Как с помощью рычага найти массу

Цель работы: измерение массы тела с помощью рычага.

1)  Определите координату центра тяжести выданной вам линейки. Запишите значение этой координаты с учётом погрешности измерений, которую в данном эксперименте примите равной цене деления линейки. Подвесьте к одному из концов линейки пустой шприц. Уравновесьте линейку на лапке штатива. Запишите длины плеч силы тяжести шприца и силы тяжести линейки. Погрешности этих измерений примите равными удвоенной цене деления линейки.

2)  Рассчитайте отношение массы шприца к массе линейки. Пользуясь «методом границ», оцените абсолютную погрешность полученной величины. Запишите результат с учётом погрешности.

3)  Предложите способ, позволяющий определить массу шприца. Кратко опишите свои действия или нарисуйте схему проведения опыта с необходимыми обозначениями и пояснениями. Получите итоговую формулу Лля расчёта массы пприца. Проведите измерения, запишите измеренные величины. Оцените абсолютную и относительную эту величину точной. Погрешность измерения объёма воды примите равной половине цены деления шприца. Запишите результат с учётом погрешности.

Оборудование: шприц, штатив с лапкой, нитка, линейка, стакан с водой.

Так как рычаг неоднородный, то он не будет в равновесии, если его подвесить за середину. Запишем условие равновесия рычага в первом случае:

m1gl1 + mgx = m2gl2.     (1)

Так, как заведомо известно, что учебник имеет большую массу, чем груз в 100 г, то равновесие возможно, когда центр масс (тяжести) находится правее точки подвеса.

Во втором случае:

m1gl1/ + mgx = m2gl2/.     (2)

Из (1) уравнения вычтем (2):

m1(l1 − l1/) = m2(l2 − 12/),

тогда искомая масса учебника:

m2 = (l1 − l1/) / (l2 − 12/) m1.     (3)

После вычисления:
m2 = (50 − 42) / (17 − 15) ? 100 г = 400 г.

Определить массу рычага по данным таблицы нельзя. Так как в уравнении (1) или (2) две неизвестные: масса рычага и его плечо.

Задачи на простые механизмы с решениями

Формулы, используемые на уроках «Задачи на простые механизмы,
условия равновесия рычага, блоки, золотое правило механики».

Название величины

Обозначение

Единица измерения

Формула

Сила

F

Н

F1l1 = F2l2

Плечо силы

l

м

Момент силы

M

Нм

M = Fl




ПРИМЕРЫ РЕШЕНИЯ ЗАДАЧ


Задача № 1.
 С помощью рычага рабочий поднимает плиту массой 120 кг. Какую силу он прикладывает к большему плечу рычага, равному 2,4 м, если меньшее плечо 0,8 м?


Задача № 2.
 На концах рычага действуют силы 20 Н и 120 Н. Расстояние от точки опоры до большей силы равно 2 см. Определите длину рычага, если рычаг находится в равновесии.


Задача № 3.
 На рисунке изображен рычаг, имеющий ось вращения в точке О. Груз какой массы надо подвесить в точке В для того, чтобы рычаг был в равновесии?


Задача № 4.
 На меньшее плечо рычага действует сила 300 Н, на большее — 20 Н. Длина меньшего плеча 5 см. Определите длину большего плеча.


Задача № 5.
 Рычаг длиной 60 см находится в равновесии. Какая сила приложена в точке В?


Задача № 6.
  Момент силы действующей на рычаг, равен 20 Н*м. Найти плечо силы 5 Н, если рычаг находится в равновесии.


Задача № 7.
 Какое усилие необходимо приложить, чтобы поднять груз 1000 Н с помощью подвижного блока? Какая совершится работа при подъеме груза на 1 м? (Вес блока и трение не учитывать).


Задача № 8.
  Система блоков находится в равновесии. Определите вес правого груза. (Вес блоков и силу трения не учитывать).


Задача № 9.
 При помощи подвижного блока поднимают груз, прилагая силу 105 Н. Определите силу трения, если вес блока равен 20 Н, а вес груза 180 Н.


Задача № 10.
  ОГЭ
 Стержень цилиндрической формы длиной l = 40 см состоит на половину своей длины из свинца и наполовину — из железа. Найти расстояние от центра тяжести до центра симметрии стержня. Плотность свинца p1 = 11,4 г/см3, плотность железа p2 = 7,8 г/см3.

