Как решить задание найти корни уравнения

Всем привет! Сегодня я решил рассказать Вам про решение уравнение из ЕГЭ по базовой математике. Мы разберём с Вами в этой статье все возможные виды уравнений на ЕГЭ по математике, и убедимся на примере, что уравнения из ЕГЭ — не проблема, а халявный балл!

Автор статьи: Артемий Ульянов

Дата выпуска: 07.05.2022

Уравнения со степенями

1-е уравнение.

Начать решение наших уравнений я решил с уравнений, в которых приходится работать со степенями. Рассмотрим следующее уравнение, и попробуем его решить.

1-е уравнение.
1-е уравнение.

На самом деле, уравнение довольно лёгкое. Стоит лишь вспомнить, какая степень «5-ки» может дать нам дробь «1/125». Ну конечно же, это степень «-3». Разложим на степень правую часть нашего уравнения, и получим следующий результат:

Раскладываем на степень правую часть уравнения.
Раскладываем на степень правую часть уравнения.

Как мы видим, уравнение стало выглядеть значительно проще. Многие из Вас подумают, что стоит перебросить правую часть выражения за знак «равно» со знаком «минус», но тогда нам станет неудобно работать с уравнением. Но вот если приглядеться, то мы можем заметить, что в правой и левой части у каждого члена уравнения одно и то же основание — «5». В таких случаях, мы можем хитро избавиться от наших оснований, и записать уравнение вот в таком виде:

 Избавляемся от наших оснований и находим корень уравнения.
Избавляемся от наших оснований и находим корень уравнения.

Всё! Теперь нам стало сразу легче решать уравнение, и мы быстро нашли наш единственный корень x = -10. Давайте попробуем решить ещё пару таких уравнений.

2-е уравнение.

Рассмотрим следующее уравнение, и попробуем найти все его возможные корни:

2-е уравнениe.
2-е уравнениe.

Здесь ситуация уже чуть-чуть легче. Можно заметить, что число 81 — это «3» в «4-й степени». Тогда, мы разложим на степень правую часть нашего уравнения, и получим следующее:

 Раскладываем на степень правую часть уравнения.
Раскладываем на степень правую часть уравнения.

Всё! Как мы видим, ситуация та же. У каждого члена уравнения одинаковое основание, поэтому мы можем от них избавиться, и сразу найти корни нашего уравнения.

Находим корни 2-го уравнения.
Находим корни 2-го уравнения.

И вот таким, простым способом, мы смогли с Вами решить первые два уравнения. Но вот не каждый сейчас понимает, почему когда одинаковые основания у каждого члена нашего уравнения, то мы можем просто от них избавиться? Давайте попробуем разобраться, составив небольшую схему таких уравнений.

Схема предыдущих двух уравнений.
Схема предыдущих двух уравнений.

Прологарифмируем обе части нашего уравнения, взяв за основание логарифма «a». Тогда, мы получим следующее уравнение:

Прологарифмируем обе части нашего уравнения.
Прологарифмируем обе части нашего уравнения.

Теперь в обеих частях нашего уравнения, вынесем по формуле степени «b» и «c» за знак логарифма, и получим следующее выражение:

Выносим степени за знак логарифма.
Выносим степени за знак логарифма.

А теперь, зная из основной формулы логарифмов, что логарифм «a» по основанию «a» равен «1», упростим наше выражение:

Избавляемся от логарифмов.
Избавляемся от логарифмов.

Всё! Теперь мы с Вами доказали, что в уравнениях такого типа можно безболезненно избавляться от оснований, просто прологарифмировав обе части уравнения.

Логарифмические уравнения

1-е уравнение

Раз уж мы с Вами заговорили про логарифмы, давайте попробуем решить различные типы логарифмических уравнений. Рассмотрим следующее уравнение:

1-е уравнение.
1-е уравнение.

Это — один из самых простых видов таких уравнений. Для решения такого уравнения, следует просто избавиться от логарифма по формуле, и таким образом мы без труда сможем найти все корни уравнения. Давайте же этим и займёмся!

Находим корни уравнения.
Находим корни уравнения.

Всё! Это было не так уж и сложно, мы с Вами легко справились с таким уравнением. Давайте рассмотрим пример чуть сложнее.

2-е уравнение

Рассмотрим более сложный тип логарифмический уравнений:

2-е уравнение.
2-е уравнение.

Данное уравнение можно решить единственным способом. Для этого, мы разложим логарифм левой части уравнения, и получим следующее выражение:

Раскладываем логарифм левой части уравнения.
Раскладываем логарифм левой части уравнения.

В левой части уравнения мы можем наблюдать произведение степеней. Воспользуемся этой формулой в обратную сторону, и получим следующее уравнение:

Воспользуемся формулой произведения степеней в обратную сторону.
Воспользуемся формулой произведения степеней в обратную сторону.

Всё, теперь мы смогли с вами упростить уравнение до вот такого вида. Далее, я предлагаю воспользоваться одной из формулой логарифмов и поменять значение нашего логарифма в левой части уравнения:

Формула замены значения логарифма.
Формула замены значения логарифма.
Пользуемся нашей формулой, приведённой выше.
Пользуемся нашей формулой, приведённой выше.

И теперь, мы спокойно можем избавиться от нашего логарифма в показатели степени левой части уравнения, ведь «25» — это «5» во «2-й степени». Тогда, мы получим следующее уравнение:

Избавляемся от логарифма в показатели степени и находим единственный корень уравнения.
Избавляемся от логарифма в показатели степени и находим единственный корень уравнения.

Всё! Уравнение решено, и у нас получился корень x = -4. Согласитесь, это было не так уж и сложно. А теперь давайте рассмотрим с вами самый тяжёлый случай логарифмических уравнений.

3-е уравнение

Напоследок я решил разобрать одно из самых сложных уравнений, до решения которого не так уж и легко догадаться. Рассмотрим следующее уравнение:

3-е уравнение.
3-е уравнение.

Да, это уравнение выглядит уже сложнее, чем два предыдущих… А всё из-за разных оснований логарифмов… Попробуем воспользоваться формулой перехода от одного основания к другому в правой части уравнения в обратную сторону, тогда мы получим следующее выражение:

Формула перехода от одного основания логарифма к другому
Формула перехода от одного основания логарифма к другому
Раскрываем формулу перехода от одного основания к другому в правой части уравнения.
Раскрываем формулу перехода от одного основания к другому в правой части уравнения.

Теперь мы имеем дело с одинаковыми основаниями, и нам не составит особого труда решить это уравнение. Для начала, умножим обе части уравнения на знаменатель дроби в правой части уравнения и перенесём со знаком «минус» логарифм в правой части уравнения, тогда мы получим следующее выражение:

Умножаем обе части уравнения на знаменатель дроби в правой части уравнения.
Умножаем обе части уравнения на знаменатель дроби в правой части уравнения.

