Как правильно составить обратную пропорцию

Математика

6 класс

Урок № 7

Прямая и обратная пропорциональность. Решение задач

Перечень рассматриваемых вопросов:

  • Понятия прямой и обратной пропорциональной зависимости.
  • Краткая запись условия задачи.
  • Составление и решение пропорций по условию задачи.
  • Решение задач на прямую и обратную пропорциональную зависимость.

Тезаурус

Равенство двух отношений называют пропорцией.

Две величины называются прямо пропорциональными, если при увеличении одной из них в несколько раз другая увеличивается во столько же раз.

Две величины называются обратно пропорциональными, если при увеличении одной из них в несколько раз другая уменьшается во столько же раз.

Основная литература

  1. Никольский С. М. Математика. 6 класс. Учебник для общеобразовательных учреждений // С. М. Никольский, М. К. Потапов, Н. Н. Решетников и др. — М.: Просвещение, 2017. — 258 с.

Дополнительная литература

  1. Чулков П. В. Математика: тематические тесты. 5-6 кл. // П. В. Чулков, Е. Ф. Шершнёв, О. Ф. Зарапина — М.: Просвещение, 2009. — 142 с.
  2. Шарыгин И. Ф. Задачи на смекалку: 5-6 кл. // И. Ф. Шарыгин, А. В. Шевкин — М.: Просвещение, 2014. — 95 с.

Теоретический материал для самостоятельного изучения

Прямая пропорциональность.

Две величины называются прямо пропорциональными, если при увеличении одной из них в несколько раз другая увеличивается во столько же раз.

Обратная пропорциональность.

Две величины называются обратно пропорциональными, если при увеличении одной из них в несколько раз другая уменьшается во столько же раз.

Для решения задач на пропорциональную зависимость, удобно составить таблицу или сделать краткую запись условия.

Столбцы таблицы соответствуют наименованиям зависимых величин.

Строки таблицы соответствуют значениям величин при первом и втором измерении.

Одинаково направленные стрелки показывают прямо пропорциональную зависимость, противоположно направленные – обратно пропорциональную.

Задача.

Поезд, скорость которого 55 км/ч, был в пути 5 часов. За сколько часов пройдёт этот же участок пути товарный поезд, скорость которого 45 км/ч?

Решение.

При постоянном пути скорость и время движения обратно пропорциональны.

Допустим, товарный поезд пройдёт этот же путь со скоростью 45 км/ч за x ч.

Сделаем краткую запись условия.

Задача.

Двигаясь с постоянной скоростью, велогонщик проезжает 40 метров за 3 с. Какой путь проедет велогонщик за 45 с?

Решение.

При постоянной скорости путь прямо пропорционален времени движения.

Пусть х м проедет велогонщик за 45 с.

Сделаем краткую запись условия.

Задача.

Усилие при восхождении на высоту 600 м равно усилию, требуемому для перехода 25 км по равнине. Турист поднялся в горы на 792 м. Какому расстоянию на равнине соответствует этот подъём?

Решение:

Решение.

Задача.

Четыре программиста могут написать игру за 12 месяцев. За сколько месяцев эту работу могут выполнить три программиста?

Решение.

Количество программистов и скорость написания игры – это обратно пропорциональная зависимость.

Разбор заданий тренировочного модуля

№ 1. Подстановка элементов в пропуски в тексте.

Подставьте нужные элементы в пропуски.

Пешеход шёл 3 часа со скоростью 8 км/ч. За сколько часов он пройдёт то же расстояние со скоростью 6 км/ч?

Решение:

При фиксированном расстоянии время в пути и скорость – ______ пропорциональны.

Пусть _____ часов – пешеход идёт со скоростью 6 км/ч.

Составим пропорцию:

_________

х=_______

х=_______(ч).

Правильный ответ.

Решение:

При фиксированном расстоянии время в пути и скорость – обратно пропорциональны.

Пусть х часов – пешеход идёт со скоростью 6 км/ч.

№ 2. Подстановка элементов в пропуски в таблице.

Заполните таблицу.

Поезд движется со скоростью 45 км/ч. Какое расстояние он пройдёт, если будет в пути 3 ч; 4 ч; 5 ч; 6 ч.

Варианты ответов:

135 км;

180 км;

225 км;

270 км.

