Как решить задачу найти катет

Как найти стороны прямоугольного треугольника

  1. Главная
  2. /
  3. Математика
  4. /
  5. Геометрия
  6. /
  7. Как найти стороны прямоугольного треугольника

Чтобы посчитать стороны прямоугольного треугольника воспользуйтесь нашим очень удобным онлайн калькулятором:

Онлайн калькулятор

Прямоугольный треугольник

Чтобы вычислить длины сторон прямоугольного треугольника вам нужно знать следующие параметры (либо-либо):

  • для гипотенузы (с):
    • длины катетов a и b
    • длину катета (a или b) и прилежащий к нему острый угол (β или α, соответственно)
    • длину катета (a или b) и противолежащий к нему острый угол (α или β, соответственно)
  • для катета:
    • длину гипотенузы (с) и длину одного из катетов
    • длину гипотенузы (с) и прилежащий к искомому катету (a или b) острый угол (β или α, соответственно)
    • длину гипотенузы (с) и противолежащий к искомому катету (a или b) острый угол (α или β, соответственно)
    • длину одного из катетов (a или b) и прилежащий к нему острый угол (β или α, соответственно)
    • длину одного из катетов (a или b) и противолежащий к нему острый угол (α или β, соответственно)

Введите их в соответствующие поля и получите результат.

Найти гипотенузу (c)

Найти гипотенузу по двум катетам

Катет a =
Катет b =
Гипотенуза c =

0

Чему равна гипотенуза (сторона с) если известны оба катета (стороны a и b)?

Формула

Теорема Пифагора: квадрат гипотенузы равен сумме квадратов катетов:

c² = a² + b²

следовательно: c = a² + b²

Пример

Для примера посчитаем чему равна гипотенуза прямоугольного треугольника если катет a = 3 см, а катет b = 4 см:

c = 3² + 4² = 9 + 16 = 25 = 5 см

Найти гипотенузу по катету и прилежащему к нему острому углу

Катет (a или b) =
Прилежащий угол (β или α) =
Гипотенуза c =

0

Чему равна гипотенуза (сторона с) если известны один из катетов (a или b) и прилежащий к нему угол?

Формула

c = a/cos(β) = b/cos(α)

Пример

Для примера посчитаем чему равна гипотенуза прямоугольного треугольника если катет a = 2 см, а прилежащий к нему ∠β = 60°:

c = 2 / cos(60) = 2 / 0.5 = 4 см

Найти гипотенузу по катету и противолежащему к нему острому углу

Катет (a или b) =
Противолежащий угол (α или β) =
Гипотенуза c =

0

Чему равна гипотенуза (сторона с) если известны один из катетов (a или b) и противолежащий к нему угол?

Формула

c = a/sin(α) = b/sin(β)

Пример

Для примера посчитаем чему равна гипотенуза прямоугольного треугольника если катет a = 2 см, а противолежащий к нему ∠α = 30°:

c = 2 / sin(30) = 2 / 0.5 = 4 см

Найти гипотенузу по двум углам

Найти гипотенузу прямоугольного треугольника только по двум острым углам невозможно.

Найти катет

Найти катет по гипотенузе и катету

Гипотенуза c =
Катет (известный) =
Катет (искомый) =

0

Чему равен один из катетов прямоугольного треугольника если известны гипотенуза и второй катет?

Формула

a = c² – b²

b = c² – a²

Пример

Для примера посчитаем чему равен катет a прямоугольного треугольника если гипотенуза c = 5 см, а катет b = 4 см:

a = 5² – 4² = 25 – 16 = 9 = 3 см

Найти катет по гипотенузе и прилежащему к нему острому углу

Гипотенуза c =
Угол (прилежащий катету) = °
Катет =

0

Чему равен один из катетов прямоугольного треугольника если известны гипотенуза и прилежащий к искомому катету острый угол?