А теперь попробуем вынести общий множитель за скобки, тогда мы получаем следующее уравнение:

Выносим общий множитель за скобки.
Выносим общий множитель за скобки.

Всё, теперь мы максимально упростили наше уравнение. Из курса «7-го» класса мы с Вами знаем, что произведение множителей равно нулю, когда один из множителей равен нулю. Случай с правой скобкой нет смысла затрагивать, так как там нет неизвестных, а вот случай с левой скобкой — вполне. Тогда, мы можем смело записать наше уравнение в следующем виде:

Переписываем уравнение, уже без второго множителя.
Переписываем уравнение, уже без второго множителя.

И теперь, у нас с Вами получилось максимально упростить наше выражение и мы вернулись к самому первому виду логарифмических уравнений, обсуждаемый нами ранее. Решим же его!

Находим корни уравнения.
Находим корни уравнения.

Всё! Мы нашли единственный корень нашего уравнения, x = -2. Это было не так уж и сложно, как мы с Вами думали.

Квадратные уравнения

1-е уравнение

Зачастую, в ЕГЭ по базовой математике вы можете встретить задание, где необходимо решить квадратное уравнение, поэтому это ещё один из самых важных типов уравнений, которые стоит научиться решать. Рассмотрим следующее уравнение:

1-е уравнение.
1-е уравнение.

Опытные ученические взгляды уже смогли разглядеть в этом уравнении формулу «разности квадратов». Давайте же раскроем эту формулу! Получаем следующее произведение скобок, равное нулю:

Раскрываем формулу разности квадратов.
Раскрываем формулу разности квадратов.

Произведение множителей равно нулю, когда один из множителей равен нулю. Наш множитель «5» точно не может быть равен нулю, а вот множитель «(2x + 5)» вполне может стать отличным множителем, равным нулю. Запишем наше видоизменённое уравнение:

Видоизменяем наше уравнение, и находим его корни.
Видоизменяем наше уравнение, и находим его корни.

Всё! Мы нашли с Вами наш единственный корень уравнения, x = —2.5. Это было не так уж и сложно.

2-е уравнение

Грех не рассмотреть самый стандартный вид квадратных уравнений. Запишем следующее уравнение и попытаемся его решить:

2-е уравнение.
2-е уравнение.

Решать такое уравнение можно по-разному, мы же воспользуемся дискриминантом, делённым на «4». Давайте же найдём корни нашего уравнения!

Находим все корни уравнения.
Находим все корни уравнения.

Всё! Мы с вами нашли все корни этого уравнения — [-3; 9]. Это было проще простого.

Уравнения с квадратным корнем

1-е уравнение

Последний тип уравнений, который мы сегодня с вами рассмотрим, так это типа уравнений с квадратным корнем. Запишем следующее уравнение:

1-e уравнение.
1-e уравнение.

Выглядит всё не так уж и страшно. Умножим обе части нашего уравнение на произведение наших знаменателей, чтобы полностью избавиться от них. Получаем следующее уравнение:

Умножаем обе части нашего уравнения на произведение знаменателей.
Умножаем обе части нашего уравнения на произведение знаменателей.

Всё, мы упростили наше уравнение до самого обыкновенного вида уравнений с квадратным корнем. Для того, чтобы найти наш «x» — достаточно просто возвести обе части уравнения в квадрат. Так мы и сделаем!

Возводим обе части уравнения в квадрат.
Возводим обе части уравнения в квадрат.

И теперь, мы с Вами получили наш единственный корень уравнения, x = 49. Это было элементарней элементарного.

2-е уравнение

Рассмотрим ещё один вид таких уравнений. Запишем следующее уравнение:

2-е уравнение.
2-е уравнение.

Здесь все ещё проще. Возведём обе части нашего уравнения в квадрат, и получим следующее:

Возводим обе части уравнения в квадрат и находим корни уравнения.
Возводим обе части уравнения в квадрат и находим корни уравнения.

Всё, мы сразу с Вами нашли единственный корень нашего уравнения, x = 3. И эта задача тоже не вызвала у нас никаких трудностей, как и все предыдущие. Вот мы с Вами и доказали, что уравнения из ЕГЭ по базовой математике — не такая уж и страшная вещь.

Итог занятия

Сегодня мы с Вами разобрали все основные типы уравнений, которые могут Вам встретиться на ЕГЭ по базовой математике, и мы убедились на личном опыте, что решать такие задания элементарно, если знать:

— Формулы сокращённого умножения

— Формулы по работе с логарифмами

— Формулы для нахождения корней квадратного уравнения

— Основные свойства степеней

А на этом у меня всё, спасибо Всем за сегодняшний урок, следите за нашими новостями в Telegram и на платформе Яндекс Дзен, пока-пока!

Что такое уравнение и корни уравнения? Как решить уравнение?

Уравнения бывают разные. Вы изучите их многие виды в курсе математике, но все они решаются по одним правилам, эти правила мы сейчас рассмотрим подробно.

Что такое уравнение? Смысл и понятия.

Узнаем сначала все понятия, связанные с уравнением.

Определение:
Уравнение – это равенство, содержащее переменные и числовые значения.

Переменные (аргументы уравнения) или неизвестные уравнения – их обозначают в основном латинскими буквами (x, y, z, f и т.д.). При подстановки числового значения переменной в уравнение получаем верное равенство – это корень уравнения.

Решить уравнение – это значит найти все корни уравнения или доказать, что у данного уравнения нет корней.

Корни уравнения – это значение переменной при котором уравнение превращается в верное равенство.

Рассмотрим теперь, все термины на простом примере:
x+1=3

В данном случае x – переменная или неизвестное значение уравнения.

Можно устно решить данное уравнение. Какое надо число прибавить к 1, чтобы получить 3? Конечно, число 2. То есть наша переменная x =2. Корень уравнения равен 2. Проверим правильно ли мы решили уравнение? Чтобы проверить уравнение, нужно вместо переменной подставить полученный корень уравнения.

Получили верное равенство. Значит, правильно нашли корни уравнения.

Но бывают более сложные уравнения, которые устно не решить. Нужно прибегать к правилам решения уравнений. Рассмотрим правила решения уравнений ниже, которые объяснят нам как решать уравнения.

Правила уменьшения или увеличения уравнения на определенное число.

Чтобы понять правило рассмотрим подробно простой пример:
Решите уравнение x+2=7

Решение:
Чтобы решить данное уравнение нужно левую и правую часть уменьшить на 2. Это нужно сделать для того, чтобы переменная x осталась слева, а известные (т.е. числа) справа. Что значит уменьшить на 2? Это значит отнять от левой части двойку и одновременно от правой части отнять двойку. Если мы делаем какое-то действие, например, вычитание применяя его одновременно к левой части уравнения и к правой, то уравнение не меняет смысл.

