Как составить алгоритм последовательности действий

  1. Разрабатываем алгоритмы действий и создаем блок-схемы
    1. Как создаются алгоритмы действий?
      1. Опишите последовательность действий – это запоминается
        1. Алгоритм действий в графике – это блок-схема
        2. Блок-схемы применяются в продажах
        3. Сервисы для разработки блок-схем
          1. Создавайте игровые блок-схемы для своих детей
          2. Моя блок-схема

Разрабатываем алгоритмы действий и создаем блок-схемы

В жизни нам часто приходится встречаться с различными ситуациями, в которых мы совершаем одни и те же определенные действия. Для того, чтобы вовремя проснуться, нам нужно не забыть включить будильник. Для того, чтобы утолить свой голод, нам необходимо выполнить одни и те же действия по приготовлению вкусной пищи. Для того, чтобы выполнить знакомую нам работу, мы тоже часто делаем одно и то же.

PNGCacoo_logo

Такое поведение можно называть по-разному, смотря в каком контексте оно рассматривается. Если рассмотреть с позиции эффективности деятельности, то эти действия можно назвать привычками или навыками. Если рассматривать с точки зрения отображения процесса, то описание последовательности действий, строгое исполнение которых приводит к решению поставленных задач за определенное количество шагов, называют алгоритмом действий.

Как создаются алгоритмы действий?

Мы постоянно сталкиваемся с этим в обычной жизни. Какие действия мы совершаем, чтобы пополнить счет своего мобильного телефона? Каждый из нас – разные. Так как способов пополнения счета несколько, следовательно мы все по-разному это делаем. Результат, правда всегда один получается – появление средств на телефоне.

Или еще пример: чтобы скопировать картинку или текст, нажимаем правой кнопкой мыши на картинку, затем выбираем “Копировать”, помещаем  в нужное место, нажимаем правой кнопкой ” Вставить”, и результат достигнут.

Все это – определенная последовательность действий, в результате которых различными средствами решается поставленная задача. Но пока это только наши знания, которые перерастают в навыки и умения, а если этот процесс описать, то мы сможем наглядно увидеть алгоритм наших действий, и передать его другим людям. На словах не все и не всегда понятно бывает.

Опишите последовательность действий – это запоминается

Создать алгоритм действий можно, описав или изобразив его последовательность. Знают ли все, что надо сделать, чтобы посадить дерево? Возможно, основные шаги понятны всем, но вот когда деревце поливать, перед посадкой или после, помнит не каждый. Созданный алгоритм позволит все действия выполнить в правильной последовательности.

blok_sxema_algoritm1

Чтобы описать последовательность действий посложнее, придется постараться и подробно их все записать. Пример можно взять с всевозможных правил и инструкций – там очень четко прописываются по шагам действия, которые нам надо сделать. Но бывают ситуации, в которых за определенным действие следует не один шаг, а несколько, в зависимости от предыдущего результата. В таком случае, предположительные действия тоже записывают, чтобы человек мог легко сориентироваться в разных ситуациях, и знал, что нужно предпринять.

Алгоритм действий в графике – это блок-схема

Если изобразить алгоритмы действий в графическом варианте, с помощью геометрических фигур с линиями-связями, показывающими порядок выполнения действия, то мы получим блок-схему. Блок-схема намного превосходит правила, инструкции, и записанные по порядку алгоритмы действий, по своей наглядности и читаемости.

Представьте, что вам нужно чему-то научить другого человека. Вы отлично знаете все действия в определенной последовательности. Ваша задача – показать, как это нужно делать и передать свои знания так, чтобы другой человек их запомнил и знал так же, как и вы. Устная передача знаний допускает импровизации и некоторый произвол. Самым лучшим способом будет блок-схема, в которой объясняется последовательность и возможные варианты действий. В качестве примера – веселое руководство по изучению блог-схем:

ponimanie_blok-sxemЛучшим условием для получения результата будет повторяемость действий. Это однозначно влияет на скорость достижения результата в будущем. Чем чаще вам придется повторять одни и те же действия, тем быстрее вы научитесь выполнять последовательность действий, а значит в каждый последующий раз, вам потребуется меньше времени на выполнение.

