- Разрабатываем алгоритмы действий и создаем блок-схемы
- Как создаются алгоритмы действий?
- Опишите последовательность действий – это запоминается
- Алгоритм действий в графике – это блок-схема
- Блок-схемы применяются в продажах
- Сервисы для разработки блок-схем
- Создавайте игровые блок-схемы для своих детей
- Моя блок-схема
- Опишите последовательность действий – это запоминается
- Как создаются алгоритмы действий?
Разрабатываем алгоритмы действий и создаем блок-схемы
В жизни нам часто приходится встречаться с различными ситуациями, в которых мы совершаем одни и те же определенные действия. Для того, чтобы вовремя проснуться, нам нужно не забыть включить будильник. Для того, чтобы утолить свой голод, нам необходимо выполнить одни и те же действия по приготовлению вкусной пищи. Для того, чтобы выполнить знакомую нам работу, мы тоже часто делаем одно и то же.
Такое поведение можно называть по-разному, смотря в каком контексте оно рассматривается. Если рассмотреть с позиции эффективности деятельности, то эти действия можно назвать привычками или навыками. Если рассматривать с точки зрения отображения процесса, то описание последовательности действий, строгое исполнение которых приводит к решению поставленных задач за определенное количество шагов, называют алгоритмом действий.
Как создаются алгоритмы действий?
Мы постоянно сталкиваемся с этим в обычной жизни. Какие действия мы совершаем, чтобы пополнить счет своего мобильного телефона? Каждый из нас – разные. Так как способов пополнения счета несколько, следовательно мы все по-разному это делаем. Результат, правда всегда один получается – появление средств на телефоне.
Или еще пример: чтобы скопировать картинку или текст, нажимаем правой кнопкой мыши на картинку, затем выбираем “Копировать”, помещаем в нужное место, нажимаем правой кнопкой ” Вставить”, и результат достигнут.
Все это – определенная последовательность действий, в результате которых различными средствами решается поставленная задача. Но пока это только наши знания, которые перерастают в навыки и умения, а если этот процесс описать, то мы сможем наглядно увидеть алгоритм наших действий, и передать его другим людям. На словах не все и не всегда понятно бывает.
Опишите последовательность действий – это запоминается
Создать алгоритм действий можно, описав или изобразив его последовательность. Знают ли все, что надо сделать, чтобы посадить дерево? Возможно, основные шаги понятны всем, но вот когда деревце поливать, перед посадкой или после, помнит не каждый. Созданный алгоритм позволит все действия выполнить в правильной последовательности.
Чтобы описать последовательность действий посложнее, придется постараться и подробно их все записать. Пример можно взять с всевозможных правил и инструкций – там очень четко прописываются по шагам действия, которые нам надо сделать. Но бывают ситуации, в которых за определенным действие следует не один шаг, а несколько, в зависимости от предыдущего результата. В таком случае, предположительные действия тоже записывают, чтобы человек мог легко сориентироваться в разных ситуациях, и знал, что нужно предпринять.
Алгоритм действий в графике – это блок-схема
Если изобразить алгоритмы действий в графическом варианте, с помощью геометрических фигур с линиями-связями, показывающими порядок выполнения действия, то мы получим блок-схему. Блок-схема намного превосходит правила, инструкции, и записанные по порядку алгоритмы действий, по своей наглядности и читаемости.
Представьте, что вам нужно чему-то научить другого человека. Вы отлично знаете все действия в определенной последовательности. Ваша задача – показать, как это нужно делать и передать свои знания так, чтобы другой человек их запомнил и знал так же, как и вы. Устная передача знаний допускает импровизации и некоторый произвол. Самым лучшим способом будет блок-схема, в которой объясняется последовательность и возможные варианты действий. В качестве примера – веселое руководство по изучению блог-схем:
Лучшим условием для получения результата будет повторяемость действий. Это однозначно влияет на скорость достижения результата в будущем. Чем чаще вам придется повторять одни и те же действия, тем быстрее вы научитесь выполнять последовательность действий, а значит в каждый последующий раз, вам потребуется меньше времени на выполнение.
Блок-схемы применяются в продажах
В продажах такое обучение с помощью разработки алгоритмов и изображения их в виде блок-схем имеет большое распространение. Чаще всего их используют в телефонных сценариях разговоров в call-центрах и для “холодных” звонков. Корпоративная культура набирает обороты, поэтому многие компании уже не позволяют сотрудникам нести “отсебятину”, даже талантливую, а предлагают действовать им по заранее разработанному сценарию, представляя “лицо фирмы” на различных этапах. Эффект появляется буквально после нескольких дней действий “по бумажке”. Со временем, многое из описанных алгоритмов запоминается сотрудником, и в дальнейшем он свободно может общаться, не опасаясь того, в какую сторону может уйти разговор.
Алгоритмы действий и блог-схемы разрабатываются не только в продажах. Большое распространение они имеют в обучении и практике врачей, программистов, “компьютерщиков”, у многих технических специальностей.
Стоит попробовать научиться действовать по подобным блок-схемам. Ведь впервые встречаясь с непонятным поначалу обилием действий и задач, думаешь о том, как тебе не хватает разработанной блок-схемы. После долгих мучений не выдерживаешь, и начинаешь разрабатывать и создавать самостоятельно. Эффективные люди не любят простоев в делах. А блок-схемы значительно упрощают жизнь и позволяют разобраться в решении сложных задач.
Сервисы для разработки блок-схем
В интернете есть сервисы, которые могут помочь вам создавать такие блок-схемы. Один из них – Сacoo. С его помощью вам легко удастся превращать ваши алгоритмы в различные диаграммы, блок-схемы и графики. Вы увидите, что это очень приятное и радостное занятие – преобразовывать то, что вам известно, в науку для других людей.
На этом онлайн-сервисе – хорошее настроение вам обеспечено. На первоначальном этапе можно воспользоваться возможностями бесплатной учетной записи, а в будущем за доступ нужно будет платить. Естественно, что бесплатный доступ имеет ограничения по сравнению с платными. Но для изучения и первых шагов, функционала вполне достаточно.
Разработав алгоритмы действий и преобразовав их в блок-схемы с помощью Cacoo, вы сможете надолго создать хорошее настроение не только себе, но и другим людям, постигающим азы.