Нужно остановиться на этом моменте подробно. Другими словами, мы +2 перенесли с левой части на правую и знак поменяли стало число -2.

Как проверить правильно ли вы нашли корень уравнения? Ведь не все уравнения будут простыми как данное. Чтобы проверить корень уравнения его значение нужно поставить в само уравнение.

Проверка:
Вместо переменной x подставим 5.

x+2=7
5+2=7
Получили верное равенство, значит уравнение решено верно.
Ответ: 5.

Разберем следующий пример:
Решите уравнение x-4=12.

Решение:
Чтобы решить данное уравнение нужно увеличить левую и правую часть уравнения на 4, чтобы переменная x осталось в левой стороне, а известные (т.е. числа) в правой стороне. Прибавим к левой и правой части число 4. Получим:

Другими словами, мы -4 перенесли из левой части уравнения в правую и получили +4. При переносе через равно знаки меняются на противоположные.

Теперь выполним проверку, вместо переменной x подставим в уравнение полученное число 16.
x-4=12
16-4=12
Ответ: 16

Очень важно понять правила переноса частей уравнения через знак равно. Не всегда нужно переносить числа, иногда нужно перенести переменные или даже целые выражения.

Рассмотрим пример:
Решите уравнение 4+3x=2x-5

Решение:
Чтобы решить уравнение необходимо неизвестные перенести в одну сторону, а известные в другую. То есть переменные с x будут в левой части, а числа в правой части.
Сначала перенесем 2x с правой стороны в левую сторону уравнения и получим -2x.

4+3x= 2x -5
4+3x -2x =-5

Далее 4 с левой стороны уравнения перенесем на правую сторону и получим -4
4 +3x-2x=-5
3x-2x=-5 -4

Теперь, когда все неизвестные в левой стороне, а все известные в правой стороне посчитаем их.
(3-2)x=-9
1x=-9 или x=-9

Сделаем проверку, правильно ли решено уравнение? Для этого вместо переменной x в уравнение подставим -9.
4+3x=2x-5
4+3⋅ (-9) =2⋅ (-9) -5
4-27=-18-5
-23=-23

Получилось верное равенство, уравнение решено верно.
Ответ: корень уравнения x=-9.

Правила уменьшения или увеличения уравнения в несколько раз.

Данное правило подходит тогда, когда вы уже посчитали все неизвестные и известные, но какой-то коэффициент остался перед переменной. Чтобы избавится от не нужного коэффициента мы применяем правило уменьшения или увеличения в несколько раз коэффициент уравнения.

Рассмотрим пример:
Решите уравнение 5x=20.

Решение:
В данном уравнение не нужно переносить переменные и числа, все компоненты уравнения стоят на месте. Но нам мешает коэффициент 5 который стоит перед переменной x. Мы не можем его просто взять и перенести в правую сторону уравнения, потому что между число 5 и переменно x стоит умножение 5⋅х. Если бы между переменной и числом стоял знак плюс или минус, мы могли бы 5 перенести вправо. Но мы так поступить не можем. За то мы можем все уравнение уменьшить в 5 раз или поделить на 5. Обязательно делим правую и левую сторону одновременно.

5x=20
5x :5 =20 :5
5:5x=4
1x=4 или x=4

Делаем проверку уравнения. Вместо переменной x подставляем 4.
5x=20
5⋅ 4 =20
20=20 получили верное равенство, корень уравнение найден правильно.
Ответ: x=4.

Рассмотрим следующий пример:
Найдите корни уравнения .

Решение:
Так как перед переменной x стоит коэффициент необходимо от него избавиться. Надо все уравнение увеличить в 3 раза или умножить на 3, обязательно умножаем левую часть уравнения и правую часть.

Сделаем проверку уравнения. Подставим вместо переменной x полученный корень уравнения 21.

7=7 получено верное равенство.

Ответ: корень уравнения равен x=21.

Следующий пример:
Найдите корни уравнения

Решение:
Сначала перенесем -1 в правую сторону уравнения относительно знака равно, а в левую сторону и знаки у них поменяются на противоположные.
Теперь нужно все уравнение умножить на 5, чтобы в коэффициенте перед переменной x убрать из знаменателя 5.

Далее делим все уравнение на 3.

3x :3 =45 :3
(3:3)x=15

Сделаем проверку. Подставим в уравнение найденный корень.

Как решать уравнения? Алгоритм действий.

Подведем итог разобранной теме уравнений, рассмотрим общие правила решения уравнений:

  1. Перенести неизвестные в одну сторону, а известные в другую сторону уравнения относительно равно.
  2. Преобразовать и посчитать подобные в уравнении, то есть переменные с переменными, а числа с числами.
  3. Избавиться от коэффициента при переменной если нужно.
  4. В итоге всех действий получаем корень уравнение. Выполняем проверку.

Эти правила действуют на любой вид уравнения (линейный, квадратный, логарифмический, тригонометрический, рациональные, иррациональные, показательные и другие виды). Поэтому важно понять эти простые правила и научиться ими пользоваться.

Решение простых линейных уравнений

О чем эта статья:

Статья находится на проверке у методистов Skysmart.
Если вы заметили ошибку, сообщите об этом в онлайн-чат
(в правом нижнем углу экрана).

Понятие уравнения

Уравнение — это математическое равенство, в котором неизвестна одна или несколько величин. Значение неизвестных нужно найти так, чтобы при их подстановке в пример получилось верное числовое равенство.

Например, возьмем выражение 2 + 4 = 6. При вычислении левой части получается верное числовое равенство, то есть 6 = 6.

Уравнением можно назвать выражение 2 + x = 6, с неизвестной переменной x, значение которой нужно найти. Результат должен быть таким, чтобы знак равенства был оправдан, и левая часть равнялась правой.

Корень уравнения — то самое число, которое при подстановке на место неизвестной уравнивает выражения справа и слева.

Решить уравнение значит найти все возможные корни или убедиться, что их нет.

Решить уравнение с двумя, тремя и более переменными — это два, три и более значения переменных, которые обращают данное выражение в верное числовое равенство.

Равносильные уравнения — это те, в которых совпадают множества решений. Другими словами, у них одни и те же корни.

Какие бывают виды уравнений

Уравнения могут быть разными, самые часто встречающиеся — линейные и квадратные.

Особенность преобразований алгебраических уравнений в том, что в левой части должен остаться многочлен от неизвестных, а в правой — нуль.

Линейное уравнение выглядит так ах + b = 0, где a и b — действительные числа.

Что поможет в решении:

  • если а не равно нулю, то у уравнения единственный корень: х = -b : а;
  • если а равно нулю — у уравнения нет корней;
  • если а и b равны нулю, то корень уравнения — любое число.
Квадратное уравнение выглядит так: ax 2 + bx + c = 0, где коэффициенты a, b и c — произвольные числа, a ≠ 0.

Числовой коэффициент — число, которое стоит при неизвестной переменной.