Решение.

При постоянной скорости пройденный путь и время прямо пропорциональны. Скорость движения поезда 45 км/ч означает, что за 1 час поезд преодолевает расстояние в 45 км. Обозначим за x км – расстояние, которое поезд пройдёт за 3, 4, 5 и 6 часов.

Таким же способом находим расстояние, которое пройдёт поезд за 4, 5 и 6 часов, и подставляем соответствующие варианты в таблицу.

Ответ:

Сегодня мы рассмотрим, какие величины называются обратно пропорциональными, как выглядит график обратной пропорциональности и как все это может вам пригодится не только на уроках математики, но и вне школьных стен.

Такие разные пропорциональности

Пропорциональностью называют две  величины, которые взаимно зависимы друг от друга.

Зависимость может быть прямой и обратной. Следовательно, отношения между величинами описывают прямая и обратная пропорциональность.

Прямая пропорциональность – это такая зависимость двух величин, при которой увеличение либо уменьшение одной из них ведет к увеличению либо уменьшению другой. Т.е. их отношение не изменяется.

Например, чем больше усилий вы прилагаете для подготовки к экзаменам, тем выше ваши оценки.  Или чем больше вещей вы берете с собой в поход, тем тяжелее нести ваш рюкзак. Т.е. количество затраченных на подготовку к экзаменам усилий прямо пропорционально полученным оценкам. И количество запакованных в рюкзак вещей прямо пропорционально его весу.

Обратная пропорциональность – это функциональная зависимость, при которой уменьшение либо увеличение в несколько раз независимой величины (ее называют аргументом) вызывает пропорциональное (т.е. во столько же раз) увеличение либо уменьшение зависимой величины (ее называют функцией).

Проиллюстрируем простым примером. Вы хотите купить на рынке яблок. Яблоки на прилавке и количество денег в вашем кошельке находятся в обратной пропорциональности. Т.е. чем больше вы купите яблок, тем меньше денег у вас останется.

Функция и ее график

Функцию обратной пропорциональности можно описать как y = k/x. В котором x ≠ 0 и k ≠ 0.

Эта функция обладает следующими свойствами:

  1. Областью ее определения является множество всех действительных чисел, кроме x = 0. D(y): (-∞; 0) U (0; +∞).
  2. Областью значений являются все действительные числа, кроме y = 0. Е(у): (-∞; 0) U (0; +∞).
  3. Не имеет наибольших и наименьших значений.
  4. Является нечетной и ее график симметричен относительно начала координат.
  5. Непериодическая.
  6. Ее график не пересекает оси координат.
  7. Не имеет нулей.
  8. Если k > 0 (т.е. аргумент возрастает), функция пропорционально убывает на каждом из своих промежутков. Если k < 0 (т.е. аргумент убывает), функция пропорционально возрастает на каждом из своих промежутков.
  9. При возрастании аргумента (k > 0) отрицательные значения функции находятся в промежутке (-∞; 0), а положительные – (0; +∞). При убывании аргумента (k < 0) отрицательные значения расположены на промежутке (0; +∞), положительные – (-∞; 0).

График функции обратной пропорциональности называется гиперболой. Изображается следующим образом:

График Функции Обратной Пропорциональности

Задачи на обратную пропорциональность

Чтобы стало понятнее, давайте разберем несколько задач. Они не слишком сложные, а их решение поможет вам наглядно представить, что такое обратная пропорциональность и как эти знания могут пригодиться в вашей обычной жизни.

Задача №1. Автомобиль движется со скоростью 60 км/ч. Чтобы доехать до места назначения, ему потребовалось 6 часов. Сколько времени ему потребуется, чтобы преодолеть такое же расстояние, если он будет двигаться со скоростью в 2 раза выше?

Можем начать с того, что запишем формулу, которая описывает отношения времени, расстояния и скорости: t = S/V. Согласитесь, она очень напоминает нам функцию обратной пропорциональности. И свидетельствует о том, что время, которое автомобиль проводит в пути, и скорость, с которой он движется, находятся в обратной пропорциональности.

Чтобы убедиться в этом, давайте найдем V2, которая по условию выше в 2 раза: V2 = 60 * 2 = 120 км/ч. Затем рассчитаем расстояние по формуле S = V * t = 60 * 6 = 360 км. Теперь совсем несложно узнать время t2, которое требуется от нас по условию задачи: t2 = 360/120 = 3 ч.