Блок-схемы применяются в продажах

В продажах такое обучение с помощью разработки алгоритмов и изображения их в виде блок-схем имеет большое распространение. Чаще всего их используют в телефонных сценариях разговоров в call-центрах и для “холодных” звонков. Корпоративная культура набирает обороты, поэтому многие компании уже не позволяют сотрудникам нести “отсебятину”, даже талантливую, а предлагают действовать им по заранее разработанному сценарию, представляя “лицо фирмы” на различных этапах. Эффект появляется буквально после нескольких дней действий “по бумажке”. Со временем, многое из описанных алгоритмов запоминается сотрудником, и в дальнейшем  он свободно может общаться, не опасаясь того, в какую сторону может уйти разговор.

Алгоритмы действий и блог-схемы разрабатываются не только в продажах. Большое распространение они имеют в обучении и практике врачей, программистов, “компьютерщиков”, у многих технических специальностей.

Стоит попробовать научиться действовать по подобным блок-схемам. Ведь впервые встречаясь с непонятным поначалу обилием действий и задач, думаешь о том, как тебе не хватает разработанной блок-схемы. После долгих мучений не выдерживаешь, и начинаешь разрабатывать и создавать самостоятельно. Эффективные люди не любят простоев в делах. А блок-схемы значительно упрощают жизнь и позволяют разобраться в решении сложных задач.

Сервисы для разработки блок-схем

В интернете есть сервисы, которые могут помочь вам создавать такие блок-схемы. Один из них – Сacoo. С его помощью вам легко удастся превращать ваши алгоритмы в различные диаграммы, блок-схемы и графики. Вы увидите, что это очень приятное и радостное занятие – преобразовывать то, что вам известно, в науку для других людей.

На этом онлайн-сервисе – хорошее настроение вам обеспечено. На первоначальном этапе можно воспользоваться возможностями бесплатной учетной записи, а в будущем за доступ нужно будет платить. Естественно, что бесплатный доступ имеет ограничения по сравнению с платными. Но для изучения и первых шагов, функционала вполне достаточно.

Разработав алгоритмы действий и преобразовав их в блок-схемы с помощью Cacoo, вы сможете надолго создать хорошее настроение не только себе, но и другим людям, постигающим азы.

Создавайте игровые блок-схемы для своих детей

Подводя итог вышесказанному отмечу, что теперь вы сможете использовать алгоритмы действий и блок-схемы в различных жизненных ситуациях. Даже ваши дети с огромным удовольствием станут выполнять не самые интересные обязанности, следуя понятным подсказкам. Если будут идеи, где и как можно применять алгоритм действий, поделитесь в комментариях, уважаемые читатели. Очень хотелось бы узнать про ваши алгоритмы.

Моя блок-схема

Вот какая блок-схема у меня получилась в первый раз. Для того, чтобы увеличить изображение, нажмите на него. После перехода на Cacoo, под записью “просмотр фигуры”, нажимайте на картинку. Она откроется в большом окне. Удачи!

Успевайте больше за меньшее время вместе с “Копилкой эффективных советов”.

Просмотры: 4 572

Исключительно важно использовать язык блок-схем при разработке алгоритма решения задачи. Решение одной и той же задачи может быть реализовано с помощью различных алгоритмов, отличающихся друг от друга как по времени счета и объему вычислений, так и по своей сложности. Запись этих алгоритмов с помощью блок-схем позволяет сравнивать их, выбирать наилучший алгоритм, упрощать, находить и устранять ошибки.

Отказ от языка блок-схем при разработке алгоритма и разработка алгоритма сразу на языке программирования приводит к значительным потерям времени, к выбору неоптимального алгоритма. Поэтому необходимо изначально разработать алгоритм решения задачи на языке блок-схем, после чего алгоритм перевести на язык программирования.

При разработке алгоритма сложной задачи используется метод пошаговой детализации. На первом шаге продумывается общая структура алгоритма без детальной проработки отдельных его частей. Блоки, требующие детализации, обводятся пунктирной линией и на последующих шагах разработки алгоритма продумываются и детализируются.

В процессе разработки алгоритма решения задачи можно выделить следующие этапы:

  • Этап 1 . Математическое описание решения задачи.
  • Этап 2 . Определение входных и выходных данных.
  • Этап 3 . Разработка алгоритма решения задачи.