Создавайте игровые блок-схемы для своих детей
Подводя итог вышесказанному отмечу, что теперь вы сможете использовать алгоритмы действий и блок-схемы в различных жизненных ситуациях. Даже ваши дети с огромным удовольствием станут выполнять не самые интересные обязанности, следуя понятным подсказкам. Если будут идеи, где и как можно применять алгоритм действий, поделитесь в комментариях, уважаемые читатели. Очень хотелось бы узнать про ваши алгоритмы.
Моя блок-схема
Вот какая блок-схема у меня получилась в первый раз. Для того, чтобы увеличить изображение, нажмите на него. После перехода на Cacoo, под записью “просмотр фигуры”, нажимайте на картинку. Она откроется в большом окне. Удачи!
Успевайте больше за меньшее время вместе с “Копилкой эффективных советов”.
Просмотры: 4 583
Алгоритм действий — это пошаговое объяснение, что делать в разных случаях: сдать налоговую декларацию, зафиксировать ДТП, подключить стиральную машинку, вырастить картошку. Один из способов алгоритм указать — составить блок-схему (или флоучарт). Ее определяют, как «графическое отображение решения задачи».
Простой способ прорисовать флоучарт — воспользоваться Google Диск. К тому же он позволяет создавать блок-схему командой: создайте проект и отправьте ссылку на него другим участникам, открыв доступ для редактирования.
- Выберите тему, которой будет посвящен флоучарт. Продумайте основную мысль, которую хотите передать в своём материале.
- Наберите в Word (или другом текстовом редакторе) тексты для блок-схемы. Они должны быть короткими, без воды. Пары предложений достаточно.
- Проверьте на ошибки. Иначе вам придётся переделывать блок-схему.
Открывайте Google Диск. Нажимайте «Создать» (кнопка вверху боковой колонки слева) или кликайте на правую клавишу мышки. Появилось всплывающее окно. Кликайте на «Еще», затем — Google Drawings (Google Рисунки).
Откроется новый документ. Назовите схему.
Вверху справа есть «Настройки доступа», если вам нужно подключить к работе над флоучартом коллег, нажимайте на них и указывайте, как команда может влиять: просматривать блок-схему, комментировать или редактировать.
Приступайте к созданию флоучарта. Установите фон: наведите мышку на поле, кликайте на правую клавишу, выбирайте «Фон».
Панель с инструментами размещена над рабочим полем. Набор функций стандартный: формы, стрелки, текстовое поле. Можно загрузить фотографию.
Работайте с каждым отдельным элементом: выделяйте цветом, меняйте сплошную линию на пунктирную. Увеличивайте или уменьшайте объекты. Стрелки могут быть прямыми, изогнутыми, ломаными, кривыми, рисованными.
Можно вставить отдельно форму, а затем добавить к ней текст. Или можно текст положить на подложку.
Добавляйте текст из подготовленного файла, распределяйте блоки по полю. Стрелками покажите, что за чем следует. При необходимости можете упорядочить элементы: на передний план или на задний.
Если стандартного поля мало — уменьшите масштаб и потяните за уголок в правом нижнем углу рисунка.
Когда флоучарт готов, нажимайте «Файл» в верхней панели, затем — «Скачать как». Выберите нужны формат: PDF, JPEG, PNG, SVG.
Если блок-схема нужна для публикации в интернете, нажимайте «Файл», затем — «Опубликовать в интернете». Выбирайте размер изображения, и — «Опубликовать». Чтобы получит код для вставки на сайт, переходите во вкладку «встроить».
Готово. Результат может выглядеть так.
Где может пригодиться флоучарт?
Алгоритмы легко отрабатывать на создании кулинарных рецептов или пошаговом обучении ваших пользователей. Вариантов таких инструкций множество:
- способы высадить картошку (да, их есть несколько);
- как записать ребенка в детский сад, школу, лагерь, кружок;
- как сдать налоговую декларацию, документы на регистрацию имущества, составить европротокол и пр.;
- как действовать при конфликтах с магазином, управляющей компанией, соседями, полицией.
Конспект
Составление линейных алгоритмов
На предыдущих уроках мы узнали, что такое алгоритм, какие бывают виды алгоритмов, и кто их исполняет.
Сегодня мы попрактикуемся в составлении алгоритмов. Это очень важные навыки. Мы уже неоднократно отмечали, что составить алгоритм, то есть объяснить другому, как выполнять те или иные задачи так, чтобы это было понятно каждому, – очень тяжело. Наша задача – научиться составлять алгоритмы для различных примеров, чтобы впоследствии, когда вы столкнётесь с необходимостью составлять алгоритмы для написания различных программ, это не составляло для вас особого труда.
Начнём мы с самых простых алгоритмов – линейных. Их составление, обычно, не вызывает особого труда. Однако, навыки составления таких алгоритмов чрезвычайно важны.
Пример 1. Составить алгоритм запуска программы Paint в ОС Windows 7.
Решение:
Вспомним из курса информатики 5 класса порядок действий для запуска программы Paint.
- Войти в меню «Пуск».
- Войти в пункт «Все программы».
- Войти в пункт «Стандартные».
- Выбрать программу «Paint».
Данный алгоритм в виде блок-схемы имеет следующий вид:
Рис. 1. Блок-схема к примеру 1.
Составление алгоритмов с ветвлениями
Рассмотрим пример на составление алгоритмов с ветвлениями.
Пример 2. Составьте алгоритм для перехода дороги на светофоре.
Рис. 2. Светофор (Источник).
Решение:
Возможны следующие ситуации: в тот момент, когда мы подошли к дороге горел красный или зелёный свет. Если горел зелёный свет, то можно переходить дорогу. Если же горел красный свет, то необходимо дождаться зелёного – и уже тогда переходить дорогу.
Таким образом, алгоритм имеет следующий вид:
- Подойти к светофору.
- Посмотреть на его свет.
- Если горит зелёный, то перейти дорогу.
- Если горит красный, то подождать, пока загорится зелёный, и уже тогда перейти дорогу.
Блок-схема данного алгоритма имеет вид:
Рис. 3. Блок-схема к примеру 2.