Как видите время в пути и скорость движения действительно обратно пропорциональны: со скоростью в 2 раза выше изначальной автомобиль потратит в 2 раза меньше времени на дорогу.

Решение этой задачи можно записать и в виде пропорции. Для чего сначала составим такую схему:

↓ 60 км/ч – 6 ч ↑

↓120 км/ч – х ч ↑

Стрелки обозначают обратно пропорциональную зависимость. А также подсказывают, что при составлении пропорции правую часть записи надо перевернуть: 60/120 = х/6. Откуда получаем х = 60 * 6/120 = 3 ч.

Задача №2. В мастерской трудятся 6 рабочих, которые с заданным объемом работы справляются за 4 часа. Если количество рабочих сократить в 2 раза, сколько времени потребуется оставшимся, чтобы выполнить тот же объем работы?

Запишем условия задачи в виде наглядной схемы:

↓ 6 рабочих – 4 ч ↑

↓ 3 рабочих – х ч ↑

Запишем это в виде пропорции: 6/3 = х/4. И получим х = 6 * 4/3 = 8 ч. Если рабочих станет в 2 раза меньше, оставшиеся затратят на выполнение всей работы в 2 раза больше времени.

Задача №3. В бассейн ведут две трубы. Через одну трубу вода поступает со скоростью 2 л/с и наполняет бассейн за 45 минут. Через другую трубу бассейн наполнится за 75 минут. С какой скоростью вода поступает в бассейн через эту трубу?

Для начала приведем все данные нам по условию задачи величины к одинаковым единицам измерения. Для этого выразим скорость наполнения бассейна в литрах в минуту: 2 л/с = 2 * 60 = 120 л/мин.

Поскольку из условия следует, что через вторую трубу бассейн заполняется медленнее, значит, и скорость поступления воды ниже. На лицо обратная пропорциональность. Неизвестную нам скорость выразим через х и составим такую схему:

↓ 120 л/мин – 45 мин ↑

↓ х л/мин – 75 мин ↑

А затем составим пропорцию: 120/х = 75/45, откуда х = 120 * 45/75 = 72 л/мин.

В задаче скорость наполнения бассейна выражена в литрах в секунду, приведем полученный нами ответ к такому же виду: 72/60 = 1,2 л/с.

Задача №4. В небольшой частной типографии печатают визитки. Сотрудник типографии работает со скоростью 42 визитки в час и трудится полный рабочий день – 8 часов. Если бы он работал быстрее и печатал 48 визиток за час, насколько раньше он смог бы уйти домой?

Идем проверенным путем и составляем по условию задачи схему, обозначив искомую величину как х:

↓ 42 визитки/ч – 8 ч ↑

↓ 48 визитки/ч – х ч ↑

Перед нами обратно пропорциональная зависимость: во сколько раз больше визиток в час напечатает сотрудник типографии, во столько же раз меньше времени ему потребуется на выполнение одной и той же работы. Зная это, составим пропорцию:

42/48 = х/8, х = 42 * 8/48 = 7ч.

Таким образом, справившись с работой за 7 часов, сотрудник типографии смогу бы уйти домой на час раньше.

Заключение

Нам кажется, что эти задачи на обратную пропорциональность действительно несложные. Надеемся, что теперь вы тоже считаете их такими. А главное, что знание об обратно пропорциональной зависимости величин действительно может оказаться для вас полезным еще не раз.

Не только на уроках математики и экзаменах. Но и тогда, когда вы соберетесь отправиться в путешествие, пойдете за покупками, решите немного подработать в каникулы и т.п.

Расскажите нам в комментариях, какие примеры обратной и прямой пропорциональной зависимости вы замечаете вокруг себя. Пускай это будет такая игра. Вот увидите, как это увлекательно. Не забудьте «расшарить» эту статью в социальных сетях, чтобы ваши друзья и одноклассники тоже смогли поиграть.

© blog.tutoronline.ru,
при полном или частичном копировании материала ссылка на первоисточник обязательна.

Обратная пропорциональность


Обратная пропорциональность

4.7

Средняя оценка: 4.7

Всего получено оценок: 162.