Базовые алгоритмические конструкции

В теории программирования доказано, что для записи любого, сколь угодно сложного алгоритма достаточно трех базовых структур:

  • следование (линейный алгоритм);
  • ветвление (разветвляющийся алгоритм);
  • цикл-пока (циклический алгоритм).

Линейные алгоритмы

Линейный алгоритм образуется из последовательности действий, следующих одно за другим. Например, для определения площади прямоугольника необходимо сначала задать длину первой стороны, затем задать длину второй стороны, а уже затем по формуле вычислить его площадь.

alt

Пример

ЗАДАЧА. Разработать алгоритм вычисления гипотенузы прямоугольного треугольника по известным значениям длин его катетов a и b.

На примере данной задачи рассмотрим все три этапа разработки алгоритма решения задачи:

Этап 1. Математическое описание решения задачи.

Математическим решением задачи является известная формула:

Формула,

где с-длина гипотенузы, a, b – длины катетов.

Этап 2. Определение входных и выходных данных.

Входными данными являются значения катетов a и b. Выходными данными является длина гипотенузы – c.

Этап 3. Разработка алгоритма решения задачи.

Словесное описание алгоритма Запись алгоритма на языке блок-схем
  1. Начало алгоритма.
  2. Ввод значений длин катетов a и b.
  3. Вычисление длины гипотенузы с по формуле Формула
  4. Вывод значения длины гипотенузы.
  5. Конец алгоритма

На данной схеме цифрами указаны номера элементов алгоритма, которые соответствуют номерам пунктов словесного описания алгоритма.

Блок-схема

Разветвляющиеся алгоритмы

Алгоритм ветвления содержит условие, в зависимости от которого выполняется та или иная последовательность действий.

Алгоритм ветвления

Пример

ЗАДАЧА. Разработать алгоритм вычисления наибольшего числа из двух чисел x и y.

Этап 1. Математическое описание решения задачи.

Из курса математики известно, если x > y, то наибольшее число x, если x < y, то наибольшее число y, если x = y, то число x равно числу y.

Этап 2. Определение входных и выходных данных.

Входными данными являются значения чисел x и y. Выходным данными являются:

  • наибольшее число
  • любое из чисел, если числа равны

Для решения задачи нам необходимо знать значения x и y.

Этап 3. Разработка алгоритма решения задачи.

Словесное описание алгоритма Запись алгоритма на языке блок-схем
  1. Начало алгоритма.
  2. Ввод значений x и y.
  3. Сравниваем x и y. Если x = y, то переход к шагу 4, иначе к шагу 5.
  4. Вывод информации: числа x и y равны. Переход к шагу 8.
  5. Сравниваем x и y. Если x > y, то переход к шагу 6, иначе к шагу 7.
  6. Вывод информации: число x больше y. Переход к шагу 8.
  7. Вывод информации: число y больше x. Переход к шагу 8.
  8. Конец алгоритма.

блок-схема

В схеме алгоритма решения задачи цифрами указаны номера элементов алгоритма, которые соответствуют номерам шагов словесного описания алгоритма

В рассматриваемом алгоритме (рис.3) имеются три ветви решения задачи:

  • первая: это элементы 1, 2, 3, 4, 8.
  • вторая: это элементы 1, 2, 3, 5, 6, 8
  • третья: это элементы 1, 2, 3, 5, 7, 8.

Выбор ветви определяется значениями x и y в элементах 3 и 5, которые являются условиями, определяющими порядок выполнения элементов алгоритма. Если условие (равенство), записанное внутри символа «решение», выполняется при введенных значениях x и y, то следующими выполняется элементы 4 и 8. Это следует из того, что они соединены линией с надписью «да» и направление (последовательность) вычислений обозначена стрелочкой.

Если условие в элементе 3 не выполняется, то следующим выполняется элемент 5. Он соединен с элементом 3 линией с надписью «нет». Если условие, записанное в элементе 5, выполняется, то выполняется элементы 6 и 8, в противном случае выполняются элементы 7 и 8.

Циклические алгоритмы

Циклический алгоритм определяет повторение некоторой части действий (операций), пока не будет нарушено условие, выполнение которого проверяется в начале цикла. Совокупность операций, выполняемых многократно, называется телом цикла.

