим, между какими “десятками” находится наше число (то есть, например, между (120) и (130)). Также из таблицы квадратов знаем, что (11^2=121), (12^2=144) и т.д., тогда (110^2=12100), (120^2=14400), (130^2=16900), (140^2=19600), (150^2=22500), (160^2=25600), (170^2=28900). Таким образом, мы видим, что (28224) находится между (160^2) и (170^2). Следовательно, число (sqrt{28224}) находится между (160) и (170).
Попробуем определить последнюю цифру. Давайте вспомним, какие однозначные числа при возведении в квадрат дают на конце (4)? Это (2^2) и (8^2). Следовательно, (sqrt{28224}) будет заканчиваться либо на 2, либо на 8. Проверим это. Найдем (162^2) и (168^2):
(162^2=162cdot 162=26224)
(168^2=168cdot 168=28224).
Следовательно, (sqrt{28224}=168). Вуаля!

План урока:

Арифметический квадратный корень

Вычисление квадратного корня

Функция квадратного корня

Свойства арифметического квадратного корня

Преобразование выражений с квадратными корнями

Арифметический квадратный корень

Рассмотрим задачу. Нам известно, что длина квадрата равна 14 см. Какова площадь этого квадрата? Из курса геометрии мы знаем, что для ответа на вопрос надо просто умножить сторону саму на себя, то есть возвести ее в квадрат:

S = 14•14 = 196 см2

Теперь рассмотрим обратную задачу. Известно, что площадь квадрата равна 196 см2. Чему равна длина его стороны? Очевидно, что она составляет 14 см. Для нахождения ответа мы произвели действие, обратное возведению во вторую степень. В математике оно называется извлечением квадратного корня, а само число 14 – квадратным корнем из 196.

1hgruy

Так, 5 – это квадратный корень из числа 25, так как

52 = 25

Очень часто квадратный корень является не целым, а дробным числом. Так, корень из 2 примерно равен 1,414213562 (способы вычисления значения корня будут рассмотрены в этом же уроке, но позже).

Отметим, что порою можно указать для числа не один, а сразу два квадратных корня. Они будут отличаться своим знаком, но совпадать по абсолютной величине (модулю). Так число (–5) также является квадратным корнем из 25:

(– 5)2 = – 5•(– 5) = 25

Вообще у любого положительного числа есть 2 квадратных корня, у любого отрицательного числа их вообще нет, и только у нуля есть единственное значение корня – сам нуль. Докажем это.

Пусть есть произвольное число а, для которого надо вычислить квадратный корень. Обозначим этот корень как х. Тогда по определению можно составить уравнение:

х2 = а

Попробуем решить его с помощью графиков. Для этого построим отдельные графики для левой и правой части равенства. Оба графика, и у = а, и у = х2, мы уже строили в 7 классе. В итоге получаем три случая:

2ghfgh

3ghgfgh

4fghf

Видно, что при а> 0 графики пересекаются в 2 точках, то есть существует два квадратных корня, которые отличаются лишь своими знаками.

Для определенности математики ввели понятие арифметического квадратного корня.

5hfgh

Ещё раз уточним, что у числа может быть два квадратных корня. Например, у числа 25 это –5 и 5:

(– 5)2 = 25

52 = 25

Арифметическим же называют тот квадратный корень, у которого НЕТ знака минус.

Существует специальный символ для арифметического квадратного корня, который именуют знаком радикала, или просто знаком корня. Выглядит он так:

6ghj

Если надо показать, что, например, арифметический квадратный корень (часто говорят просто корень) из 25 равен 5, то получается такая запись:

7hgfh

Под знаком радикала может стоять и выражение, содержащее переменные величины. Для его обозначения используют термин подкоренное выражение. Так, в записи

8khjk

выражением х2 + 2х + 2 является подкоренным.