Решение. Центр тяжести тела (центр масс) — точка приложения силы притяжения его к земле — веса тела P. У тел, имеющих какую-либо симметрию, он совпадает с центром симметрии. Например, у однородного цилиндра центр тяжести расположен на его оси в центре цилиндра. Тело, закреплённое на оси, проходящей через его центр тяжести, находится в состоянии безразличного равновесия. Мысленно закрепим стержень AB на оси, перпендикулярной стержню и проходящей через его центр тяжести C, отстоящий от его геометрического центра O на расстояние x в сторону более тяжёлой половины стержня. Центры инерций половинок размещены на расстояниях l/4 от середины стержня.

х = (11,4–7,8)/(11,4+7,8) • 0,4/4 = 0,01875 ≈ 0,019 (м)

Ответ: 1,9 см.


Задача № 11.
   ЕГЭ
 Масса якоря корабля m = 50 кг. Радиус барабана, на который наматывают якорную цепь, R = 0,2 м, длина каждой из двух ручек ворота l = 1 м. Какую силу нужно приложить к каждой из них, чтобы поднять якорь?


Краткая теория для решения задачи на простые механизмы.

Задачи на простые механизмы


Конспект урока «Задачи на простые механизмы с решениями».

Следующая тема: «Задачи на КПД простых механизмов».

С древних времен люди используют различные устройства для совершения механической работы. Эти устройства позволяют поднимать груза большой массы или перемещать их. Они называются простыми механизмами.

Например, еще в Древнем Египте (около трех тысяч лет назад) использовали рычаги (рисунок 1). С их помощью передвигали и поднимали на большую высоту огромные каменные плиты.

Рисунок 1. Строительство пирамид по Геродоту (гравюра XVIII века)

На данном уроке мы рассмотрим этот механизм и его устройство. Именно рычаг дает возможность приложить меньшую силу, чем потребовалось бы без него. По этой причине рычаги присутствуют в составе сложных машин и устройств и в современном мире.

Устройство рычага

Что представляет собой рычаг?

Рычаг — это любое твердое тело, которое может вращаться вокруг неподвижной опоры.

Взгляните на рисунок 2. В данном случае Образавр использует в качестве рычага обычную палку, чтобы поднять тяжелый камень.

Рисунок 2. Образавр и рычаг

На камень действует сила — вес $P$. Для того чтобы поднять камень, необходимо преодолеть его вес, направленный вертикально вниз. В первом случае (рисунок 2, а) Образавр давит на конец палки с силой $F$, а во втором (рисунок 2, б) — поднимает конец палки.

В обоих случаях у этого рычага есть неподвижная точка опоры — точка О. Через нее проходит воображаемая ось, вокруг которой может поворачиваться рычаг.

Сила, с которой Образавр действует на палку (рычаг), меньше веса камня, но тем не менее у него получается сдвинуть этот камень. Это говорит о том, что с помощью рычага человек получает выигрыш в силе.

Виды рычагов

Таким образом, рычаги бывают двух видов (рисунок 3):

Рисунок 3. Виды рычагов
  1. Рычаг 1-го рода — силы приложены по разные стороны от точки опоры O (рисунок 3, а);
  2. Рычаг 2-го рода — силы приложены по одну сторону от точки опоры O (рисунок 3, б).

Рисунок 3 является схематическим изображением рычагов, показанных на рисунке 2.

Плечо силы рычага

На рисунке 4 изображен рычаг. Его точки A и B — это точки приложения сил $F_1$ и $F_2$ соответственно. Точка опоры O расположена между точками A и B — значит, перед нами рычаг 1-го рода.

Рисунок 4. Рычаг 1-го рода

А теперь взгляните на схему этого рычага (рисунок 4). Силы $F_1$ и $F_2$ направлены в одну сторону.

Рисунок 5. Схематическое изображение рычага 1-го рода

Длина отрезка OA обозначена как $l_1$, а длина отрезка OB — $l_2$. Эти величины называются плечом силы.

Что называют плечом силы?

Плечо силы — это кратчайшее расстояние между точкой опоры и прямой, вдоль которой сила действует на рычаг.

Как найти плечо силы?