Кроме линейных и квадратных есть и другие виды уравнений, с которыми мы познакомимся в следующий раз:

Онлайн-курсы по математике за 7 класс помогут закрепить новые знания на практике с талантливым преподавателем.

Как решать простые уравнения

Чтобы научиться решать простые линейные уравнения, нужно запомнить формулу и два основных правила.

1. Правило переноса. При переносе из одной части в другую, член уравнения меняет свой знак на противоположный.

Для примера рассмотрим простейшее уравнение: x+3=5

Начнем с того, что в каждом уравнении есть левая и правая часть.

Перенесем 3 из левой части в правую и меняем знак на противоположный.

Можно проверить: 2 + 3 = 5. Все верно. Корень равен 2.

Решим еще один пример: 6x = 5x + 10.

Перенесем 5x из правой части в левую. Знак меняем на противоположный, то есть на минус.

Приведем подобные и завершим решение.

2. Правило деления. В любом уравнении можно разделить левую и правую часть на одно и то же число. Это может ускорить процесс решения. Главное — быть внимательным, чтобы не допустить глупых ошибок.

Применим правило при решении примера: 4x=8.

При неизвестной х стоит числовой коэффициент — 4. Их объединяет действие — умножение.

Чтобы решить уравнение, нужно сделать так, чтобы при неизвестной x стояла единица.

Разделим каждую часть на 4. Как это выглядит:

Теперь сократим дроби, которые у нас получились и завершим решение линейного уравнения:

Рассмотрим пример, когда неизвестная переменная стоит со знаком минус: −4x = 12

    Разделим обе части на −4, чтобы коэффициент при неизвестной стал равен единице.

−4x = 12 | : (−4)
x = −3

Если знак минус стоит перед скобками, и по ходу вычислений его убрали — важно не забыть поменять знаки внутри скобок на противоположные. Этот простой факт позволит не допустить обидные ошибки, особенно в старших классах.

Напомним, что не у каждого линейного уравнения есть решение — иногда корней просто нет. Изредка среди корней может оказаться ноль — ничего страшного, это не значит, что ход решения оказался неправильным. Ноль — такое же число, как и остальные.

Способов решения линейных уравнений немного, нужно запомнить только один алгоритм, который будет эффективен для любой задачки.

Алгоритм решения простого линейного уравнения
  1. Раскрываем скобки, если они есть.
  2. Группируем члены, которые содержат неизвестную переменную в одну часть уравнения, остальные члены — в другую.
  3. Приводим подобные члены в каждой части уравнения.
  4. Решаем уравнение, которое получилось: aх = b. Делим обе части на коэффициент при неизвестном.

Чтобы быстрее запомнить ход решения и формулу линейного уравнения, скачайте или распечатайте алгоритм — храните его в телефоне, учебнике или на рабочем столе.

Примеры линейных уравнений

Теперь мы знаем, как решать линейные уравнения. Осталось попрактиковаться на задачках, чтобы чувствовать себя увереннее на контрольных. Давайте решать вместе!

Пример 1. Как правильно решить уравнение: 6х + 1 = 19.

    Перенести 1 из левой части в правую со знаком минус.

Разделить обе части на множитель, стоящий перед переменной х, то есть на 6.

Пример 2. Как решить уравнение: 5(х − 3) + 2 = 3 (х − 4) + 2х − 1.

5х − 15 + 2 = 3х − 12 + 2х − 1

Сгруппировать в левой части члены с неизвестными, а в правой — свободные члены. Не забываем при переносе из одной части уравнения в другую поменять знаки на противоположные у переносимых членов.

5х − 3х − 2х = −12 − 1 + 15 − 2

Приведем подобные члены.

Ответ: х — любое число.

Пример 3. Решить: 4х = 1/8.

    Разделим обе части уравнения на множитель стоящий перед переменной х, то есть на 4.

Пример 4. Решить: 4(х + 2) = 6 − 7х.

  1. 4х + 8 = 6 − 7х
  2. 4х + 7х = 6 − 8
  3. 11х = −2
  4. х = −2 : 11
  5. х = −2/11

Ответ: −2/11 или −(0,18). О десятичных дробях можно почитать в другой нашей статье.

Пример 5. Решить:

  1. 3(3х — 4) = 4 · 7х + 24
  2. 9х — 12 = 28х + 24
  3. 9х — 28х = 24 + 12
  4. -19х = 36
  5. х = 36 : (-19)
  6. х = – 36/19

Пример 6. Как решить линейное уравнение: х + 7 = х + 4.

5х — 15 + 2 = 3х — 2 + 2х — 1

Сгруппировать в левой части неизвестные члены, в правой — свободные члены:

Приведем подобные члены.

Ответ: нет решений.

Пример 7. Решить: 2(х + 3) = 5 − 7х.

Решение уравнении (нахождение корней уравнения)

Решение уравнении ( нахождение корней уравнения )

Уравнение – это равенство двух выражений с переменными.

Решить уравнение –найти корни данного уравнения или доказать, что их нет.

1. Раскрыть скобки, если они имеются, применяя распределительное свойство

a ( b + c ) = a b +a c

( a + b ) ( c + d ) = a c + a d + b c + b d

2. Корни уравнения не изменятся, если какое – нибудь слагаемое перенести из одной части уравнения в другую, изменяя при этом его знак.

( Выражения с переменными собираем в одну сторону, числа в другую сторону, меняя знаки выражении и чисел при переходе через знак равенства.) Пример :

3 ( 2 + 1,5 x ) = 0,5 x + 24

6 + 4,5 х = 0,5 х + 24

4,5 х – 0,5 х = 24 – 6

Пример: вычислите координаты точек пересечения прямой 5 х + 7 у = 105 с осями координат.

Решение : 1) с осью ОХ точка ( 21 ; 0 )

у=0 ; 5 х + 7 *0 = 105 отсюда х = 21

2) с осью ОУ точка ( 0 ; 15 )

х=0; 5*0+7 у = 105 отсюда у = 15

Ответ: с осью ОХ точка ( 21 ; 0 ) и с осью ОУ точка ( 0 ; 15 ).

3. Корни уравнения не изменяются, если обе части уравнения умножить или

разделить на одно и тоже число, не равное 0

Пример : ! *4

Решение рациональных уравнений.

Пример:

Пример :

ОДЗ х (х +1 ) = 0

разделим на – 1

х =0,5 не удовлетворяет условию ОДЗ.

Пример :

Разложим квадратные трехчлены на множители по формуле ,где – корни квадратного уравнения

дробь равна 0, если числитель равен 0, а знаменатель не равен 0.

2x+2+6x – 24 – +4x – x+4=0 О. Д.З.

+ 11x – 18 = 0

– 11x + 18 = 0

По теореме Виета

Отсюда корни данного уравнения 2 и 9.