9jhghj

Мы уже поняли, что из отрицательного числа невозможно извлечь квадратный корень, ведь каждое действительное число при умножении на само себя становится неотрицательным. Поэтому если под знаком радикала находится отрицательное число, то говорят, что выражение не имеет смысла (так же как и дробное выражение, у которого в знаменателе стоит ноль). Так, бессмысленны выражения:

10hfgh

Если под корнем находиться переменная, то при одних ее значениях выражение с корнем имеет смысл, а при других нет. Так, выражение

11fdf

при х = 9 имеет значение, равное двум:

12fdfg

Но если х = 4, то получаем бессмысленное выражение:

13gdfg

Изучая понятие иррационального числа, мы уже сталкивались с корнями. Исторически именно корень из 2 стал первым числом, для которого была доказана его иррациональность. Числа, чей квадратный корень является целым числом, называются полными квадратами. Примерами полных квадратов являются:

  • 4 (потому что 22 = 4);
  • 9 (32 = 9);
  • 16 (42 = 16).

14fghf

Для всех натуральных чисел, не являющихся полными квадратами, можно доказать, что их квадратные корни – это иррациональные числа.

15hghj

Стоит отметить, что открытие иррациональностей корней изменило представления древних греков о числах и сыграло огромную роль в развитии математики.

Теперь рассмотрим порядок действий в выражениях с корнями. Сначала всегда производятся операции в скобках, потом под знаком радикала, далее происходит возведение в степень, и лишь потом другие арифметические операции. Например, есть выражение

16hjghj

Покажем последовательность действий, выделяя их красным цветом:

17jghj

Если в ходе вычислений получили корень не из полного квадрата, то его следует оставить как есть, и продолжать вычисления, например:

18juilj

Одинаковые корни можно складывать и вычитать друг с другом:

19jghj

Из определения квадратного корня следует очевидное тождество:

20vfdfg

Приведем пример с конкретными числами:

21gfgh

Однако здесь важно учитывать, что под знаком радикала не может находиться отрицательное число. Так, некорректной будет запись

22fgh

так как под радикалом слева стоит отрицательное число. Но допускается такая запись:

23ghfgh

потому что под знаком радикала слева стоит положительная величина (– 3)•( – 3) = 9.

Напомним, что модулем числа называется его величина, взятая без учета знака. Для обозначения модуля используются квадратные скобки:

24ghfgh

Можно записать следующее тождество, связывающее модуль числа с его корнем:

25hgh

Например:

26gfgh

Вычисление квадратного корня

Ранее для выполнения арифметических операций мы использовали метод «столбика». А как производить вычисление квадратного корня? Существует несколько приемов, мы рассмотрим простейший из них.

Очевидно, что чем больше число, тем больше и его квадрат. Например, 5 > 4, поэтому и 52> 42. Значит, справедливо и обратное утверждение: чем больше число, тем больше и его квадратный корень.

27hfgh

Убедиться в этом можно и с помощью графика функции у = х2. Будем отмечать на нем числа и их квадратные корни:

28fghf

Видно, что чем выше на оси Оу располагается число, тем правее на оси Ох находится его квадратный корень.

Зная это свойство, легко оценить значение корня из любого числа. Продемонстрируем это на примере вычисления значение корня из 2. Нам известно, что

1 < 2 < 4

Значит, можно записать следующие неравенства:

29vfgh

Нам удалось определить, что корень из двух находится между единицей и двойкой, то есть

30jghj

Теперь определим первую цифру после запятой для корня из двух. Будем возводить в квадрат десятичные дроби 1,1; 1,2; 1,3 и т. д, до тех пор пока не получим выражение, большее 2:

1,12 = 1,21

1,22 = 1,44

1,32 = 1,69

1,42 = 1,96

1,52 = 2,25

Теперь мы можем записать неравенства:

31gdfgd

Получается, что корень имеет значение, находящееся между 1,4 и 1,5, то есть

32gfdg

Попытаемся определить ещё одну цифру после запятой:

1,412 = 1,999396

1,422 = 2,002225

Отсюда следует, что:

33bgfh

Продолжая подобные вычисления, можно вычислить любое количество знаков после запятой:

34ghfgh

Конечно, на практике все вычисления выполняются компьютером, а не вручную. Однако программисты стремятся написать программы так, чтобы они работали как можно быстрее, то есть получали результат, выполняя меньшее количество вычислений. Поэтому на практике чаще используется метод бисекции (деления надвое), который отличается большей эффективностью. Для начала нужно найти очевидную оценку корня, например:

35hfghf

Получили, что корень из 2 находится между 1 и 2. Теперь найдем среднее арифметическое этих двух значений:

(1 + 2)/2 = 1,5

Возведем среднее арифметическое в квадрат:

1,52 = 2,25

Теперь мы можем записать неравенство

36hfgh

То есть искомое нами значение находится между 1 и 1,5. Снова найдем среднее этих двух оценок и возведем его в квадрат:

(1 + 1,5)/2 = 1,25

1,252 = 1,5625

Зная это, можем записать:

37nyui

На каждом следующем шаге вычислений мы будем всё точнее определять оценки корня, при этом вычислений мы делаем не очень много.

Периодически могут встречаться задания, в которых надо грубо оценить значение квадратного корня.

Пример. Сколько целых чисел на координатной прямой располагается между

38hfgh

Решение: Ближайшие к числу 60 полные квадраты – это 64 и 49, поэтому можно записать:

39jhjk

Также можно оценить и корень из 140:

40sdfs

Получаем, что между корнями располагается четыре числа: 8, 9, 10 и 11:

41ghfgh

Ответ: 4

Функция квадратного корня

Каждому числу соответствует не более чем 1 арифметический квадратный корень. Поэтому формула

42hfghf

задает функцию. Исследуем ее.

Так как под знаком радикала может находиться лишь неотрицательное число, то областью определения корня является множество всех неотрицательных чисел. Такова же и область допустимых значений.

Построим график квадратного корня по точкам. Для этого вычислим ее значения в нескольких точках (указана точность до 0,1):

43ghfgh

График функции квадратного корня будет выглядеть так:

44gdfg

Отметим, что полученная линия чем-то напоминает обычную параболу функции у = х2, которую «положили набок», то есть повернули против часовой стрелки на 90°, а после убрали одну из ветвей:

45gdfg

И это не случайность. Дело в том, что две эти функции являются обратными друг другу. Действительно, пусть с помощью графика параболы мы хотим найти значение величины а2. Стрелки показывают последовательность действий:

46hfgh

Мы должны найти а на оси Ох, построить от найденной точки вертикальную линию до пересечения с графиком, а потом провести горизонтальную линию. Но если нам надо вычислить корень из положительного числа b, то мы должны действовать в обратном порядке: найти на вертикальной оси, провести горизонтальную линию до пересечения с параболой, и потом опустить перпендикуляр на горизонтальную ось:

47hgfhf

Получается, для вычисления обеих функций можно использовать один график! Но, так как традиционно аргумент функции обозначают буквой х, а саму функцию как у, а также ось Ох располагают горизонтально, то для получения графика обратной функции надо буквально повернуть график основной функции так, чтобы оси Ох и Оу поменялись местами:

48gdfg

Действительно, в результате поворота получили уже знакомый график функции корня из х. Осталось лишь правильно переименовать оси и повернуть цифры в привычное положение.

Взаимное расположение этих графиков можно описать и иначе. Они симметричны относительно прямой линии, которую задает график у = х. Ведь если точка имеет координаты (а; b) принадлежит параболе у = х2, то, по определению корня, точка с обратными координатами (b; а) должна лежать на графике корня. Однако две такие точки будут симметричны относительно линии у = х:

49hfghf

Соответственно, симметричны относительно этой прямой и графики обратных функций:

50gdfgd

Исключительно для большей наглядности (чтобы была очевидна симметрия, о которой идет речь), повернем эту картинку на 45°:

51hfghf

Свойства арифметического квадратного корня

Для упрощения некоторых выражений необходимо использовать особые правила работы с корнями. Сформулируем первое из них:

52dfgd

Математически это правило записывается так:

53ghfdgh

Например:

54gfgh

Тождество работает для любого количества множителей, а также в обратную сторону:

55hfgh

Однако следующее преобразование недопустимо:

56hfgh

Дело в том, что под знаком радикала не может быть отрицательное число! Слева под двумя радикалами стоят отрицательные числа, а справа под корнем находится уже положительная величина (– 2)•(– 32) = 64. В результате выражение слева не имеет смысл, а справа – имеет, поэтому знака равенства между ними быть не может.