Циклический алгоритм

Алгоритмы, отдельные действия в которых многократно повторяются, называются циклическими алгоритмами, Совокупность действий, связанную с повторениями, называют циклом.

При разработке алгоритма циклической структуры выделяют следующие понятия:

  • параметр цикла – величина, с изменением значения которой связано многократное выполнение цикла;
  • начальное и конечное значения параметров цикла;
  • шаг цикла – значение, на которое изменяется параметр цикла при каждом повторении.

Цикл организован по определенным правилам. Циклический алгоритм состоит из подготовки цикла, тела цикла и условия продолжения цикла.

 Циклический алгоритм

В подготовку цикла входят действия, связанные с заданием исходных значений для параметров цикла:

  • начальные значения цикла;
  • конечные значения цикла;
  • шаг цикла.

В тело цикла входят:

  • многократно повторяющиеся действия для вычисления искомых величин;
  • подготовка следующего значения параметра цикла;
  • подготовка других значений, необходимых для повторного выполнения действий в теле цикла.

В условии продолжения цикла определяется допустимость выполнения повторяющихся действий. Если параметр цикла равен или превысил конечное значение цикла, то выполнение цикла должно быть прекращено.

 Пример

ЗАДАЧА. Разработать алгоритм вычисления суммы натуральных чисел от 1 до 100.

Этап 1. Математическое описание решения задачи.

Обозначим сумму натуральных чисел через S. Тогда формула вычисления суммы натуральных чисел от 1 до 100 может быть записана так:

сумма натуральных чисел

где Xi – натуральное число X c номером i, который изменяется от 1 до n, n=100 – количество натуральных чисел.

Этап 2. Определение входных и выходных данных.

Входными данными являются натуральные числа: 1, 2, 3, 4, 5, …, 98, 99, 100.

Выходные данные – значение суммы членов последовательности натуральных чисел.

Параметр циклавеличина, определяющая количество повторений цикла. В нашем случае i – номер натурального числа.

Подготовка цикла заключается в задании начального и конечного значений параметра цикла.

  • начальное значение параметра цикла равно 1,
  • конечное значение параметра цикла равно n,
  • шаг цикла равен 1.

Для корректного суммирования необходимо предварительно задать начальное значение суммы, равное 0.

Тело цикла. В теле цикла будет выполняться накопление значения суммы чисел, а также вычисляться следующее значение параметра цикла по формулам:

S=S+i;              I=I+1;

Условие продолжения цикла: цикл должен повторяться до тех пор, пока не будет добавлен последний член последовательности натуральных чисел, т.е. пока параметр цикла будет меньше или равен конечному значению параметра цикла.

Этап 3. Разработка алгоритма решения задачи.

Введем обозначения: S – сумма последовательности, i – значение натурального числа.

Начальное значение цикла i=1, конечное значение цикла i =100, шаг цикла 1.

Словесное описание алгоритма Запись алгоритма на языке блок-схем
  1. Начало алгоритма.
  2. Подготовка цикла: S:=0; i=1; n= 100;
  3. Проверка условия. Если i <=n , то перейти к шагу 4, иначе к шагу 6.
  4. Накопление суммы: S:=S+i;
  5. Вычисление следующего значения параметра цикла: i:=i+1;
  6. Вывод информации: сумма натуральных чисел – S.
  7. Конец алгоритма.

В схеме алгоритма решения задачи цифрами указаны номера элементов алгоритма. Номера элементов соответствуют номерам шагов словесного описания алгоритма.

Блок-схема

Главная → Программы, сервисы, приложения → Разрабатываем алгоритмы действий и создаем блок-схемы

Разрабатываем алгоритмы действий и создаем блок-схемы

В жизни нам часто приходится встречаться с различными ситуациями, в которых мы совершаем одни и те же определенные действия. Для того, чтобы вовремя проснуться, нам нужно не забыть включить будильник. Для того, чтобы утолить свой голод, нам необходимо выполнить одни и те же действия по приготовлению вкусной пищи. Для того, чтобы выполнить знакомую нам работу, мы тоже часто делаем одно и то же.

Такое поведение можно называть по-разному, смотря в каком контексте оно рассматривается. Если рассмотреть с позиции эффективности деятельности, то эти действия можно назвать привычками или навыками. Если рассматривать с точки зрения отображения процесса, то описание последовательности действий, строгое исполнение которых приводит к решению поставленных задач за определенное количество шагов, называют алгоритмом действий.