Чтобы найти плечо силы, надо из точки опоры опустить перпендикуляр на линию действия силы. Длина этого перпендикуляра и есть плечо данной силы.

Тогда, OA или $l_1$ — это плечо силы $F_1$, а OB или $l_2$ — плечо силы $F_2$.

Условие равновесия рычага

Чтобы получить условие равновесия рычага, нужно провести опыты. К рычагу по обе стороны от точки опоры подвешиваются разные груза так, чтобы каждый раз рычаг оставался в равновесии. В каждом случае измеряются модули сил и их плечи. В нашем случае (рисунок 4) видно, что сила $2 space Н$ уравновешивает силу $4 space Н$. А плечо меньшей силы в 2 раза больше плеча большей силы.

С помощью таких опытов было установлено правило равновесия рычага.

В чем состоит правило равновесия рычага?

Рычаг находится в равновесии тогда, когда силы, действующие на него, обратно пропорциональны плечам этих сил:
$frac{F_1}{F_2} = frac{l_2}{l_1}$,
где $F_1$ и $F_2$ — силы, которые действуют на рычаг, $l_1$ и $l_2$ — плечи этих сил.

Кто установил правило равновесия рычага?
Это правило было установлено Архимедом еще в III веке до н. э. Иногда правило равновесия рычага так и называют — правило Архимеда. Легенда гласит, что после этого открытия Архимед воскликнул: «Дайте мне точку опору, и я переверну Землю!».

Из правила равновесия следует, что меньшей силой можно уравновесить большую силу при помощи рычага.  

Например, возьмем рычаг, у которого одно плечо будет в 2 раза больше другого (как на рисунке 4). Приложим к точке A силу в $100 space Н$. Тогда в точке B мы сможем уравновесить силу в $200 space Н$ (в 2 раза большую). Если нам нужно поднять более тяжелый груз, то можно увеличить плечо рычага $l_1$, к которому мы прикладываем силу.

Примеры задач

Задача №1

Рабочий поднимает груз массой $300 space кг$ c помощью рычага 1-го рода. Большее плечо силы рано $3 space м$, а меньшее — $0.6 space м$. Какую силу рабочий прикладывает к большему плечу рычага?

Дано:
$m = 300 space кг$
$l_1 = 3 space м$
$l_2 = 0.6 space м$
$g = 9.8 frac{Н}{кг}$

$F_1 — ?$

Показать решение и ответ

Скрыть

Решение:

Запишем правило равновесия рычага: 
$frac{F_1}{F_2} = frac{l_2}{l_1}$.

Выразим отсюда силу $F_1$, которую прикладывает к  рычагу рабочий:
$F_1 = F_2 cdot frac{l_2}{l_1}$.

Сила $F_2$ — это вес груза $P$, который мы можем рассчитать формуле: $P = gm$. Подставим в нашу формулу и рассчитаем силу $F_1$:
$F_1 = F_2 cdot frac{l_2}{l_1} = gm cdot frac{l_2}{l_1} = 9.8 frac{Н}{кг} cdot 300 space кг cdot frac{0.6 space м}{3 space м} = 2940 space Н cdot 0.2 = 588 space Н$.

Ответ: $F_1 = 588 space Н$.

Задача №2

На рисунке 7 схематически изображен рычаг. Точка опоры находится в точке O. Одно деление на шкале рычага равно $10 space см$. Какую массу должен иметь груз, подвешенный в точке A, чтобы рычаг находился в равновесии?

Рисунок 6. Схематическое изображения рычага для решения задачи

Дано:
$m_1 = 100 space г$
$m_2 = 200 space г$
$l_1 = 50 space см$
$l_2 = 20 space см$
$g = 9.8 frac{Н}{кг}$

СИ:
$m_1 = 0.1 space кг$
$m_2 = 0.2 space кг$
$l_1 = 0.5 space м$
$l_2 = 0.2 space м$

$m_3 — ?$

Показать решение и ответ

Скрыть

Решение:

Найдем силу, которая будет действовать на рычаг в точке B. Эта сила будет равна весу $P_2$, с которым груза массой $m_1$ и $m_2$ действуют на подвес. Обозначим эту силу $F_2$.