Составление циклических алгоритмов
Рассмотрим пример на составление циклического алгоритма. Мы уже несколько раз обсуждали перевод чисел из десятичной системы в двоичную. Теперь пришло время чётко сформулировать этот алгоритм.
Напомним, что его принцип состоит в делении числа на 2 и записей остатков, получающихся при делении.
Пример 3. Составить алгоритм перевода чисел из десятичной системы в двоичную.
Решение:
То есть, алгоритм будет выглядеть так:
- Если число равно 0 или 1, то это и будет его двоичное представление.
- Если число больше 1, то мы делим его на 2.
- Полученный остаток от деления записываем в последний разряд двоичного представления числа.
- Если полученное частное равно 1, то его дописываем в первый разряд двоичного представления числа и прекращаем вычисления.
- Если же полученное частное больше 1, то мы заменяем исходное число на него и возвращаемся в пункт 2).
Блок-схема этого алгоритма выглядит следующим образом:
Рис. 4. Блок-схема к примеру 3.
Примечание: подумайте, можно ли как-то упростить приведенную блок-схему.
«Чтение» алгоритмов
Пример 4. По заданной блок-схеме выполнить действия алгоритма для числа 23.
Рис. 5. Блок-схема к примеру 4.
Решение:
- a=23
- 23+5=28
- 28<35
- 28+5=33
- 33<35
- 33+5=38
- 38>35
- 76 – двузначное число
- 76-50=26.
Ответ: 26.
На этом уроке мы разобрали примеры составления алгоритмов, а также пример «чтения алгоритма» по готовой блок-схеме.
На следующем уроке мы обсудим игры и выигрышные стратегии.
Как убить Кощея?
Наверное, все помнят из детства сказку, в которой рассказывается о местонахождении смерти Кощея Бессмертного: «Смерть моя – на конце иглы, которая в яйце, яйцо – в утке, утка – в зайце, заяц в сундуке сидит, сундук на крепкий замок закрыт и закопан под самым большим дубом на острове Буяне, посреди моря-океяна …»
Рис. 6. Кощей Бессмертный и Василиса Премудрая (Источник).
Предположим, вместо Ивана-царевича бороться с Кощеем был брошен Иван-дурак. Давайте поможем Василисе Премудрой составить такой алгоритм, чтобы даже Иван-дурак смог убить Кощея.
- Конечно же, сначала необходимо разыскать остров Буян (на такие вещи, будем считать, Иван-дурак способен).
- Поскольку сундук закопан под самым большим дубом, то сначала необходимо найти самый большой дуб на острове.
- Затем нужно выкопать сам сундук.
- Прежде чем доставать зайца, необходимо сломать крепкий замок.
- Теперь уже можно достать зайца.
- Из зайца нужно достать утку.
- Из утки достать яйцо.
- Разбить яйцо и достать иголку.
- Иголку поломать.
Это тоже линейный алгоритм, хотя и более длинный, чем алгоритм запуска программы Paint.
Его блок-схема выглядит так:
Рис. 7. Блок-схема.
На распутье…
И снова обратимся к сказочным персонажам в поисках примеров различных алгоритмов. Когда речь идёт об алгоритмах с ветвлениями, то, конечно, нельзя не вспомнить о богатыре, стоящем на распутье возле камня.
Рис. 8. Богатырь на распутье (Источник).
На камне написано:
«Направо пойдёшь – коня потеряешь, себя спасёшь; налево пойдёшь – себя потеряешь, коня спасёшь; прямо пойдёшь – и себя и коня потеряешь».
Попробуем составить алгоритм действий, который составил автор надписи на камне для путников?
- Если мы пойдём направо, то потеряем коня. Если же мы не пойдём направо, то у нас остаётся два варианта (мы считаем, что назад возвращаться путник не будет): пойти прямо и налево.
- В случае, если мы пойдём налево, то потеряем себя, а коня спасём.
- Если же мы пойдём прямо, то потеряем и себя, и коня.
Блок-схема этого алгоритма выглядит так:
Рис. 9. Блок-схема.
Репка
Русские народные сказки не оставили нас и без циклического алгоритма. И, как ни странно, спрятался он в одной из самых незамысловатых сказок – «Репке».
Рис. 10. Репка.
Вспомним сюжет сказки: дед тянет-потянет – вытянуть не может. Затем на помощь к деду по очереди подходят новые персонажи – и так до тех пор, пока не приходит мышка.
Попытаемся составить алгоритм действий всех персонажей сказки для того, чтобы они всё-таки смогли вытянуть Репку.
- Изначально к Репке подошёл дед и попытался вытянуть.
- Поскольку вытянуть Репку не получилось, то понадобилась помощь следующего персонажа.
- И так происходит до тех пор, пока не появилась мышка (или, другими словами, до тех пор, пока Репку не вытащили).
В виде блок-схемы этот алгоритм выглядит следующим образом:
Рис. 11. Блок-схема.
Список рекомендованной литературы
- Босова Л.Л. Информатика и ИКТ: Учебник для 6 класса. – М.: БИНОМ. Лаборатория знаний, 2012
- Босова Л.Л. Информатика: Рабочая тетрадь для 6 класса. – М.: БИНОМ. Лаборатория знаний, 2010.
- Босова Л.Л., Босова А.Ю. Уроки информатики в 5-6 классах: Методическое пособие. – М.: БИНОМ. Лаборатория знаний, 2010.
Рекомендованные ссылки на ресурсы интернет
- Интернет портал «Сообщество взаимопомощи учителей» (Источник).
- Интернет портал «Nsportal.ru» (Источник).
- Интернет портал «Фестиваль педагогических идей» (Источник).
Рекомендованное домашнее задание
- §3.3, 3.4 (Босова Л.Л. Информатика и ИКТ: Учебник для 6 класса);
- Постарайся самостоятельно составить линейный алгоритм из 5-6 фигур;
- Составь блок-схему циклического алгоритма выполнения домашнего задания;
Роль алгоритмов в жизни человека велика. Это и распорядок дня, и рецепты, и план работы, и инструкция по использованию, т.е. любую деятельность человека можно описать с помощью алгоритмов. Каждый школьник ежедневно использует сотни различных алгоритмов. Например, правила сложения, вычитания, деления, умножения чисел; грамматические правила правописания слов и предложений.