Как создаются алгоритмы действий?

Мы постоянно сталкиваемся с этим в обычной жизни. Какие действия мы совершаем, чтобы пополнить счет своего мобильного телефона? Каждый из нас — разные. Так как способов пополнения счета несколько, следовательно мы все по-разному это делаем. Результат, правда всегда один получается — появление средств на телефоне.

Или еще пример: чтобы скопировать картинку или текст, нажимаем правой кнопкой мыши на картинку, затем выбираем «Копировать», помещаем в нужное место, нажимаем правой кнопкой » Вставить», и результат достигнут.

Все это — определенная последовательность действий, в результате которых различными средствами решается поставленная задача. Но пока это только наши знания, которые перерастают в навыки и умения, а если этот процесс описать, то мы сможем наглядно увидеть алгоритм наших действий, и передать его другим людям. На словах не все и не всегда понятно бывает.

Опишите последовательность действий — это запоминается

Создать алгоритм действий можно, описав или изобразив его последовательность. Знают ли все, что надо сделать, чтобы посадить дерево? Возможно, основные шаги понятны всем, но вот когда деревце поливать, перед посадкой или после, помнит не каждый. Созданный алгоритм позволит все действия выполнить в правильной последовательности.

Чтобы описать последовательность действий посложнее, придется постараться и подробно их все записать. Пример можно взять с всевозможных правил и инструкций — там очень четко прописываются по шагам действия, которые нам надо сделать. Но бывают ситуации, в которых за определенным действие следует не один шаг, а несколько, в зависимости от предыдущего результата. В таком случае, предположительные действия тоже записывают, чтобы человек мог легко сориентироваться в разных ситуациях, и знал, что нужно предпринять.

Алгоритм действий в графике — это блок-схема

Если изобразить алгоритмы действий в графическом варианте, с помощью геометрических фигур с линиями-связями, показывающими порядок выполнения действия, то мы получим блок-схему. Блок-схема намного превосходит правила, инструкции, и записанные по порядку алгоритмы действий, по своей наглядности и читаемости.

Представьте, что вам нужно чему-то научить другого человека. Вы отлично знаете все действия в определенной последовательности. Ваша задача — показать, как это нужно делать и передать свои знания так, чтобы другой человек их запомнил и знал так же, как и вы. Устная передача знаний допускает импровизации и некоторый произвол. Самым лучшим способом будет блок-схема, в которой объясняется последовательность и возможные варианты действий. В качестве примера — веселое руководство по изучению блог-схем:

Лучшим условием для получения результата будет повторяемость действий. Это однозначно влияет на скорость достижения результата в будущем. Чем чаще вам придется повторять одни и те же действия, тем быстрее вы научитесь выполнять последовательность действий, а значит в каждый последующий раз, вам потребуется меньше времени на выполнение.

Блок-схемы применяются в продажах

В продажах такое обучение с помощью разработки алгоритмов и изображения их в виде блок-схем имеет большое распространение. Чаще всего их используют в телефонных сценариях разговоров в call-центрах и для «холодных» звонков. Корпоративная культура набирает обороты, поэтому многие компании уже не позволяют сотрудникам нести «отсебятину», даже талантливую, а предлагают действовать им по заранее разработанному сценарию, представляя «лицо фирмы» на различных этапах. Эффект появляется буквально после нескольких дней действий «по бумажке». Со временем, многое из описанных алгоритмов запоминается сотрудником, и в дальнейшем он свободно может общаться, не опасаясь того, в какую сторону может уйти разговор.

Алгоритмы действий и блог-схемы разрабатываются не только в продажах. Большое распространение они имеют в обучении и практике врачей, программистов, «компьютерщиков», у многих технических специальностей.

Стоит попробовать научиться действовать по подобным блок-схемам. Ведь впервые встречаясь с непонятным поначалу обилием действий и задач, думаешь о том, как тебе не хватает разработанной блок-схемы. После долгих мучений не выдерживаешь, и начинаешь разрабатывать и создавать самостоятельно. Эффективные люди не любят простоев в делах. А блок-схемы значительно упрощают жизнь и позволяют разобраться в решении сложных задач.