Формула

a = c ⋅ cos(β)

b = c ⋅ cos(α)

Пример

Для примера посчитаем чему равен катет b прямоугольного треугольника если гипотенуза c = 5 см, а ∠α = 60°:

b = 5 ⋅ cos(60) = 5 ⋅ 0.5 = 2.5 см

Найти катет по гипотенузе и противолежащему к нему острому углу

Гипотенуза c =
Угол (противолежащий катету) = °
Катет =

0

Чему равен один из катетов прямоугольного треугольника если известны гипотенуза и противолежащий к искомому катету острый угол?

Формула

a = c ⋅ sin(α)

b = c ⋅ sin(β)

Пример

Для примера посчитаем чему равен катет a прямоугольного треугольника если гипотенуза c = 4 см, а ∠α = 30°:

a = 4 ⋅ sin(30) = 4 ⋅ 0.5 = 2 см

Найти катет по второму катету и прилежащему к нему острому углу

Катет (известный) =
Угол (прилежащий известному катету) = °
Катет (искомый) =

0

Чему равен один из катетов прямоугольного треугольника если известен другой катет и прилежащий к нему острый угол?

Формула

a = b ⋅ tg(α)

b = a ⋅ tg(β)

Пример

Для примера посчитаем чему равен катет b прямоугольного треугольника если катет a = 2 см, а ∠β = 45°:

b = 2 ⋅ tg(45) = 2 ⋅ 1 = 2 см

Найти катет по второму катету и противолежащему к нему острому углу

Катет (известный) =
Угол (противолежащий известному катету) = °
Катет (искомый) =

0

Чему равен один из катетов прямоугольного треугольника если известен другой катет и противолежащий к нему острый угол?

Формула

a = b / tg(β)

b = a / tg(α)

Пример

Для примера посчитаем чему равен катет a прямоугольного треугольника если катет b = 3 см, а ∠β = 35°:

a = 3 / tg(35) ≈ 3 / 0.7 ≈ 4.28 см

См. также

Содержание материала

  1. Решение прямоугольного треугольника по двум сторонам
  2. Если известны катет a и гипотенуза c
  3. Если известны катеты a и b
  4. Видео
  5. Свойства сторон в прямоугольном треугольнике
  6. Как найти катет прямоугольного треугольника
  7. Теорема Пифагора и углы
  8. Некоторые свойства прямоугольных треугольников
  9. Как найти катеты, при известной гипотенузе и угле
  10. Формулы для решения задач

Решение прямоугольного треугольника по двум сторонам

Если известны катет a и гипотенуза c

Если известны катет a и гипотенуза c

Второй катет b определится по теореме Пифагора:

Угол A определится по формуле синуса:

Поскольку сумма всех углов треугольника равна 180 ° то второй острый угол определится так:

Если известны катеты a и b

Гипотенуза с определится по теореме Пифагора:

Угол A определится по формуле тангенса:

Поскольку сумма всех углов треугольника равна 180 ° то второй острый угол определится так:

Видео

Свойства сторон в прямоугольном треугольнике

Гипотенуза всегда больше каждого из катетов.

Сторона, которая находится напротив угла равного 30 градусов, равна половине величины гипотенузы.

К прямоугольному треугольнику можно применить теорему Пифагора: квадрат гипотенузы равен сумме квадратов катетов.

Как найти катет прямоугольного треугольника

С задачками по геометрии сталкиваются все в средне

С задачками по геометрии сталкиваются все в средней школе. Кому-то такие задачки даются сложно, а кто-то их щелкает, как орешки. На самом деле эти задачи не особо сложные, просто нужно вникнуть и понять определенный алгоритм решения. Давайте подробнее разберем, как найти катет прямоугольного треугольника.

Теорема Пифагора и углы

Эта теорема занимает одно из центральных мест в математике. Алгебраическая формулировка её гласит, что в прямоугольнике квадрат длины гипотенузы по своему значению равен сумме квадратов двух прилегающих к ней сторон, то есть катетов. Например, если обозначить гипотенузу буквой c, а катеты а и b, то математически её можно записать в виде формулы: a2+b2 = c2.