Алгоритмы полезно научиться составлять. Алгоритмическое мышление поможет человеку научиться размышлять, анализировать, планировать свои действия, отчетливо увидеть шаги, ведущие к цели.
Необходимо разработать систему мыслительных приёмов направленных на решение задач. Чем легче мы умеем понимать чужие алгоритмы и строить свои, тем лучше. Другими словами, полезно знать и понимать, как и что устроено.
В программе начального образования одним из планируемых результатов является «…создать условия для овладения основами логического и алгоритмического мышления, пространственного воображения и математической речи, приобретения навыков измерения, пересчета, прикидки и оценки, наглядного представления о записи и выполнении алгоритмов..», «…научить выполнять устно и письменно арифметические действия с числами и числовыми выражениями. Решать текстовые задачи, действовать в соответствии с алгоритмом и строить простейшие алгоритмы…».
Составление алгоритмов – сложная задача, поэтому важно уже на начальной ступени образования в школе, ставить целью ее решение, способствуя тем самым развитию логического мышления школьников.
Для этого, необходимо, прежде всего, учить детей «видеть» алгоритмы и осознавать алгоритмическую сущность тех действий, которые они выполняют. Начинать эту работу следует с простейших алгоритмов, доступных и понятных им. Можно составить алгоритм перехода улицы, алгоритмы пользования различными бытовыми приборами, приготовления какого-либо блюда и т.д. Такие задания можно выполнять на проектной деятельности
Алгоритм в системе обучения – это прежде всего точное и легко понимаемое описание того, что шаг за шагом выполняет ученик, которое после последовательного выполнения всегда приводит к правильному решению поставленных задач. Таким образом, алгоритмирование определяет строгую логическую последовательность, непрерывность мыслительной деятельности, постепенно подводящей ученика к самостоятельному «открытию» истины и позволяющей избежать логических провалов.
Действуя с конкретными объектами и обобщениями в виде правил, дети овладевают умением выделять элементарные шаги своих действий и определять их последовательность. А для этого необходимо научить детей:
- находить общий способ действия;
- выделять основные, элементарные действия, из которых состоит данное;
- планировать последовательность выделенных действий;
- правильно записывать данную последовательность действий.
Для решения учебных задач на уроках в начальных классах часто используются алгоритмы. Алгоритм относят к особой группе УУД – знаково-символическим действиям. Алгоритмы, по утверждению психолога Л.А.Венгера, помогают наиболее эффективно трансформировать наглядно-образное мышление в наглядно-схематическое, которое во многих случаях способно выступать в качестве логического мышления. Алгоритмы помогают планировать свою деятельность.
Овладение алгоритмом выполнения какой – либо операции включает три этапа: подготовительный, основной и этап сокращения операций.
Рассмотрим на примере темы «Алгоритм сложения столбиком» (учебник «Математика» 3 класс часть 1 А.Л.Чекин)
1. Подготовительный этап
Подготовка базы для работы с новым материалом, актуализация знаний, необходимых для введения и обоснования алгоритма.
– У вас на карточке – таблица разрядов
Разряд |
Разряд |
Разряд |
Разряд |
Разряд |
Разряд |
– Запишите в неё числа под диктовку:
– Запишите число, в котором 4 дес. тысяч 5 сот. 2 дес. и 8 ед.;
– Запишите число, в котором 7 дес. тысяч 6 ед. тысяч 3 сотни 6 дес. и 1 ед.
– Сложите числа поразрядно.
Учащиеся, после выполнения данного задания, будут подготовлены к выполнению всех элементарных операций алгоритма
2. Основной этап
Дети работают в группах по предложенному плану.
– Откройте учебник на с. 64. Задание №215 (Математика 3 класс А.Л.Чекин) выполните в группе
– Обсудите в группе ответы на вопросы,
– Кратко составьте последовательность действий (алгоритм), напишите его на листах.
– Представьте свой вариант алгоритма.
– Помните, что алгоритм должен быть:
- правильным
- последовательным
- с использованием грамотной математической речи
№215 с. 64. Сформулируй алгоритм сложения столбиком, ответив на следующие вопросы:
- Как нужно записывать слагаемые
- С какого разряда нужно начинать сложение и к какому переходить далее?
- Что нужно записывать в данный разряд значения суммы, когда при сложении в этом разряде получается однозначное число, и что – когда двузначное?
- Что нужно сделать с результатом сложения в данном разряде, если при сложении в предыдущем разряде получилось двузначное число?
- Как нужно действовать, если в данном разряде представлено только одно слагаемое?
- Когда нужно завершить сложение?
Сравните свой алгоритм с предложенным. (Дети сравнивают свой алгоритм с образцом)
Алгоритм сложения многозначных чисел
- Пишу…(единицы под единицами, десятки под десятками, сотни под сотнями и т.д.)
- Складываю единицы.( если получаю однозначное число, то пишу его в значение суммы под единицами, если двузначное, единицы пишу под единицами, а один дес. запоминаю, прибавлю его к следующему разряду)
- Складываю десятки… и увеличиваю количество десятков на один( если при сложении единиц получилось двузначное число)Результат пишу под десятками.
- Складываю сотни… Пишу под сотнями
- Выполняю сложение всех разрядов
- Читаю ответ
3. Этап сокращения операций
Переведем данный алгоритм в знаково-символическую модель.
– Запишите символически четырехзначное число (каждую цифру обозначаем прямоугольником)
– Под ним запишите еще одно четырехзначное число, разряд под разрядом
– Слева поставь знак сложения (+)
– Поставьте черту равенства
– Результаты сложения записывайте под тем разрядом, который складывали.
– Есть ли в вашей модели переход через разряд? Если нет, то попробуйте изменить модель. Добавьте условное обозначение, которое покажет, что десяток перешёл в десятки.
Своевременному свертыванию алгоритма способствуют сокращенные комментарии и образцы.
Алгоритм можно задать несколькими способами: словесным, графическим, и табличным.
Существует три основных типа алгоритмов: линейный, разветвленный, циклический.
Линейный алгоритм – это алгоритм, действия (команды) которого выполняются последовательно друг за другом.