Сервисы для разработки блок-схем

В интернете есть сервисы, которые могут помочь вам создавать такие блок-схемы. Один из них — [urlspan]Сacoo[/urlspan]. С его помощью вам легко удастся превращать ваши алгоритмы в различные диаграммы, блок-схемы и графики. Вы увидите, что это очень приятное и радостное занятие — преобразовывать то, что вам известно, в науку для других людей.

На этом онлайн-сервисе — хорошее настроение вам обеспечено. На первоначальном этапе можно воспользоваться возможностями бесплатной учетной записи, а в будущем за доступ нужно будет платить. Естественно, что бесплатный доступ имеет ограничения по сравнению с платными. Но для изучения и первых шагов, функционала вполне достаточно.

Разработав алгоритмы действий и преобразовав их в блок-схемы с помощью Cacoo, вы сможете надолго создать хорошее настроение не только себе, но и другим людям, постигающим азы.

Создавайте игровые блок-схемы для своих детей

Подводя итог вышесказанному отмечу, что теперь вы сможете использовать алгоритмы действий и блок-схемы в различных жизненных ситуациях. Даже ваши дети с огромным удовольствием станут выполнять не самые интересные обязанности, следуя понятным подсказкам. Если будут идеи, где и как можно применять алгоритм действий, поделитесь в комментариях, уважаемые читатели. Очень хотелось бы узнать про ваши алгоритмы.

Моя блок-схема

Вот какая блок-схема у меня получилась в первый раз. Для того, чтобы увеличить изображение, нажмите на него. После перехода на Cacoo, под записью «просмотр фигуры», нажимайте на картинку. Она откроется в большом окне. Удачи!

Успевайте больше за меньшее время вместе с «Копилкой эффективных советов».

Алгоритм-система точных и понятных предписаний, опр-ая последовательность элементарных операций над исходными данными, выполнение кот-ых обеспечивает решение задач данного типа.

дискретность-последовательность решения (процесс) задач должен быть разбит на последовательность отдельных шагов.

понятность-алгоритм обязательно должен быть понятен исполнителю. В связи с этим алгоритм нужно разрабатывать с ориентацией на опр-ого исполнителя, т.е. в алгоритм можно включать команды из систем команд данного исполнителя.

детерминированность — будучи понятным, алгоритм не должен содержать команды, смысл кот-ых может восприниматься неоднозначно. Нарушение составителями алгоритмов этих требований приводит к тому, что одна и та же программа после выполнения разными исполнителями дает не одинаковые результаты.

результативность –состоит в том, что при точном исполнении всех команд алгоритма, процесс решения задач должен прекратиться за конечное число шагов и при этом должен быть получен опред-ый при постановке задач результат.

массовость— пригодность алгоритма для решения задач некоторого класса.

Способы записи алгоритма:

словесный – способ на естественном языке.

графический-описания алгоритма с помощью схем.

Процесс выполнения операций или групп операций

ввод исходных данных, вывод результата

Решение-выбор направления выполнения

Модификация-выполнение операций , меняющих команды или группы команд, изменяющих программ.

Соединители линий на одной странице.

язык программирования –удобен для ввода в комп-р.

псевдокод-это язык, к-ый использует структуру и синтексис достаточно формализованного языка и одновременно допускает конструкции естеств. Языка.

Виды алгоритмов и основные принципы составления алгоритмов.

Линейный – алгоритм, в кот-ом команды выполняются последовательно друг за другом в порядке их естественного следования независимо от каких-либо условий. S1, s2 , S3…Sn

-ветвящийся ( разветвящийся) — это процесс, в кот-ом его реализация происходит по одному из нескольких заранее предусмотренных направлений, в зависимости от исходных данных или промежуточных результатов.

· Полная условная конструкция (полное ветвление)

· Неполное условная конструкция

· Выбор из нескольких

циклический – алгоритм, в кот-ом последовательность может выполняться более 1 раза.

· Цикл с параметром

· Цикл с предусловием. Может не выполниться ни разу. В теле цикла обязательно нах-ся оператор, к-ый изменяет значение переменной, входящей в блок Q.

· Цикл с постусловием. Выполняется хоть один раз.

Основные принципы алгоритмизации:

1. Выявить исходные данные, результаты и назначить им имена.