Обновлено 27 Октября, 2021

4.7

Средняя оценка: 4.7

Всего получено оценок: 162.

Обновлено 27 Октября, 2021

Обратная пропорциональность занимает куда больше времени при изучении, чем прямая. Поэтому ученикам стоит быть готовыми к тому, что обратная пропорциональность потребует времени и усилий для решения задач. Главное — помнить основные определения и быть внимательным при решении задач.

Пропорциональность.

Пропорциональностью называется зависимость одного числа от другого. Например, если в кошельке у человека определённое количество денег, а он покупает конфеты, то при увеличении цены на конфеты уменьшится число конфет, которые человек сможет купить.

Можно выделить две разновидности пропорциональностей:

  • Прямая пропорциональность. Это зависимость, при которой увеличение одного числа ведет к увеличению другого во столько же раз. А уменьшение одно числа ведёт к уменьшению другого во столько же раз.
  • Обратная пропорциональность. Это зависимость, при которой уменьшение одного числа ведет к увеличению другого во столько же раз. А увеличение числа, наоборот, ведёт к уменьшению другого во столько же раз.

Несколько раз в определении повторялась фраза «в столько же раз». Бывают ситуации, в особенности в физике, когда величины пропорциональны, но не имеют ярко выраженного коэффициента пропорциональности. Например, температура ведёт к увеличению внутренней энергии тела, но не прямо пропорционально. В таких ситуациях говорят, что числа пропорциональны.

Обратная пропорциональность.

И прямую, и обратную пропорциональность проще рассматривать на задачах движения. Представим себе автомобиль, который едет со скоростью 90 км/ч. Если примем расстояние между двумя городами за 180 км, то такой путь машина должна проехать за 2 часа. Пока всё понятно.

Но что будет, если водитель поспешит и увеличит скорость до 180 км/ч? Требуемый отрезок пути он проедет быстрее. То есть на то же расстояние водитель потратит не 2 часа, а 1 — увеличение скорости привело к уменьшению времени в дороге.

А что будет, если водитель уменьшит скорость в два раза, со 120 км/ч до 60 км/ч? Значит, время в пути тоже увеличится в два раза и будет составлять не 2 часа, а 4. Так уменьшение скорости привело к увеличению времени в пути.

График обратно пропорциональной зависимости

Для любой зависимости можно построить график функции.

Что такое функция? Это зависимость двух чисел. Одно из них, как правило, у, называется функцией и зависит от х, то есть аргумента.

Если представить обратную пропорциональность в виде формулы, то это будет выглядеть так:

у=к:х, где у – зависимое число или функция

х – независимое число или аргумент

к – постоянная величина, которая называется коэффициентом обратной пропорциональности.

Кстати, для приведённого нами примера коэффициентом обратной пропорциональности является величина пути между двумя городами, которую мы сделали постоянной. Если бы величина пройденного пути была плавающей, то обратной пропорциональности не получилось бы.

Пример

В качестве примера проверим, насколько верно работает приведённая формула и действительно ли она отображает обратную пропорцию. Выберем коэффициент пропорциональности, например, число 3. Тогда функция примет вид:

у=3:х. В качестве первого значения х выберем число 6, тогда у=0,5. Если мы уменьшим число х в 2 раза, то получится число 3, которому соответствует у=1. То есть в результате уменьшения х в два раза у в два раза увеличился, что полностью соответствует определению обратной пропорциональности. Для построения графика требуется несколько точек, поэтому, если по условиям задачи нужны построения, лучше записывать все значения в таблицу.

Особенно отметим, что коэффициент пропорциональности не может равняться нулю или быть отрицательным числом. А аргумент не может быть равным нулю, но отрицательным числом быть может.

Заключение

Что мы узнали?

Мы поговорили о том, что такое пропорциональность. Разделили определение обратной пропорциональности и прямой пропорциональности. Привели пример обратной пропорциональной зависимости, а также записали формулу обратной пропорциональности.

Тест по теме

Доска почёта

Доска почёта

Чтобы попасть сюда – пройдите тест.

  • Дарья Кубрин

    10/10

  • Анна Ножеева

    8/10

  • София Крючкова

    9/10

  • Никита Новосёлов

    10/10

  • Артур Севастьянов

    8/10

Оценка статьи

4.7

Средняя оценка: 4.7

Всего получено оценок: 162.