Н-р: Алгоритм разбора слов по составу:
Алгоритм с ветвлением – это алгоритм, в котором в зависимости от условия выполняется либо одна, либо другая последовательность действий. В словесном описании разветвленного алгоритма используются слова «если», «то», «иначе».
Н-р: Алгоритм правописания приставок на «з» и «с».
1.Выдели корень слова.
2.
А) Если корень начинается со звонкого согласного, в приставке пиши «з», перейди к пункту 3.
Б) Если корень начинается с глухого согласного, в приставке пиши «с», перейди к пункту 3.
3. Запиши слово.
Учебное задание:
От данных глаголов образуйте слова, выбирая подходящую приставку раз-/рас-, из-/ис-.
Бросать, глядеть, гадать, бить, следовать, пугать, бежать, царапать.
Н-р: Алгоритм правописание имен существительных мужского и женского рода с шипящим на конце.
1. Произнеси слово.
2. Прислушайся: есть ли шипящий согласный звук на конце слова? Если есть, то определи часть речи.
3. Если это имя существительное, то определи род.
4.
а) Если это имя существительное женского рода, то после шипящего мягкий знак пишется, перейди к пункту 5.
б) Если это имя существительное мужского рода, то после шипящего мягкий знак не пишется, перейди к пункту 5.
5. Запиши слово.
Учебное задание:
Напиши данные имена существительные в единственном числе:
Ландыши, калачи, кровати, мыши, ножи, вещи, кони, кирпичи.
Циклический алгоритм – это алгоритм, в котором действия повторяются конечное число раз.
Н-р: Алгоритм деления уголком трёхзначного числа на однозначное вида: 248 : 2
Учебник по математики 2 часть, 3 класс, авторы: И.И.Аргинская, Е.И.Ивановская, С.Н.Кормишина. С. 20 , № 296
- 396 : 3
- 448 : 4
- 842 : 2
- 639 : 3
- 248 : 2
Алгоритм
- Определить количество цифр в значении частного
- Разделить сотни
- Разделить десятки
- Разделить единицы
- Записать результат
Рассуждения по алгоритму
Циклический алгоритм деления
Алгоритмический метод в сочетании с другими методами обучения (метод целесообразных задач, проблемное обучение и др.) повышает осмысленность усвоения, облегчает и ускоряет изучение программного материала.
Наряду с уже готовыми алгоритмами, предлагаемыми авторами учебников при изучении многих тем, опираясь на наблюдения и в результате диалога, можно самостоятельно с учащимися создавать другие алгоритмы деятельности.
Правила разработки любого алгоритма:
- определить цель достижения, по которой будет создан алгоритм;
- наметить план действий для достижения поставленной цели;
- выбрать среду и объекты, посредством которых алгоритм будет реализован;
- детализировать алгоритм с учетом особенностей выбранной среды.
Использование алгоритмов упорядочивает процесс обучения, упрощает его, дает возможность быстро изложить новый материал, тем самым, освободив время для закрепления.
Это умение формируется на протяжении всего периода обучения в школе. Задания, выраженные в виде алгоритма (алгоритмического предписания), очень разнообразны. Успешность их выполнения зависит от умения учащихся чётко исполнять заданный алгоритм.
Из вышеизложенного вытекает следующий вывод: алгоритмирование играет важнейшую роль в формировании ключевых и предметных компетентностей и универсальных учебных действий:
Общеучебные универсальные действия:
- поиск и выделение необходимой информации;
- умение осознанно и произвольно строить речевое высказывание в устной
- форме;
- самостоятельное выделение и формулирование познавательной цели;
- знаково-символическое моделирование – преобразование объекта из чувственной формы в модель, где выделены существенные хар-ки объекта и преобразование модели с целью выявления общих законов, определяющих данную предметную область;
Регулятивные УУД:
- способность принимать, сохранять цели и следовать им в учебной деятельности;
- умение контролировать процесс и результаты своей деятельности.
Универсальные логические действия
- анализ объектов с целью выделения признаков;
- синтез как составление целого из частей;
- установление причинно-следственных связей;
- построение логической цепи рассуждений;
- доказательство.
Коммуникативные УУД:
- готовность слушать собеседника и вести диалог;
- готовность признавать возможность существования различных точек зрения и право каждого иметь свою;
- умение договариваться, находить общее решение практической задачи.
С применением алгоритмизации на уроках, учебный процесс направлен на развитие логического и критического мышления, воображения, самостоятельности. Дети заинтересованы, приобщены к творческому поиску; активизирована мыслительная деятельность каждого. Процесс становится не скучным, однообразным, а творческим.
Главная → Программы, сервисы, приложения → Разрабатываем алгоритмы действий и создаем блок-схемы
Разрабатываем алгоритмы действий и создаем блок-схемы
В жизни нам часто приходится встречаться с различными ситуациями, в которых мы совершаем одни и те же определенные действия. Для того, чтобы вовремя проснуться, нам нужно не забыть включить будильник. Для того, чтобы утолить свой голод, нам необходимо выполнить одни и те же действия по приготовлению вкусной пищи. Для того, чтобы выполнить знакомую нам работу, мы тоже часто делаем одно и то же.
Такое поведение можно называть по-разному, смотря в каком контексте оно рассматривается. Если рассмотреть с позиции эффективности деятельности, то эти действия можно назвать привычками или навыками. Если рассматривать с точки зрения отображения процесса, то описание последовательности действий, строгое исполнение которых приводит к решению поставленных задач за определенное количество шагов, называют алгоритмом действий.
Как создаются алгоритмы действий?
Мы постоянно сталкиваемся с этим в обычной жизни. Какие действия мы совершаем, чтобы пополнить счет своего мобильного телефона? Каждый из нас — разные. Так как способов пополнения счета несколько, следовательно мы все по-разному это делаем. Результат, правда всегда один получается — появление средств на телефоне.
Или еще пример: чтобы скопировать картинку или текст, нажимаем правой кнопкой мыши на картинку, затем выбираем «Копировать», помещаем в нужное место, нажимаем правой кнопкой » Вставить», и результат достигнут.