$F_2 = P_2 = gm = g(m_1 + m_2) = 9.8 frac{Н}{кг} cdot (0.1 space кг + 0.2 space кг) = 9.8 frac{Н}{кг} cdot 0.3 space кг approx 3 space Н$.

Запишем правило равновесия рычага:
$frac{F_1}{F_2} = frac{l_2}{l_1}$.

Выразим отсюда и рассчитаем силу $F_1$, с которой будет действовать на рычаг груз неизвестной массы:
$F_1 = frac{F_2 cdot l_2}{l_1} = frac{3 space Н cdot 0.2 space м}{0.5 space м} = 1.2 space Н$.

Сила $F_1$ будет равна весу $P_1$, с которым груз массой $m_3$ действуют на подвес:
$F_1 = P_1 = gm_3$.

Найдем массу груза:
$m_3 = frac{F_1}{g} = frac{1.2 space Н}{9.8 frac{Н}{кг}} approx 0.1 space кг = 100 space г$.

Ответ: $m_3 = 100 space г$.

Рассмотрим примеры того, как можно на практике применить условия равновесия твердого тела.

Пример 1. Равноплечие весы

Еще с древнейших времен для определения массы тел люди использовали равноплечие весы (рис. 137). Понять принцип их работы просто, если воспользоваться вторым условием равновесия твердого тела.

Равноплечие весы находятся в равновесии, когда сумма моментов равна нулю

Коромысло весов может поворачиваться вокруг оси, проходящей через точку O. На равных расстояниях от оси вращения коромысла подвешены одинаковые чашки. В одну чашку помещают груз неизвестной массы m, а в другую – набор грузов известной массы, например m1 + m2. Весы будут находиться в равновесии, если стремящиеся развернуть их коромысло положительный момент m · g · OA и отрицательный момент -(m1 + m2) · g · OB будут уравновешивать друг друга. Поэтому условие равновесия коромысла весов можно записать в виде:

m · g · OA – (m1 + m2) · g · OB = 0

Так как плечо OA силы тяжести груза равно плечу OB силы тяжести гирь, то уравнение обратится в тождество при условии, что m = m1 + m2. Таким образом, равноплечие весы будут находиться в равновесии, если суммарная масса гирь будет равна массе взвешиваемого груза.

Если массы груза и гирь не равны друг другу, то коромысло весов начнет разворачиваться в сторону большего по модулю момента силы тяжести (в сторону большей массы). Чашка весов с большей массой начнет опускаться. Добавляя (или уменьшая) число гирь известной массы, можно достичь равновесия и таким образом измерить неизвестную массу груза.

Пример 2. Рычаг

Рычагом называют твердое тело, способное вращаться вокруг неподвижной оси (или опоры). Применение рычага позволяет получить выигрыш в силе – преодолеть действие большей силы, приложив меньшую силу. Каким образом это можно сделать?

Использования рычага для поднятия большей массы

Рассмотрим человека, поднимающего камень весом P с помощью рычага (рис. 138). Человек действует на противоположный конец рычага силой F, направленной вертикально вниз. Под действием моментов сил F и P рычаг может вращаться вокруг оси O. Обозначим плечо силы F символом L, а плечо силы P – символом l. Рычаг будет находиться в равновесии, если сумма вращающих его моментов сил будет равна нулю:

F · L – P · l = 0 или F/P = l/L

Следовательно, в рассмотренном случае рычаг находится в равновесии, если отношение приложенных к нему сил обратно пропорционально отношению плеч этих сил.

Проведем анализ полученного результата. Если плечо L силы F будет в два раза больше плеча l силы P, то для поднятия камня человек должен будет приложить к рычагу силу, в два раза меньшую веса камня. Таким образом, увеличивая плечо L прикладываемой силы, можно получить заранее заданный выигрыш в силе.

Рассмотренные в примере 1 равноплечие весы также представляют собой рычаг. Однако его ось вращения совпадает с серединой коромысла. Поэтому такой рычаг не дает выигрыша в силе.
Условие равновесия рычага можно использовать для решения задач.

Задача «качели»

Старший брат массой M = 60 кг посадил младшего брата массой m = 40 кг на легкую доску качелей на расстоянии L = 3 м от оси ее вращения (рис. 139). Куда должен сесть старший брат, чтобы доска находилась в равновесии?