А какая ваша оценка?

Пропорциональность — это взаимосвязь между двумя величинами, при которой изменение одной из них влечет за собой изменение другой во столько же раз.

Пропорциональность бывает прямой и обратной. В данном уроке мы рассмотрим каждую из них.

Прямая пропорциональность

Предположим, что автомобиль двигается со скоростью 50 км/ч. Мы помним, что скорость это расстояние, пройденное за единицу времени (1 час, 1 минуту или 1 секунду). В нашем примере автомобиль двигается со скоростью 50 км/ч, то есть за один час он будет проезжать расстояние, равное пятидесяти километрам.

Изобразим на рисунке расстояние, пройденное автомобилем за 1 час

рисунок за один час машина проехала 50 км

Пусть автомобиль проехал еще один час с той же скоростью, равной пятидесяти километрам в час. Тогда получится, что автомобиль проедет 100 км

рисунок за два чаас машина проехала 100 км

Как видно из примера, увеличение времени в два раза привело к увеличению пройденного расстояния во столько же раз, то есть в два раза.

Такие величины, как время и расстояние называют прямо пропорциональными. А взаимосвязь между такими величинами называют прямой пропорциональностью.

Прямой пропорциональностью называют взаимосвязь между двумя величинами, при которой увеличение одной из них влечет за собой увеличение другой во столько же раз.

и наоборот, если одна величина уменьшается в определенное число раз, то другая уменьшается во столько же раз.

Предположим, что изначально планировалось проехать на автомобиле 100 км за 2 часа, но проехав 50 км, водитель решил отдохнуть. Тогда получится, что уменьшив расстояние в два раза, время уменьшится во столько же раз. Другими словами, уменьшение пройденного расстояния приведет к уменьшению времени во столько же раз.

Интересная особенность прямо пропорциональных величин заключается в том, что их отношение всегда постоянно. То есть при изменении значений прямо пропорциональных величин, их отношение остается неизменным.

В рассмотренном примере расстояние сначала было равно 50 км, а время одному часу. Отношение расстояния ко времени есть число 50.

отношение пятидесяти км к одному часу

Но мы увеличили время движения в 2 раза, сделав его равным двум часам. В результате пройденное расстояние увеличилось во столько же раза, то есть стало равно 100 км. Отношение ста километров к двум часам опять же есть число 50

отношение ста км к двум часам

Число 50 называют коэффициентом прямой пропорциональности. Он показывает сколько расстояния приходится на час движения. В данном случае коэффициент играет роль скорости движения, поскольку скорость это отношение пройденного расстояния ко времени.

Из прямо пропорциональных величин можно составлять пропорции. К примеру, отношения пятьдесят первых и сто вторых составляют пропорцию:

пять первых равно сто вторых

Это отношение можно прочитать следующим образом:

Пятьдесят километров так относятся к одному часу, как сто километров относятся к двум часам.


Пример 2. Стоимость и количество купленного товара являются прямо пропорциональными величинами. Если 1 кг конфет стоит 30 рублей, то 2 кг этих же конфет обойдутся в 60 рублей, 3 кг в 90 рублей. С увеличением стоимости купленного товара, его количество увеличивается во столько же раз.

Поскольку стоимость товара и его количество являются прямо пропорциональными величинами, то их отношение всегда постоянно.

Запишем чему равно отношение тридцати рублей к одному килограмму

тридвать первых равно тридцать

Теперь запишем чему равно отношение шестидесяти рублей к двум килограммам. Это отношение опять же будет равно тридцати:

шестьдесят вторых равно тридцать

Здесь коэффициентом прямой пропорциональности является число 30. Этот коэффициент показывает сколько рублей приходится на килограмм конфет. В данном примере коэффициент играет роль цены одного килограмма товара, поскольку цена это отношение стоимости товара на его количество.


Обратная пропорциональность

Рассмотрим следующий пример. Расстояние между двумя городами 80 км. Мотоциклист выехал из первого города, и со скоростью 20 км/ч доехал до второго города за 4 часа.