Все это — определенная последовательность действий, в результате которых различными средствами решается поставленная задача. Но пока это только наши знания, которые перерастают в навыки и умения, а если этот процесс описать, то мы сможем наглядно увидеть алгоритм наших действий, и передать его другим людям. На словах не все и не всегда понятно бывает.
Опишите последовательность действий — это запоминается
Создать алгоритм действий можно, описав или изобразив его последовательность. Знают ли все, что надо сделать, чтобы посадить дерево? Возможно, основные шаги понятны всем, но вот когда деревце поливать, перед посадкой или после, помнит не каждый. Созданный алгоритм позволит все действия выполнить в правильной последовательности.
Чтобы описать последовательность действий посложнее, придется постараться и подробно их все записать. Пример можно взять с всевозможных правил и инструкций — там очень четко прописываются по шагам действия, которые нам надо сделать. Но бывают ситуации, в которых за определенным действие следует не один шаг, а несколько, в зависимости от предыдущего результата. В таком случае, предположительные действия тоже записывают, чтобы человек мог легко сориентироваться в разных ситуациях, и знал, что нужно предпринять.
Алгоритм действий в графике — это блок-схема
Если изобразить алгоритмы действий в графическом варианте, с помощью геометрических фигур с линиями-связями, показывающими порядок выполнения действия, то мы получим блок-схему. Блок-схема намного превосходит правила, инструкции, и записанные по порядку алгоритмы действий, по своей наглядности и читаемости.
Представьте, что вам нужно чему-то научить другого человека. Вы отлично знаете все действия в определенной последовательности. Ваша задача — показать, как это нужно делать и передать свои знания так, чтобы другой человек их запомнил и знал так же, как и вы. Устная передача знаний допускает импровизации и некоторый произвол. Самым лучшим способом будет блок-схема, в которой объясняется последовательность и возможные варианты действий. В качестве примера — веселое руководство по изучению блог-схем:
Лучшим условием для получения результата будет повторяемость действий. Это однозначно влияет на скорость достижения результата в будущем. Чем чаще вам придется повторять одни и те же действия, тем быстрее вы научитесь выполнять последовательность действий, а значит в каждый последующий раз, вам потребуется меньше времени на выполнение.
Блок-схемы применяются в продажах
В продажах такое обучение с помощью разработки алгоритмов и изображения их в виде блок-схем имеет большое распространение. Чаще всего их используют в телефонных сценариях разговоров в call-центрах и для «холодных» звонков. Корпоративная культура набирает обороты, поэтому многие компании уже не позволяют сотрудникам нести «отсебятину», даже талантливую, а предлагают действовать им по заранее разработанному сценарию, представляя «лицо фирмы» на различных этапах. Эффект появляется буквально после нескольких дней действий «по бумажке». Со временем, многое из описанных алгоритмов запоминается сотрудником, и в дальнейшем он свободно может общаться, не опасаясь того, в какую сторону может уйти разговор.
Алгоритмы действий и блог-схемы разрабатываются не только в продажах. Большое распространение они имеют в обучении и практике врачей, программистов, «компьютерщиков», у многих технических специальностей.
Стоит попробовать научиться действовать по подобным блок-схемам. Ведь впервые встречаясь с непонятным поначалу обилием действий и задач, думаешь о том, как тебе не хватает разработанной блок-схемы. После долгих мучений не выдерживаешь, и начинаешь разрабатывать и создавать самостоятельно. Эффективные люди не любят простоев в делах. А блок-схемы значительно упрощают жизнь и позволяют разобраться в решении сложных задач.
Сервисы для разработки блок-схем
В интернете есть сервисы, которые могут помочь вам создавать такие блок-схемы. Один из них — [urlspan]Сacoo[/urlspan]. С его помощью вам легко удастся превращать ваши алгоритмы в различные диаграммы, блок-схемы и графики. Вы увидите, что это очень приятное и радостное занятие — преобразовывать то, что вам известно, в науку для других людей.
На этом онлайн-сервисе — хорошее настроение вам обеспечено. На первоначальном этапе можно воспользоваться возможностями бесплатной учетной записи, а в будущем за доступ нужно будет платить. Естественно, что бесплатный доступ имеет ограничения по сравнению с платными. Но для изучения и первых шагов, функционала вполне достаточно.
Разработав алгоритмы действий и преобразовав их в блок-схемы с помощью Cacoo, вы сможете надолго создать хорошее настроение не только себе, но и другим людям, постигающим азы.
Создавайте игровые блок-схемы для своих детей
Подводя итог вышесказанному отмечу, что теперь вы сможете использовать алгоритмы действий и блок-схемы в различных жизненных ситуациях. Даже ваши дети с огромным удовольствием станут выполнять не самые интересные обязанности, следуя понятным подсказкам. Если будут идеи, где и как можно применять алгоритм действий, поделитесь в комментариях, уважаемые читатели. Очень хотелось бы узнать про ваши алгоритмы.
Моя блок-схема
Вот какая блок-схема у меня получилась в первый раз. Для того, чтобы увеличить изображение, нажмите на него. После перехода на Cacoo, под записью «просмотр фигуры», нажимайте на картинку. Она откроется в большом окне. Удачи!
Успевайте больше за меньшее время вместе с «Копилкой эффективных советов».
Алгоритм-система точных и понятных предписаний, опр-ая последовательность элементарных операций над исходными данными, выполнение кот-ых обеспечивает решение задач данного типа.
—дискретность-последовательность решения (процесс) задач должен быть разбит на последовательность отдельных шагов.
—понятность-алгоритм обязательно должен быть понятен исполнителю. В связи с этим алгоритм нужно разрабатывать с ориентацией на опр-ого исполнителя, т.е. в алгоритм можно включать команды из систем команд данного исполнителя.
—детерминированность — будучи понятным, алгоритм не должен содержать команды, смысл кот-ых может восприниматься неоднозначно. Нарушение составителями алгоритмов этих требований приводит к тому, что одна и та же программа после выполнения разными исполнителями дает не одинаковые результаты.
—результативность –состоит в том, что при точном исполнении всех команд алгоритма, процесс решения задач должен прекратиться за конечное число шагов и при этом должен быть получен опред-ый при постановке задач результат.