Существует несколько доказательств этой теоремы. Самое простое из них — это использование подобия треугольников. В его основе лежат аксиомы. Пусть имеется геометрическая фигура ABC, у которой вершина C является прямой, то есть её угол равен 90 градусов. Если из точки С опустить высоту, а место пересечения с противолежащей стороной обозначить H, то получится два треугольника. Один будет состоять из вершин AHC, а другой BHC. Эти новые фигуры подобны ABC по двум углам. Следующие выражения будут верными:

  • BC/AB = HB/BC;
  • AC/AB = AH/AC.

Приведённые записи эквивалентны равенствам: BC2 = AB * HB; AC2 = AB * AH. Сложив первую и вторую формулу, получается: BC2 + AC2 = AB * (HB + AH) = AB2. Что и следовало доказать.

Используя это фундаментальное правило и свойство, что катет, расположенный напротив угла в 30 градусов, равен половине гипотенузы, проводят множество расчётов, связанных с вычислением длин сторон. Для доказательства, что AC = BC/2, приводят следующие рассуждения.

Так как вершина B равна 30 градусам, то, согласно правилу, разворот С должен составлять C =30*2 = 60 градусов. К имеющемуся треугольнику можно приложить точно такую же фигуру, делая сторону AB центром симметрии. Тогда для многоугольника BCD будет справедливо, что B = D = 60º. Исходя из этого можно утверждать, что DC = BC. Но, так как AC = ½ DC, то соответственно AC = ½ BC.

Но не всегда известны все данные, необходимые для нахождения длины катета по приведённым теоремам. Поэтому для вычисления катетов используются и тригонометрические соотношения.

Некоторые свойства прямоугольных треугольников

Свойство 1. Сумма двух острых углов прямоугольного треугольника равна 90°.

Действительно. Поскольку сумма углов треугольника равна 180°, а прямой угол равен 90°, то сумма остальных углов равен 90°.

Свойство 2. Если катет прямоугольного треугольника лежит напротив угла в 30°, то он равен половине гипотенузы.

Доказательство. Рассмотрим прямоугольный треугольник ACB, у которого угол C прямой, а угол ∠ABC=30°. Приложим к этому треугольнику равному ему прямоугольный треугольник как показано на Рис.2.

Рассмотрим треугольник ADB. Так как ∠A=∠D=∠ABD=60°, то треугольник ABD равносторонний. Следовательно AB=AD=BD. Тогда Свойство 3.  Если катет прямоугольного треугольник. Конец доказательства.Свойство 3.  Если катет прямоугольного треугольник

Свойство 3. Если катет прямоугольного треугольника равен половине гипотенузы, то угол, лежащий против данного катета равен 30°.

Доказательство. Пусть у прямоугольного треугольника катет AC равен половине гипотенузы AB. Аналогично вышеизложенному приложим к этому треугольнику равному ему прямоугольный треугольник BCD(Рис.2). Получим равносторонний треугольник, где AB=AD=BD. Тогда ∠A=∠D=∠ABD=60°. Но ∠ABD=2∠ABС. Следовательно 
. Конец доказательства.

Как найти катеты, при известной гипотенузе и угле

  • гипотенуза (обозначим ее буквой “c”) равна х см: c=x;
  • угол β равный q: β=q;

Для решения этой задачи необходимо использовать тригонометрические функции. Найболее популярны две из них:

  • функция синуса – синус искомого угла равен отношению противолежащего катета к гипотенузе;
  • функция косинуса – косинус искомого угла равен отношению прилежащего катета к гипотенузе;

Вы можете использовать любую. Я наведу пример с использованием первой. Пусть катеты у нас обозначаються символами “a” (прилежащий к углу) и “b” (противолежащий к углу). Соответственно наш угол лежит между катетом “a” и гипотенузой.

  1. Подставляем выбранные условные обозначения в формулу:sinβ = b/c
  2. Выводим катет:b=c*sinβ
  3. Подставляем наши данный и имеем один катет.b=c*sinq

Второй катет можно найти воспользовавшись второй тригонометрической функцией, или же перейти к третьему варианту.