Пример : Чему равно произведение корней уравнения

Решение: Произведение равно нулю, если один из множителей равен 0 .

и ; ОДЗ

ОДЗ удовлетворяют три корня и их произведение равно

преобразуем выражение

обозначим

Получаем квадратное уравнение , корни которого 4 и 1,5.

Отсюда 1)

2)

Ответ:

Решение биквадратных уравнений

Ответ : -0,5 ; 0,5 ; – 1 ; 1 .

Пример :

по теореме Виета

Отсюда

x – 2 = – 2 x – 2 = 2

Ответ : 2 ; -6 ; 1 ; -5 .

Метод группировки при решений уравнении:

х +3=0 или х – 2 = 0 или х +2 = 0

х = – 3 х = 2 х = – 2

Ответ : – 3 ; – 2 ; 2 .

Пример :

Произведение равно 0 , если один из

множителей равен 0. , решаем квадратное уравнение:

=0 По теореме Виета имеем

Решение систем уравнений

Опр. Решением системы уравнений с двумя переменными называется пара значений переменных, обращающая каждое уравнение системы в верное равенство.

Методы решение систем уравнений.

1) графический (строим графики уравнений системы, находим по графикам точки пересечения, координаты точек пересечения будут и решениями системы уравнений ).

строим отдельно графики прямых 2х+3у=5 и 3х – у = – 9


Строим графики данных функций в одной системе координат и находим координаты точек пересечения. В данном примере одна точка пересечения и его координаты равны х = – 2 и у = 3 .

2) метод подстановки ( выражаем одну переменную через другую в одном из уравнении подставляем во второе уравнение и решаем полученное уравнение относительно одной переменной, найденное значение переменной подставляем во второе уравнение и находим вторую переменную. и записываем ответ )

Пример : решить систему уравнений

– 5x +2 (7 – 3x)=+4y) – 2y=30

-5x +14 – 6x = 3 75 + 12y – 2y=30

-11x = 3 – 14 10y=30 – 75

– 11x = – 11 10y= – 25

x=1 y = 7 – 3 *1=4 y= – 2,5 x= 25+4*(- 2,5)=15

Ответ : х = 1 ; у = 4 Ответ: х = 15 ; у = – 2,5

3) метод сложения ( умножаем обе части первого уравнения на одно число , обе части другого уравнения на другое число, эти два числа таковы, что при умножении их получаются одинаковые переменные с противоположными коэффициентами )

Пример : решить систему уравнении

+

Ответ : а = 10 b = 5

Пример : решить систему уравнении

+ 33у= – 165 у = 5

Ответ : х = – 10 у = 5

Пример : вычислите координаты точек пересечения прямых

2 х – 3 у = 7 и 5 х + 4 у =6

Решение: по условию координаты точек удовлетворяют обоим уравнениям, то есть являются решением системы данных уравнений.

Прямая y= k x + b проходит через точки А ( – 1 ; 3 ) и В ( 2 ; Напишите уравнение этой прямой.

Решение : подставляем в уравнение прямой значения координат заданных точек и получаем систему уравнении.

y = k x +b ; подставляем значения k и b, и получаем уравнение прямой :

Ответ:

Пример : решить систему уравнении

Далее решаем методом сложения

Подставляем в 1-ое уравнение

Находим координаты точек пересечения (-2;-1) , (-2;1) , (2;-1) , (2;1)

Отсюда решаем две системы уравнении.

Решая методом сложения получаем:

подставляя в первое уравнение получаем:

Это же уравнение можно решить методом подстановки.

пусть получаем

u-3(4-2u)=9 v=4 – 2*3= – 2

подставляя значения u и v получаем :

Ответ: .

Решение систем уравнений второй степени

Ответ : ( -3 ; -1 ) и ( 0,7 ; 5,5 )

Вычислите координаты точек пересечения парабол:

Чтобы вычислить точки пересечения парабол, надо решить систему уравнении

Отсюда точки пересечения парабол имеют соответствующие координаты.

Ответ:

Уравнения с параметрами:

Пример : Найдите все значения k , при которых уравнение имеет два корня.

Решение : Уравнение имеет два корня, если D>0 . Найдем

Ответ :

Пример 2: При каком значений m уравнение имеет два корня? Найдите эти корни.

Решение: Вынесем за скобки х, получаем

Один из корней равен 0, тогда уравнение имеет один корень при D=0,т. е. 36 – 4m=0, m=9.

Уравнение имеет один корень равный -3.

Пример 3: При каких значениях p корни уравнения

принадлежат промежутку

Решение: Определяем значения p, при которых данное уравнение имеет два корня.

при любых значениях p

Отсюда

Тогда получаем систему неравенств отсюда , так как p меньший корень, а p+2 больший корень.

Ответ:

Пример 4: При каких значениях b уравнение , имеет два различных положительных корня?

Решение: уравнение имеет два корня, значит дискриминант больше 0.

Так как по условию корни положительные, то

Корни положительны, если b+1 2.

Учитель математики Мари–Куптинской средней школы

Предлагаемое учебное пособие позволяет подготовится к сдаче единого государственного экзамена (ЕГЭ) по математике. Пособие содержит примеры решений уравнений и систем уравнений.

Пособие предназначено учащимся старших классов средней школы и учителям.

Мари – Купта, 2007 год.

1. Сборник заданий для подготовки к итоговой аттестации в 9 классе.

2. Итоговая аттестация – 2007 . Предпрофильная подготовка. Под редакцией

[spoiler title=”источники:”]

http://skysmart.ru/articles/mathematic/reshenie-prostyh-linejnyh-uravnenij

http://pandia.ru/text/78/589/48214.php

[/spoiler]

Задание 12 Профильного ЕГЭ по математике – это решение уравнений. Чаще всего, конечно, это тригонометрические уравнения. Но встречаются и другие типы – показательные, логарифмические, комбинированные.

Сейчас задание 12 Профильного ЕГЭ на решение уравнения состоят из двух пунктов: собственно решения и отбора корней на определенном отрезке.

Что нужно знать, чтобы справиться с этой задачей на ЕГЭ? Вот необходимые темы для повторения.

Задачи из сборников Ященко, 2021 год

Квадратные уравнения

Показательные уравнения

Логарифмические уравнения

Модуль числа

Уравнения с модулем

Тригонометрический круг

Формулы тригонометрии

Формулы приведения

Простейшие тригонометрические уравнения 1

Простейшие тригонометрические уравнения 2

Тригонометрические уравнения

Что необходимо помнить при решении уравнений?

1) Помним про область допустимых значений уравнения! Если в уравнении есть дроби, корни, логарифмы или арксинусы с арккосинусами — сразу записываем ОДЗ. А найдя корни, проверяем, входят они в эту область или нет. Есть в уравнении есть tg x — помним, что он существует, только если {cos xne 0}.

2) Стараемся записывать решение в виде цепочки равносильных переходов.