—массовость— пригодность алгоритма для решения задач некоторого класса.
Способы записи алгоритма:
—словесный – способ на естественном языке.
—графический-описания алгоритма с помощью схем.
Процесс выполнения операций или групп операций
ввод исходных данных, вывод результата
Решение-выбор направления выполнения
Модификация-выполнение операций , меняющих команды или группы команд, изменяющих программ.
Соединители линий на одной странице.
—язык программирования –удобен для ввода в комп-р.
—псевдокод-это язык, к-ый использует структуру и синтексис достаточно формализованного языка и одновременно допускает конструкции естеств. Языка.
Виды алгоритмов и основные принципы составления алгоритмов.
—Линейный – алгоритм, в кот-ом команды выполняются последовательно друг за другом в порядке их естественного следования независимо от каких-либо условий. S1, s2 , S3…Sn
-ветвящийся ( разветвящийся) — это процесс, в кот-ом его реализация происходит по одному из нескольких заранее предусмотренных направлений, в зависимости от исходных данных или промежуточных результатов.
· Полная условная конструкция (полное ветвление)
· Неполное условная конструкция
· Выбор из нескольких
—циклический – алгоритм, в кот-ом последовательность может выполняться более 1 раза.
· Цикл с параметром
· Цикл с предусловием. Может не выполниться ни разу. В теле цикла обязательно нах-ся оператор, к-ый изменяет значение переменной, входящей в блок Q.
· Цикл с постусловием. Выполняется хоть один раз.
Основные принципы алгоритмизации:
1. Выявить исходные данные, результаты и назначить им имена.
2. Метод решения задач.
3. Разбить метод решения задач на этапы.
4. При граф-ом представлении алгоритма каждый этап в виде соответствующего блока –схемы алгоритма и указать линиями связи порядок их выполнения.
5. В полученной схеме при любом варианте вычислений.
— предусмотреть выдачу результатов или сообщений об их отсутствии.
-обеспечить возможности после выполнение любой операции так или иначе перейти к блоку конец.
40.Основные алгоритмические структуры
Мы уже рассмотрели основные понятия программирования и переходим немного ближе к делу (но только ближе, программировать будем позже).
Рассмотрим основные структуры алгоритмов, а их шесть:
· Следование. Это последовательность блоков (или групп блоков) алгоритма. В программе следование представлено в виде последовательного выполнения операций
· Разветвление. Данная алгоритмическая структура применяется в том случае, когда в зависимости от условия необходимо выполнить одно или другое действие
· Обход. Эта структура является частным случаем разветвения, когда в одной из ветвей нет никаких действий.
· Множественный выбор. Эта структура является обобщением раветвления, когда необходимо выполнить одно из нескольких действий в зависимости от значения переменной A.
· Цикл До. Эта алгоритмическая структура применяется в том случае, когда нужно какие-либо операции исполнить несколько раз до того, как будет истинным определенное условие. Бло к выполняемый многократно называется телом цикла. Особенностью данного цикла является его обязательное исполнение хотя бы один раз.
· Цикл Пока. Это цикл отличается от цикла До тем, что проверка условия осуществляется перед самым первым исполнением операторов тела цикла.
Дата добавления: 2017-02-25 ; просмотров: 8009 | Нарушение авторских прав
Схема — это абстракция какого-либо процесса или системы, наглядно отображающая наиболее значимые части. Схемы широко применяются с древних времен до настоящего времени — чертежи древних пирамид, карты земель, принципиальные электрические схемы. Очевидно, древние мореплаватели хотели обмениваться картами и поэтому выработали единую систему обозначений и правил их выполнения. Аналогичные соглашения выработаны для изображения схем-алгоритмов и закреплены ГОСТ и международными стандартами.
На территории Российской Федерации действует единая система программной документации (ЕСПД), частью которой является Государственный стандарт — ГОСТ 19.701-90 «Схемы алгоритмов программ, данных и систем» [1]. Не смотря на то, что описанные в стандарте обозначения могут использоваться для изображения схем ресурсов системы, схем взаимодействия программ и т.п., в настоящей статье описана лишь разработка схем алгоритмов программ.
Рассматриваемый ГОСТ практически полностью соответствует международному стандарту ISO 5807:1985.
Содержание:
Элементы блок-схем алгоритмов
Блок-схема представляет собой совокупность символов, соответствующих этапам работы алгоритма и соединяющих их линий. Пунктирная линия используется для соединения символа с комментарием. Сплошная линия отражает зависимости по управлению между символами и может снабжаться стрелкой. Стрелку можно не указывать при направлении дуги слева направо и сверху вниз. Согласно п. 4.2.4, линии должны подходить к символу слева, либо сверху, а исходить снизу, либо справа.
Есть и другие типы линий, используемые, например, для изображения блок-схем параллельных алгоритмов, но в текущей статье они, как и ряд специфических символов, не рассматриваются. Рассмотрены лишь основные символы, которых всегда достаточно студентам.
Терминатор начала и конца работы функции
Терминатором начинается и заканчивается любая функция. Тип возвращаемого значения и аргументов функции обычно указывается в комментариях к блоку терминатора.
Операции ввода и вывода данных
В ГОСТ определено множество символов ввода/вывода, например вывод на магнитные ленты, дисплеи и т.п. Если источник данных не принципиален, обычно используется символ параллелограмма. Подробности ввода/вывода могут быть указаны в комментариях.
Выполнение операций над данными
В блоке операций обычно размещают одно или несколько (ГОСТ не запрещает) операций присваивания, не требующих вызова внешних функций.
Блок, иллюстрирующий ветвление алгоритма
Блок в виде ромба имеет один вход и несколько подписанных выходов. В случае, если блок имеет 2 выхода (соответствует оператору ветвления), на них подписывается результат сравнения — «да/нет». Если из блока выходит большее число линий (оператор выбора), внутри него записывается имя переменной, а на выходящих дугах — значения этой переменной.
Вызов внешней процедуры
Вызов внешних процедур и функций помещается в прямоугольник с дополнительными вертикальными линиями.
Начало и конец цикла
Символы начала и конца цикла содержат имя и условие. Условие может отсутствовать в одном из символов пары. Расположение условия, определяет тип оператора, соответствующего символам на языке высокого уровня — оператор с предусловием (while) или постусловием (do … while).