Пример рычага — качели

Решение. Ясно, что старший брат должен сесть с противоположной стороны на таком расстоянии l от оси вращения, чтобы выполнялось условие равновесия доски качелей относительно этой оси: M · g · l – m · g · L = 0.

Следовательно,

l = (m · L) / M = (40 кг · 3 м) / 60 кг = 2 м.

Ответ: чтобы качели находились в равновесии, старший брат должен сесть на расстоянии 2 м от оси вращения качелей.

Найдите силу, с которой доска качелей при этом будет действовать на ось вращения (опору). Массой доски качелей можно пренебречь.

Решение. По третьему закону Ньютона искомая сила F, с которой доска качелей действует на ось вращения (опору), равна по модулю силе N реакции опоры, с которой ось вращения действует на доску. Для того чтобы найти силу N реакции опоры, применим к доске первое условие равновесия твердого тела. На доску действуют три силы (со стороны двух братьев и со стороны оси вращения). Если ось системы отсчета, связанной с Землей, направить вертикально вверх, то первое условие равновесия твердого тела для доски примет вид: N – M · g – m · g = 0. Следовательно, искомая сила направлена вертикально вниз, а ее модуль равен

F = N = (M + m) · g = 1000 Н = 1 кН.

Ответ: модуль силы, с которой доска качелей действует на опору, равен 1 кН.

Мы рассмотрели рычаги, в которых ось вращения находится между точками приложения действующих сил. На практике используют также рычаги, у которых точки приложения сил находятся по одну сторону от оси вращения. Такие рычаги часто называют рычагами второго рода. На рис. 140 изображен подобный рычаг.

Рычаг второго рода

Задача «рычаг второго рода»

На каком расстоянии L от точки опоры O (см. рис. 140) должен взяться за легкий рычаг рабочий, чтобы приподнять груз массой M = 200 кг? Линия действия веса этого груза проходит на расстоянии l = 60 см от точки опоры. Рабочий прикладывает к рычагу силу, направленную вертикально вверх, ее модуль F = 600 Н.

Решение. На рычаг действуют вес груза P = M · g и сила F со стороны рабочего. При этом относительно оси вращения (точки опоры O) момент веса груза положителен, а момент силы, приложенной рабочим, отрицателен. Поэтому условие равновесия данного рычага имеет вид:

M · g · l – F · L = 0.

Следовательно, L = (M · g · l) / F = (200 кг ·10 м/с2 · 0,6 м) / 600 Н = 2 м.

Ответ: рабочий должен взяться за рычаг на расстоянии L = 2 м от точки опоры.

Итоги

Рычагом называют твердое тело, способное вращаться вокруг неподвижной оси (или опоры).

Рычаг дает выигрыш в силе, равный отношению плеч сил. При этом отношение модулей приложенных к нему сил обратно пропорционально отношению плеч этих сил.

Вопросы

  1. Что называют рычагом? Приведите примеры рычагов в быту и в технике.
  2. Сформулируйте условие равновесия рычага.
  3. Как с помощью рычага получить выигрыш в силе?
  4. Чем отличается рычаг первого рода от рычага второго рода?
  5. Предложите способы определения равноплечности весов.

Упражнения

  1. Определите массу камня, который приподнимает человек (рис. 138), прикладывая силу F, модуль которой равен 800 Н. Расстояние OB = 3 м, OA = 40 см. Массой рычага пренебречь.
  2. Соберите группу из пяти человек. Узнайте свои массы и рассчитайте расстояния от точки опоры доски качелей, на которые каждому из вас необходимо сесть, чтобы качели с пятью учащимися находились в равновесии (сделайте рисунок, на котором изобразите действующие на доску силы и их плечи). Для проверки полученного ответа проведите эксперимент с качелями (используйте рулетку).
  3. Как с помощью неравноплечих весов и набора гирь определить неизвестную массу груза?
  4. В каком случае палка сильнее давит на плечо путника, показанного на рис. 141, а и б? (Подсказка: определите, рычагом какого рода является палка.)
  5. Допустим, вам нужно поднять груз массой 100 кг, а вы можете приложить в вертикальном направлении силу не более 200 Н. Какой рычаг второго рода потребуется вам для выполнения задачи? Нарисуйте схему эксперимента, указав на ней силы и их плечи.

Добавить комментарий