Формулы для решения задач

  • Если мы знаем величину одного катета А и гипотенузы С, то второй катет B мы вычислим при помощи теоремы Пифагора.
  • Угол А мы может определись с помощью формулы синуса:

Так как сумма всех углов геометрической фигуры все

  • Так как сумма всех углов геометрической фигуры всегда равна 180 градусов, то другой острый угол можно вычислить по формуле:

В=180о-90о

Теги

Это смотря какие данные нам даны для решения.

Например есть теорема Пифагора:

по ней, если катеты a и b, а гипотенуза c, то:

a²+b²=c²

Отсюда можно найти катет, зная длину гипотенузы и второго катета:

a²=c²-b²

a=√(c²-b²)

Также находим и b:

b=√(c²-a²)

Ещё можно найти катет через тригонометрические функции, то есть зная угол через синусы, косинусы, тангенсы, котангенсы и т.д.

Если представить треугольник как вписанный в круг, то зная угол и размер гипотенузы можно найти катеты.

В рассматриваемом треугольнике, вписанном в круг, гипотенуза будет радиусом круга и приравнивается к 1 (к единице). А катеты – это синус и косинус, они меньше единицы.

Допустим зная угол α можно вычислить sin(α) и cos(α).

Синус соответствует вертикальному катету, а косинус горизонтальному.

Теперь, чтобы найти длины этих катетов, нужно перевести их из коэффициентов, которые меньше единицы, в реальные длины. Для этого их нужно домножить на длину гипотенузы:

Если:

Y – вертикальный катет, а X – горизонтальный катет (см. картинку) a Z – гипотенуза, то:

Y=Z*sin(α)

X=Z*cos(α)

Можно найти катет и зная лишь длину второго катета, а также угол.

Допустим знаем Y и угол α.

Тогда запросто находим гипотенузу, выражая её из предыдущей формулы:

Z=sin(α)/Y

А затем уже находим второй катет: X=Z*cos(α)

Если же наоборот знаем только X катет (горизонтальный, относительно приведённого рисунка), то находим гипотенузу так:

Z=X/cos(α)

А затем уже находим катет Y: Y=Z*sin(α)

Синус, косинус и гипотенуза в треугольнике как катеты

Рассмотрим разновидность задания № (23) — геометрическая задача на нахождение длины катета.

Для выполнения необходимо вспомнить теорию.

Пример:

известно, что в прямоугольном треугольнике 

ABC

с прямым углом 

B

медиана

BM=5

, катет

AB=6

. Найди катет 

BC

 этого треугольника.   

Как решить задание из примера?

Для получения максимального балла задание нужно оформлять разборчивым почерком с подробным решением. Обязательно должны присутствовать чертёж, дано и решение.

э 1 1.png

Рис. (1). Чертёж

Дано:

ΔABC

;

∠B=90°

;

BM

 — медиана;

BM=5

;

AB=6

.

Решение:

Так как медиана в прямоугольном треугольнике, проведённая к гипотенузе, равна половине этой гипотенузы, то определим величину гипотенузы:

По теореме Пифагора, имеем:

BC=AC2
−AB2=102
−62=100
−36=64=8.

Ответ: 8.

как найти катет? .Если известна гипотенуза и другой катет. Если известна гипотенуза и другой катет



Ученик

(245),
закрыт



10 лет назад

Julia

Мыслитель

(9739)


12 лет назад

По теореме Пифагора: квадрат гипотенузы равен сумме квадратов катетов.
Значит, чтобы найти катет в квадрате, надо из квадрата гипотенузы вычесть квадрат другого катета.
Если извлечь корень из полученного значения, то как раз и получится величина нужного катета.

Алекс МсЕран

Ученик

(166)


6 лет назад

что вы гоните корень из квадрата гепотенузы равен самой гепатенузе а тогда в этой формуле нет смысла т к тогда квадрат катета больше гепатенузе
или нужно уточнять про скобки

Добавить комментарий