3) Если есть возможность сделать замену переменной — делаем замену переменной! Уравнение сразу станет проще.

4) Если еще не выучили формулы тригонометрии — пора это сделать! Много формул не нужно. Самое главное — тригонометрический круг, формулы синусов и косинусов двойных углов, синусов и косинусов суммы (разности), понижения степени. Формулы приведения не надо зубрить наизусть! Надо знать, как они получаются.

5) Как отбирать решения с помощью тригонометрического круга? Вспомним, что крайняя правая точка тригонометрического круга соответствует числам -4 pi , -2 pi , 0, 2 pi , 4 pi dots Дальше всё просто. Смотрим, какая из точек этого типа попадает в указанный в условии промежуток. И к ней прибавляем (или вычитаем) нужные значения.

Например, вы нашли серию решений x=frac{pi}{3}+2pi n , где n — целое, а найти надо корни на отрезке left [frac{5 pi}{2};frac{9 pi}{2} right ]. На указанном промежутке лежит точка 4 pi. От нее и будем отсчитывать. Получим: x=4 pi +frac{pi}{3}=frac{13 pi}{3}.

6) Получив ответ, проверьте его правильность. Просто подставьте найденные решения в исходное уравнение!

Давайте потренируемся.

а) Решите уравнение 2{{sin}^2 left(frac{pi }{2}+xright)}=-sqrt{3}{cos x}

б) Найдите все корни этого уравнения, принадлежащие промежутку left[-3pi right.;left.-frac{3pi }{2}right]

2{{sin}^2 left(frac{pi }{2}+xright)}=-sqrt{3}{cos x}

Упростим левую часть по формуле приведения.

2{{cos}^2 x+sqrt{3}{cos x}=0}

Вынесем {cos x} за скобки. Произведение двух (или нескольких) множителей равно нулю тогда и только тогда, когда хотя бы один из них равен нулю.

б) Отметим на тригонометрическом круге найденные серии решений и отрезок left[-3pi right.;left.-frac{3pi }{2}right].

Видим, что указанному отрезку принадлежат решения -frac{17pi }{6};-frac{5pi }{2};-frac{3pi }{2}.

Ответ: -frac{17pi }{6};-frac{5pi }{2};-frac{3pi }{2}.

Как отбирать решения с помощью тригонометрического круга? Вспомним, что крайняя правая точка тригонометрического круга соответствует числам -4 pi , -2 pi , 0, 2 pi , 4 pi dots Дальше всё просто. Смотрим, какая из точек этого типа попадает в указанный в условии промежуток. И к ней прибавляем (или вычитаем) нужные значения.

Например, вы нашли серию решений x=frac{pi }{3}+2pi n, где n — целое, а найти надо корни на отрезке [frac{5pi }{2};frac{9pi }{2}]. На указанном промежутке лежит точка 4 pi. От нее и отсчитываем.

Получим: x=4pi +frac{pi }{3}=frac{13pi }{3}.

2. а) Решите уравнение {({27}^{{cos x}})}^{{sin x}}=3^{frac{3{cos x}}{2}}

б) Найдите все корни этого уравнения, принадлежащие отрезку left[-pi ;frac{pi }{2}right].

Это уравнение — комбинированное. Кроме тригонометрии, применяем свойства степеней.

а) 3^{3{cos x{sin x}}}=3^{frac{3{cos x}}{2}}

Степени равны, их основания равны. Значит, равны и показатели.

3{cos x{sin x}}=frac{3{cos x}}{2}

2{cos x{sin x-{cos x=0}}}

{cos x({sin x-frac{1}{2})=0}}

Это ответ в пункте (а).

б) Отберем корни, принадлежащие отрезку left[-pi ;frac{pi }{2}right].

Отметим на тригонометрическом круге отрезок left[-pi ;frac{pi }{2}right] и найденные серии решений.

Видим, что указанному отрезку принадлежат точки x=-frac{pi }{2} и x=frac{pi }{2} из серии x=frac{pi }{2}+pi n,nin z.

Точки серии x=frac{5pi }{6}+2pi n,nin z не входят в указанный отрезок.

А из серии x=frac{pi }{6}+2pi n,nin z в указанный отрезок входит точка x=frac{pi }{6}.

Ответ в пункте (б): -frac{pi }{2},frac{pi }{6} , frac{pi }{2}.

3. а) Решите уравнение {cos 2x}+{{sin}^2 x=0,5}

б) Найдите все корни этого уравнения, принадлежащие отрезку left[-frac{7pi }{2}right.;left.-2pi right].

а)
{cos 2x}+{{sin}^2 x=0,5}

Применим формулу косинуса двойного угла: boldsymbol{cos2alpha =1-{2sin}^2alpha }

1-2{{sin}^2 x}+{{sin}^2 x}=0,5

{{-sin}^2 x=-0,5}

{{sin}^2 x=0,5}

Перенесем всё в левую часть уравнения и разложим по формуле разности квадратов.

Обратите внимание: мы отметили серии решений на тригонометрическом круге. Это помогло нам увидеть, как их записать одной формулой.

б) Для разнообразия отберем корни на отрезке left[-frac{7pi }{2}right.;left.-2pi right] с помощью двойного неравенства.

Сначала серия x=frac{pi }{4}+pi n,nin Z.

-frac{7pi }{2}le frac{pi }{4}+pi nle -2pi

-frac{7}{2}le frac{1}{4}+nle -2

-3,75le nle -2,25

n=-3, x_1=frac{pi }{4}-3pi =-frac{11pi }{4}

Теперь серия x=-frac{pi }{4}+pi n,nin Z

-frac{7pi }{2}le -frac{pi }{4}+pi nle -2pi

-frac{7}{2}le -frac{1}{4}+nle -2

-3,25le nle -1,75

n=-3, x_2=-frac{pi }{4}-3pi =-frac{13pi }{4}

n=-2, x_3=-frac{pi }{4}-2pi =-frac{9pi }{4}

Ответ: -frac{13pi }{4};-frac{11pi }{4};-frac{9pi }{4} .

Какой способ отбора корней лучше — с помощью тригонометрического круга или с помощью двойного неравенства? У каждого из них есть «плюсы» и «минусы».

Пользуясь тригонометрическим кругом, вы не ошибетесь. Вы видите и интервал, и сами серии решений. Это наглядный способ.

Зато, если интервал больше, чем один круг, удобнее отбирать корни с помощью двойного неравенства. Например, надо найти корни из серии x=-frac{pi }{4}+2pi n,nin Z на отрезке left[-frac{pi }{2}right.;left.20pi right]. Это больше 10 кругов! Конечно, в таком случае лучше решить двойное неравенство.

4. а) Решите уравнение left({tg}^2x-3right)sqrt{11{cos x}}=0.

б) Найдите все корни этого уравнения, принадлежащие отрезку left[-frac{5pi }{2};-pi right].