Если скорость мотоциклиста составила 20 км/ч это значит, что каждый час он проезжал расстояние равное двадцати километрам. Изобразим на рисунке расстояние, пройденное мотоциклистом, и время его движения:

расстояние 80 км время 4 ч скорость 20 км в час рисунок 1

На обратном пути скорость мотоциклиста была 40 км/ч, и на тот же путь он затратил 2 часа.

расстояние 80 км время 2 ч скорость 40 км в час рисунок 2

Легко заметить, что при изменении скорости, время движения изменилось во столько же раз. Причем изменилось в обратную сторону — то есть скорость увеличилась, а время наоборот уменьшилось.

Такие величины, как скорость и время называют обратно пропорциональными. А взаимосвязь между такими величинами называют обратной пропорциональностью.

Обратной пропорциональностью называют взаимосвязь между двумя величинами, при которой увеличение одной из них влечет за собой уменьшение другой во столько же раз.

и наоборот, если одна величина уменьшается в определенное число раз, то другая увеличивается во столько же раз.

К примеру, если на обратном пути скорость мотоциклиста составила бы 10 км/ч, то те же 80 км он преодолел бы за 8 часов:

расстояние 80 км время 8 ч скорость 20 км в час рисунок 3

Как видно из примера, уменьшение скорости привело к увеличению времени движения во столько же раз.

Особенность обратно пропорциональных величин заключается в том, что их произведение всегда постоянно. То есть при изменении значений обратно пропорциональных величин, их произведение остается неизменным.

В рассмотренном примере расстояние между городами было равно 80 км. При изменении скорости и времени движения мотоциклиста, это расстояние всегда оставалось неизменным

расстояние 80 км время и скорость все рисунки

Мотоциклист мог проехать это расстояние со скоростью 20 км/ч за 4 часа, и со скоростью 40 км/ч за 2 часа, и со скоростью 10 км/ч за 8 часов. Во всех случаях произведение скорости и времени было равно 80 км

80 км произведение скорости и времени рисунок 5


Понравился урок?
Вступай в нашу новую группу Вконтакте и начни получать уведомления о новых уроках

Возникло желание поддержать проект?
Используй кнопку ниже


Обратная пропорциональность и её график

Рассмотрим функцию, которая задается формулой 

.

Такая функция называется обратной пропорциональностью, причем x ≠ 0 (т.к. на 0 делить нельзя). Число k также отлично от 0 (в противном случае функция перестанет являться обратной пропорциональностью). Её графиком является гипербола, состоящая из двух ветвей. Ты сможешь увидеть ее ниже.

Перед разбором тренировочных экзаменационных заданий очень хочется вспомнить, что конкретно влияет на расположение и вид графика.

Напомню, что координатная плоскость делится на 4 координатных четверти. У каждой четверти есть свой порядковый номер (см. рисунок).

Так вот к чему я это?

Если k > 0, то ветви гиперболы располагаются в 1 и 3 четвертях.

Если k < 0, то ветви гиперболы располагаются во 2 и 4 четвертях.

Убедимся в этом) Построим два графика.

                 

Чем больше точек ты запишешь, тем точнее получится график.

В обоих случаях ветви гиперболы никогда не пересекут оси Ох и Оу, т.к. ни х, ни у нулю равняться не могут. Это значит, что оси являются для графика асимптотами – ветви гиперболы бесконечно стремятся к ним, но никогда их не пересекают.

Но не всегда оси будут асимптотами.

Например, в следующей функции асимптотами будут являться прямые х = 2 и у = 1.

Практикум по гиперболам.

Оказывается, что на сайте ФИПИ все задания чисто с гиперболами однотипные, поэтому разберу только два задания, похожих друг на друга (почему они оси не прорисовывают не пойму).

Задание 1. Установите соответствие между графиками и их функциями.

Из общей массы выделяется график Б, т.к. ветви этой гиперболы находятся очень близко к началу координат. А из формул выделяется формула 1, т.к. в ее знаменателе икс умножен на 3. Вывод: график Б и формула 1 созданы друг для друга!

Далее, ветви графика А расположены в 1 и 3 четвертях плоскости, значит коэффициент k положительный. К А подходит формула 2.

И остались график В и формула 3.

Всё)

Задание 2. Установите соответствие между функциями и их графиками.

Аналогично предыдущему заданию.

Б-2

А-1

В-3

Добавить комментарий