2. Метод решения задач.

3. Разбить метод решения задач на этапы.

4. При граф-ом представлении алгоритма каждый этап в виде соответствующего блока –схемы алгоритма и указать линиями связи порядок их выполнения.

5. В полученной схеме при любом варианте вычислений.

— предусмотреть выдачу результатов или сообщений об их отсутствии.

-обеспечить возможности после выполнение любой операции так или иначе перейти к блоку конец.

40.Основные алгоритмические структуры

Мы уже рассмотрели основные понятия программирования и переходим немного ближе к делу (но только ближе, программировать будем позже).

Рассмотрим основные структуры алгоритмов, а их шесть:

· Следование. Это последовательность блоков (или групп блоков) алгоритма. В программе следование представлено в виде последовательного выполнения операций

· Разветвление. Данная алгоритмическая структура применяется в том случае, когда в зависимости от условия необходимо выполнить одно или другое действие

· Обход. Эта структура является частным случаем разветвения, когда в одной из ветвей нет никаких действий.

· Множественный выбор. Эта структура является обобщением раветвления, когда необходимо выполнить одно из нескольких действий в зависимости от значения переменной A.

· Цикл До. Эта алгоритмическая структура применяется в том случае, когда нужно какие-либо операции исполнить несколько раз до того, как будет истинным определенное условие. Бло к выполняемый многократно называется телом цикла. Особенностью данного цикла является его обязательное исполнение хотя бы один раз.

· Цикл Пока. Это цикл отличается от цикла До тем, что проверка условия осуществляется перед самым первым исполнением операторов тела цикла.

Дата добавления: 2017-02-25 ; просмотров: 8009 | Нарушение авторских прав

Схемаэто абстракция какого-либо процесса или системы, наглядно отображающая наиболее значимые части. Схемы широко применяются с древних времен до настоящего времени — чертежи древних пирамид, карты земель, принципиальные электрические схемы. Очевидно, древние мореплаватели хотели обмениваться картами и поэтому выработали единую систему обозначений и правил их выполнения. Аналогичные соглашения выработаны для изображения схем-алгоритмов и закреплены ГОСТ и международными стандартами.

На территории Российской Федерации действует единая система программной документации (ЕСПД), частью которой является Государственный стандарт — ГОСТ 19.701-90 «Схемы алгоритмов программ, данных и систем» [1]. Не смотря на то, что описанные в стандарте обозначения могут использоваться для изображения схем ресурсов системы, схем взаимодействия программ и т.п., в настоящей статье описана лишь разработка схем алгоритмов программ.

Рассматриваемый ГОСТ практически полностью соответствует международному стандарту ISO 5807:1985.

Содержание:

Элементы блок-схем алгоритмов

Блок-схема представляет собой совокупность символов, соответствующих этапам работы алгоритма и соединяющих их линий. Пунктирная линия используется для соединения символа с комментарием. Сплошная линия отражает зависимости по управлению между символами и может снабжаться стрелкой. Стрелку можно не указывать при направлении дуги слева направо и сверху вниз. Согласно п. 4.2.4, линии должны подходить к символу слева, либо сверху, а исходить снизу, либо справа.

Есть и другие типы линий, используемые, например, для изображения блок-схем параллельных алгоритмов, но в текущей статье они, как и ряд специфических символов, не рассматриваются. Рассмотрены лишь основные символы, которых всегда достаточно студентам.

Терминатор начала и конца работы функции

Терминатором начинается и заканчивается любая функция. Тип возвращаемого значения и аргументов функции обычно указывается в комментариях к блоку терминатора.

Операции ввода и вывода данных

В ГОСТ определено множество символов ввода/вывода, например вывод на магнитные ленты, дисплеи и т.п. Если источник данных не принципиален, обычно используется символ параллелограмма. Подробности ввода/вывода могут быть указаны в комментариях.

Выполнение операций над данными

В блоке операций обычно размещают одно или несколько (ГОСТ не запрещает) операций присваивания, не требующих вызова внешних функций.

Блок, иллюстрирующий ветвление алгоритма

Блок в виде ромба имеет один вход и несколько подписанных выходов. В случае, если блок имеет 2 выхода (соответствует оператору ветвления), на них подписывается результат сравнения — «да/нет». Если из блока выходит большее число линий (оператор выбора), внутри него записывается имя переменной, а на выходящих дугах — значения этой переменной.