Самое сложное здесь — область допустимых значений (ОДЗ). Условие {11cos x}ge 0 заметно сразу. А условие {cos x}ne 0 появляется, поскольку в уравнении есть {tg x=frac{{sin x}}{{cos x}}}.

ОДЗ:

Уравнение равносильно системе:

Отберем решения с помощью тригонометрического круга. Нам нужны те серии решений, для которых , то есть те, что соответствуют точкам справа от оси Y.

Ответ в пункте а) x=pm frac{pi }{3}+2pi n, nin z

б) Отметим на тригонометрическом круге найденные серии решений и отрезок left[-frac{5pi }{2};-pi right].

Как обычно, ориентируемся на начало круга. Видим, что указанному промежутку принадлежат точки

x=frac{pi }{3}-2pi =-frac{5pi }{3} и x=-frac{pi }{3}-2pi =-frac{7pi }{3}.

5. а) Решите уравнение sqrt{{cos x+{sin x}}}({{cos}^2 x-frac{1}{2})=0}

б) Найдите корни, принадлежащие отрезку [-pi ;4pi ].

Выражение под корнем должно быть неотрицательно, а произведение двух множителей равно нулю тогда и только тогда, когда хотя бы один из них равен нулю.

Это значит, что уравнение равносильно системе:

Решим эту систему с помощью тригонометрического круга. Отметим на нем углы, для которых {cos x}=frac{sqrt{2}}{2} или {cos x}=-frac{sqrt{2}}{2}. Заметим, что среди них находятся и углы, для которых tgx=-1.

Числа серии x=-frac{3pi }{4}+2pi n не могут быть корнями исходного уравнения, т.к. для этих чисел не выполнено условие {cos x+{sin x}}ge 0. Остальные серии решений нас устраивают.

Тогда в ответ в пункте (а) войдут серии решений:

б) Отберем корни, принадлежащие отрезку [-pi ;4pi ] любым способом — с помощью тригонометрического круга или с помощью двойного неравенства.

На отрезке left[-pi ;0right] нам подходит корень x =-frac{pi }{4}.

На отрезке left[0;2pi right] нам подходят корни x=frac{pi }{4};frac{3pi }{4};frac{7pi }{4}.

На отрезке left[2pi ;4pi right] — корни x= frac{9pi }{4} ; frac{11pi }{4};frac{15pi }{4}.

Ответ в пункте б): -frac{pi }{4};frac{3pi }{4};frac{7pi }{4};frac{pi }{4};frac{9pi }{4} ; frac{11pi }{4};frac{15pi }{4}.

Спасибо за то, что пользуйтесь нашими статьями.
Информация на странице «Задание №12. Уравнения u0026#8212; профильный ЕГЭ по математике» подготовлена нашими редакторами специально, чтобы помочь вам в освоении предмета и подготовке к ЕГЭ и ОГЭ.
Чтобы успешно сдать нужные и поступить в ВУЗ или техникум нужно использовать все инструменты: учеба, контрольные, олимпиады, онлайн-лекции, видеоуроки, сборники заданий.
Также вы можете воспользоваться другими статьями из разделов нашего сайта.

Публикация обновлена:
08.05.2023

Каталог заданий.
Уравнения


Пройти тестирование по этим заданиям
Вернуться к каталогу заданий

Версия для печати и копирования в MS Word

1

Тип 20 № 311546

i

Один из корней уравнения 3x в квадрате плюс 5x плюс 2m=0  равен −1. Найдите второй корень.

Аналоги к заданию № 311546: 311552 Все

Источник: ГИА-2013. Ма­те­ма­ти­ка. Ди­а­гно­сти­че­ская ра­бо­та № 1. (вар. 1) 02.10.2012г.

Решение

·

Критерии

·

Помощь


2

Тип 20 № 311587

i

Решите уравнение:  x в степени 4 минус 5x в квадрате плюс 4=0.

Аналоги к заданию № 311587: 311857 316240 316267 … Все

Источник: ГИА-2012. Ма­те­ма­ти­ка. Ди­а­гно­сти­че­ская ра­бо­та № 1 (1 вар)

Решение

·

Критерии

·

Помощь


3

Тип 20 № 311589

i

Решите уравнение: x в кубе =x в квадрате минус 7x плюс 7

Аналоги к заданию № 311589: 311586 311594 311595 … Все

Источник: ГИА-2012. Ма­те­ма­ти­ка. Ди­а­гно­сти­че­ская ра­бо­та № 1 (3вар)

Решение

·

Критерии

·

Помощь


4

Тип 20 № 311591

i

Решите уравнение:  левая круглая скобка 2x минус 3 правая круглая скобка в квадрате = левая круглая скобка 1 минус 2x правая круглая скобка в квадрате .

Источник: ГИА-2012. Ма­те­ма­ти­ка. Ди­а­гно­сти­че­ская ра­бо­та №1 (4 вар)

Решение

·

Критерии

·

Помощь


5

Тип 20 № 311618

i

Решите уравнение  левая круглая скобка x в квадрате минус 25 правая круглая скобка в квадрате плюс левая круглая скобка x в квадрате плюс 3x минус 10 правая круглая скобка в квадрате =0.

Аналоги к заданию № 311618: 338137 338228 338236 … Все

Источник: ГИА-2012. Ма­те­ма­ти­ка. Ди­а­гно­сти­че­ская ра­бо­та №2 (9 вар.)

Решение

·

Критерии

·

Помощь

Пройти тестирование по этим заданиям

Квадратное уравнение

Это уравнение вида ax2+bx+c=0ax^2 + bx + c = 0,

где aa – коэффициент перед x2x^2,

bb – коэффициент перед xx,

cc – свободное число.

Существуют разные способы нахождения корней квадратного уравнения. Пожалуй, самый основной и распространенный способ – через вычисление дискриминанта. В этом случае он рассчитывается по формуле:

D=b2–4acD = b^2 – 4ac

Если второй коэффициент уравнения четный, можно решать уравнение через kk, тогда будет другая формула дискриминанта:

D1=k2–acD_1 = k^2 – ac

Если первый коэффициент уравнения равен 1, то можно воспользоваться теоремой Виета, которая имеет 2 условия:

x1+x2=−bx_1 + x_2 = -b
x1⋅x2=cx_1 cdot x_2 = c

Но если мы захотим решить уравнение основным способом, ошибки не будет. Нахождение корней уравнения через дискриминант – универсальный способ, а остальные введены для удобства вычислений.

Задача 1

Решим уравнение: 3×2+7x−6=0.3x^2 + 7x – 6 = 0.

Обозначим коэффициенты:

a=3a = 3,

b=7b = 7,

c=−6c = -6

Далее находим дискриминант по формуле:

D=b2–4acD = b^2 – 4ac

D=72–4∗3∗(−6)=49+72=121=112D = 7^2 – 4 * 3 * (-6) = 49 + 72 = 121 = {11}^2

D>0D > 0 – значит, уравнение имеет 2 корня.