Докажем это правило. Для этого возведем во вторую степень выражение

57hgfhf

Получили, что по определению корня можно записать:

58hfgh

Следующее свойство касается дробей:

59hfgh

Символически это выглядит так:

60ertt

Приведем примеры использования этого свойства:

61gdfgd

Теперь докажем это правило. Можно записать, что

62fghfh

Значит, по определению верно равенство

63hfggh

Третье правило помогает извлекать корень из числа, возведенного в степень:

64hgfgh

где а –действительное число (в том числе и отрицательное), а k – натуральное число.

Это тождество помогает выполнить следующие действия:

65ghfgh

Стоит обратить внимание, что в последнем случае под корнем НЕ стоит отрицательное число, так как на самом деле (– 2)10 – это положительное число. Вообще при возведении любого числа в четную степень получается неотрицательное число.

Для доказательства этого факта используем то, что

66gdfg

Зная это, можно выполнить преобразования:

67hfghh

Преобразование выражений с квадратными корнями

Изученные правила помогают преобразовывать некоторые выражения. Так, можно вынести множитель из-под знака корня:

68nhjgj

Это действие может использоваться для сложения корней, у которых, казалось бы, стоят разные числа под знаком радикала:

69nhjkk

Обратное действие называют внесением множителя под знак корня:

70assdffg

Пример. Какое число больше

71sdgt

Решение. Внесем множитель под знак корня:

72bgh

Из двух корней больше тот, у которого больше подкоренное выражение, поэтому

73hgfyu

Из этого следует, что

74hgu

Заметим, что под знак радикала может быть внесен исключительно неотрицательный множитель! Знак минуса должен остаться перед радикалом:

75hfgh

Принято считать, что с дробью, содержащей радикал, проще работать, когда этот радикал находится в числителе, а не знаменателе. В связи с этим стремятся избавиться от иррациональности в знаменателе. В простейшем случае дробь просто домножают на квадратный корень:

76fdfdyt

Как видим, корень «переехал» из знаменателя в числитель. Несколько сложнее производится освобождение от иррациональности, если в знаменателе стоит сумма или разность корней. В этом случае помогает формула разности квадратов:

77erwer

Рассмотрим несколько задач.

Пример. Найдите наибольшее значение выражения

78hgfhf

Решение. По формуле разности квадратов можно записать:

79nghj

Зная это, заменим знаменатель дроби:

80cdfgh

Эта дробь принимает наибольшее значение тогда, когда ее числитель, наоборот, принимает минимальное значение. Это произойдет при а = 0, так как арифметический квадратный корень не может быть отрицательным. Тогда наибольшее значение дроби будет составлять

81gfgy

Пример. Упростите выражение

82gfg

Довольно тяжелым является случай, когда под знаком корня находится другой корень. Выражения вида

83fgh

называют двойным радикалом.

Существует формула двойного радикала, с помощью которой его можно иногда упростить:

84bgff

Для доказательства справедливости этого тождества возведем его правую часть в квадрат, используя формулу квадрата суммы (х ± у)2 = х2 ± 2ху + у2:

85hghj

Принципиально важно, что величина а2 – b должна быть неотрицательной. Рассмотрим преобразование двойных радикалов на примере. Пусть надо освободиться от внешнего радикала в выражении

86nhgjk

Для этого сначала внесем двойку под знак внутреннего радикала, а потом воспользуемся формулой:

87gdfgd

Заметим, что формула двойного радикала полезна в том случае, если выражение а2 – b является полным квадратом.

Добавить комментарий