Подготовка данных
Символ «подготовка данных» в произвольной форме (в ГОСТ нет ни пояснений, ни примеров), задает входные значения. Используется обычно для задания циклов со счетчиком.
Соединитель
В случае, если блок-схема не умещается на лист, используется символ соединителя, отражающий переход потока управления между листами. Символ может использоваться и на одном листе, если по каким-либо причинам тянуть линию не удобно.
Комментарий
Комментарий может быть соединен как с одним блоком, так и группой. Группа блоков выделяется на схеме пунктирной линией.
Примеры блок-схем
В качестве примеров, построены блок-схемы очень простых алгоритмов сортировки, при этом акцент сделан на различные реализации циклов, т.к. у студенты делают наибольшее число ошибок именно в этой части.
Сортировка вставками
Массив в алгоритме сортировки вставками разделяется на отсортированную и еще не обработанную части. Изначально отсортированная часть состоит из одного элемента, и постепенно увеличивается.
На каждом шаге алгоритма выбирается первый элемент необработанной части массива и вставляется в отсортированную так, чтобы в ней сохранялся требуемый порядок следования элементов. Вставка может выполняться как в конец массива, так и в середину. При вставке в середину необходимо сдвинуть все элементы, расположенные «правее» позиции вставки на один элемент вправо. В алгоритме используется два цикла — в первом выбираются элементы необработанной части, а во втором осуществляется вставка.
Блок-схема алгоритма сортировки вставками
В приведенной блок-схеме для организации цикла используется символ ветвления. В главном цикле (i Блок-схема алгоритма сортировки пузырьком
На блок-схеме показано использование символов начала и конца цикла. Условие внешнего цикла (А) проверяется в конце (с постусловием), он работает до тех пор, пока переменная hasSwapped имеет значение true. Внутренний цикл использует предусловие для перебора пар сравниваемых элементов. В случае, если элементы расположены в неправильном порядке, выполняется их перестановка посредством вызова внешней процедуры (swap). Для того, чтобы было понятно назначение внешней процедуры и порядок следования ее аргументов, необходимо писать комментарии. В случае, если функция возвращает значение, комментарий может быть написан к символу терминатору конца.
Сортировка выбором
В сортировке выбором массив разделяется на отсортированную и необработанную части. Изначально отсортированная часть пустая, но постепенно она увеличивается. Алгоритм производит поиск минимального элемента необработанной части и меняет его местами с первым элементом той же части, после чего считается, что первый элемент обработан (отсортированная часть увеличивается).
Блок-схема сортировки выбором
На блок-схеме приведен пример использования блока «подготовка», а также показано, что в ряде случаев можно описывать алгоритм более «укрупнённо» (не вдаваясь в детали). К сортировке выбором не имеют отношения детали реализации поиска индекса минимального элемента массива, поэтому они могут быть описаны символом вызова внешней процедуры. Если блок-схема алгоритма внешней процедуры отсутствует, не помешает написать к символу вызова комментарий, исключением могут быть функции с говорящими названиями типа swap, sort, … .
На блоге можно найти другие примеры блок-схем:
Часть студентов традиционно пытается рисовать блок-схемы в Microsoft Word, но это оказывается сложно и не удобно. Например, в MS Word нет стандартного блока для терминатора начала и конца алгоритма (прямоугольник со скругленными краями, а не овал). Наиболее удобными, на мой взгляд, являются утилиты MS Visio и yEd [5], обе они позволяют гораздо больше, чем строить блок-схемы (например рисовать диаграммы UML), но первая является платной и работает только под Windows, вторая бесплатная и кроссплатфомренная. Все блок-схемы в этой статье выполнены с использованием yEd.
Нужны ли блок-схемы? Альтернативы
Частные конторы никакие блок-схемы не используют, в книжках по алгоритмам [6] вместо них применяют словесное описание (псевдокод) как более краткую форму. Возможно блок-схемы применяют на государственных предприятиях, которые должны оформлять документацию согласно требованиям ЕСПД, но есть сомнения — даже для регистрации программы в Государственном реестре программ для ЭВМ никаких блок-схем не требуется.
Тем не менее, рисовать блок-схемы заставляют школьников (примеры из учебников ГОСТ не соответствуют) — выносят вопросы на государственные экзамены (ГИА и ЕГЭ), студентов — перед защитой диплом сдается на нормоконтроль, где проверяется соответствие схем стандартам.
Разработка блок-схем выполняется на этапах проектирования и документирования, согласно каскадной модели разработки ПО, которая сейчас почти не применяется, т.к. сопровождается большими рисками, связанными с ошибками на этапах проектирования.
Появляются подозрения, что система образования прогнила и отстала лет на 20, однако аналогичная проблема наблюдается и за рубежом. Международный стандарт ISO 5807:1985 мало чем отличается от ГОСТ 19.701-90, более нового стандарта за рубежом нет. Там же производится множество программ для выполнения этих самых схем — Dia, MS Visio, yEd, …, а значит списывать их не собираются. Вместо блок-схем иногда применяют диаграммы деятельности UML [6], однако удобнее они оказываются, разве что при изображении параллельных алгоритмов.
Периодически поднимается вопрос о том, что ни блок-схемы, ни UML не нужны, да и документация тоже не нужна. Об этом твердят программисты, придерживающиеся методологии экстремального программирования (XP) [7], ходя даже в их кругу нет единого мнения.
В ряде случаев, программирование невозможно без рисования блок-схем, т.к. это один процесс — существуют визуальные языки программирования, такие как ДРАКОН [8], кроме того, блок-схемы используются для верификации алгоритмов (формального доказательства их корректности) методом индуктивных утверждений Флойда [9].
В общем, единого мнения нет. Очевидно, есть области, в которых без чего-то типа блок-схем обойтись нельзя, но более гибкой альтернативы нет. Для формальной верификации необходимо рисовать подробные блок-схемы, но для проектирования и документирования такие схемы не нужны — я считаю разумным утверждение экстремальных программистов о том, что нужно рисовать лишь те схемы, которые помогают в работе и не требуют больших усилий для поддержания в актуальном состоянии [10].