Находим корни уравнения по следующим формулам:

x1=(−b+√D)/2ax_1 = (-b + √D) / 2a
x2=(−b−√D)/2ax_2 = (-b – √D) / 2a

Подставляем численные значения:

x1=(−7+11)/2∗3=4/6=23x_1 = (-7 + 11) / 2*3 = 4 / 6 = frac{2}{3}

x2=(−7–11)/2∗3=−18/6=−3x_2 = (-7 – 11) / 2*3 = -18 / 6 = -3

Ответ: x1=23x_1 = frac{2}{3}, x2=−3x_2 = -3.

Задача 2

Решим уравнение: −x2+7x+8=0.-x^2 + 7x + 8 = 0.

Обозначим коэффициенты:

a=−1a = -1,

b=7b = 7,

c=8.c = 8.

Далее находим дискриминант по формуле:

D=b2–4acD = b^2 – 4ac

D=72–4⋅(−1)⋅8=49+32=81=92D = 7^2 – 4 cdot (-1) cdot 8 = 49 + 32 = 81 = 9^2

D>0D > 0 – значит, уравнение имеет 2 корня.

Находим корни уравнения по следующим формулам:

x1=(−b+√D)/2ax_1 = (-b + √D) / 2a
x2=(−b−√D)/2ax_2 = (-b – √D) / 2a

Подставляем численные значения:

x1=(−7+9)/2∗(−1)=2/(−2)=−1x_1 = (-7 + 9) / 2 * (-1) = 2 / (-2) = -1
x2=(−7–9)/2∗(−1)=−16/(−2)=8x_2 = (-7 – 9) / 2 * (-1) = -16 / (-2) = 8

Ответ: x1=−1x_1 = -1, x2=8x_2 = 8.

Задача 3

Решим уравнение: 4×2+4x+1=0.4x^2 + 4x + 1 = 0.

Обозначим коэффициенты:
a=4a = 4,

b=4b = 4,

c=1.c = 1.

Далее находим дискриминант по формуле: D=b2–4acD = b^2 – 4ac

D=42–4⋅4⋅1=16–16=0D = 4^2 – 4 cdot 4 cdot 1 = 16 – 16 = 0

D=0D = 0 – значит, уравнение имеет 1 корень.

Находим корень уравнения по следующей формуле: x=−b/2ax = -b / 2a

Подставляем численные значения:

x=−4/2⋅4=−4/8=−1/2=−0,5x = -4 / 2 cdot 4 = -4 / 8 = -1 / 2 = -0,5

Ответ: x=−0,5.x = -0,5.

Задача 4

Решим уравнение: 2×2+x+1=0.2x^2 + x + 1 = 0.

Обозначим коэффициенты:
a=2a = 2,

b=1b = 1,

c=1.c = 1.

Далее находим дискриминант по формуле: D=b2–4acD = b^2 – 4ac

D=12–4∗2∗1=1–8=−7D = 1^2 – 4 * 2 * 1 = 1 – 8 = -7

D<0D < 0 – значит, уравнение корней не имеет.

Ответ: корней нет.

Решение квадратного уравнения через k

Если у квадратного уравнения коэффициент bb четный, то можно решать уравнение через kk, при этом k=12bk = frac{1}{2} b.

Задача 5

Решим уравнение: −x2+2x+8=0.-x^2 + 2x + 8 = 0.

Обозначим коэффициенты:

a=−1a = -1,

b=2b = 2,

c=8c = 8

bb – четное.

k=12b=1k = frac {1}{2} b = 1.

Далее находим дискриминант по формуле: D1=k2–acD_1 = k^2 – ac

D1=12–(−1)∗8=1+8=9=32D_1 = 1^2 – (-1) * 8 = 1 + 8 = 9 = 3^2

D1>0D_1 > 0 – значит, уравнение имеет 2 корня.

Находим корни уравнения по следующим формулам:

x1=(−k+D1)/ax_1 = (-k + {sqrt D}_1) / a
x2=(−k−D1)/ax_2 = (-k – {sqrt D}_1) / a

Подставляем численные значения:

x1=(−1+3)/(−1)=2/(−1)=−2x_1 = (-1 + 3) / (-1) = 2 / (-1) = -2
x2=(−1–3)/(−1)=−4/(−1)=4x_2 = (-1 – 3) / (-1) = -4 / (-1) = 4

Ответ: x_1 = -2, x_2 = 4.

Задача 6

Решим уравнение: 9×2–6x+1=0.9x^2 – 6x + 1 = 0.

Обозначим коэффициенты:
a=9a = 9,

b=−6b = -6,

c=1c = 1

bb – четное.

K=12b=−3.K = frac{1}{2} b = -3.

Далее находим дискриминант по формуле: D1=k2–acD_1 = k^2 – ac

D1=(−3)2–9∗1=9–9=0D_1 = {(-3)}^2 – 9 * 1 = 9 – 9 = 0

D1=0D_1 = 0 – значит, уравнение имеет 1 корень.

Находим корень уравнения по следующей формуле: x=−k/ax = -k / a

Подставляем численные значения:

x=3/9=13x = 3 / 9 = frac{1}{3}

Ответ: x=13.x = frac{1}{3}.

Нахождение корней уравнения по теореме Виета

Если в квадратном уравнении a=1a = 1, то можно найти корни уравнения по теореме Виета.

Задача 7

Найдем корни уравнения: x2+3x+2=0.x^2 + 3x + 2 = 0.

Обозначим коэффициенты:
a=1a = 1,

b=3b = 3,

c=2c = 2.

Запишем 2 условия теоремы Виета:

x1+x2=−bx_1 + x_2 = -b
x1∗x2=cx_1 * x_2 = c

Теперь методом подбора найдем 2 числа, которые будут соответствовать этим условиям. Вероятно, это числа -2 и -1.

Значит, корни уравнения равны:

x1=−2x_1 = -2
x2=−1x_2 = -1

Ответ: x1=−2x_1 = -2, x2=−1x_2 = -1.

Задача 8

Найдем корни уравнения: x2–5x+6=0.x^2 – 5x +6 = 0.

Обозначим коэффициенты:

a=1a = 1,

b=−5b = -5,

c=6c = 6

Запишем 2 условия теоремы Виета:

x1+x2=−bx_1 + x_2 = -b
x1∗x2=cx_1 * x_2 = c

Теперь методом подбора найдем 2 числа, которые будут соответствовать этим условиям. Вероятно, это числа 2 и 3.

Значит, корни уравнения равны:

x1=2x_1 = 2
x2=3x_2 = 3

Ответ: x1=2x_1 = 2, x2=3.x_2 = 3.

Тест по теме «Примеры решения квадратных уравнений»

Добавить комментарий