Вызов внешней процедуры

Вызов внешних процедур и функций помещается в прямоугольник с дополнительными вертикальными линиями.

Начало и конец цикла

Символы начала и конца цикла содержат имя и условие. Условие может отсутствовать в одном из символов пары. Расположение условия, определяет тип оператора, соответствующего символам на языке высокого уровня — оператор с предусловием (while) или постусловием (do … while).

Подготовка данных

Символ «подготовка данных» в произвольной форме (в ГОСТ нет ни пояснений, ни примеров), задает входные значения. Используется обычно для задания циклов со счетчиком.

Соединитель

В случае, если блок-схема не умещается на лист, используется символ соединителя, отражающий переход потока управления между листами. Символ может использоваться и на одном листе, если по каким-либо причинам тянуть линию не удобно.

Комментарий

Комментарий может быть соединен как с одним блоком, так и группой. Группа блоков выделяется на схеме пунктирной линией.

Примеры блок-схем

В качестве примеров, построены блок-схемы очень простых алгоритмов сортировки, при этом акцент сделан на различные реализации циклов, т.к. у студенты делают наибольшее число ошибок именно в этой части.

Сортировка вставками

Массив в алгоритме сортировки вставками разделяется на отсортированную и еще не обработанную части. Изначально отсортированная часть состоит из одного элемента, и постепенно увеличивается.

На каждом шаге алгоритма выбирается первый элемент необработанной части массива и вставляется в отсортированную так, чтобы в ней сохранялся требуемый порядок следования элементов. Вставка может выполняться как в конец массива, так и в середину. При вставке в середину необходимо сдвинуть все элементы, расположенные «правее» позиции вставки на один элемент вправо. В алгоритме используется два цикла — в первом выбираются элементы необработанной части, а во втором осуществляется вставка.

Блок-схема алгоритма сортировки вставками

В приведенной блок-схеме для организации цикла используется символ ветвления. В главном цикле (i Блок-схема алгоритма сортировки пузырьком

На блок-схеме показано использование символов начала и конца цикла. Условие внешнего цикла (А) проверяется в конце (с постусловием), он работает до тех пор, пока переменная hasSwapped имеет значение true. Внутренний цикл использует предусловие для перебора пар сравниваемых элементов. В случае, если элементы расположены в неправильном порядке, выполняется их перестановка посредством вызова внешней процедуры (swap). Для того, чтобы было понятно назначение внешней процедуры и порядок следования ее аргументов, необходимо писать комментарии. В случае, если функция возвращает значение, комментарий может быть написан к символу терминатору конца.

Сортировка выбором

В сортировке выбором массив разделяется на отсортированную и необработанную части. Изначально отсортированная часть пустая, но постепенно она увеличивается. Алгоритм производит поиск минимального элемента необработанной части и меняет его местами с первым элементом той же части, после чего считается, что первый элемент обработан (отсортированная часть увеличивается).

Блок-схема сортировки выбором

На блок-схеме приведен пример использования блока «подготовка», а также показано, что в ряде случаев можно описывать алгоритм более «укрупнённо» (не вдаваясь в детали). К сортировке выбором не имеют отношения детали реализации поиска индекса минимального элемента массива, поэтому они могут быть описаны символом вызова внешней процедуры. Если блок-схема алгоритма внешней процедуры отсутствует, не помешает написать к символу вызова комментарий, исключением могут быть функции с говорящими названиями типа swap, sort, … .

На блоге можно найти другие примеры блок-схем:

Часть студентов традиционно пытается рисовать блок-схемы в Microsoft Word, но это оказывается сложно и не удобно. Например, в MS Word нет стандартного блока для терминатора начала и конца алгоритма (прямоугольник со скругленными краями, а не овал). Наиболее удобными, на мой взгляд, являются утилиты MS Visio и yEd [5], обе они позволяют гораздо больше, чем строить блок-схемы (например рисовать диаграммы UML), но первая является платной и работает только под Windows, вторая бесплатная и кроссплатфомренная. Все блок-схемы в этой статье выполнены с использованием yEd.

Нужны ли блок-схемы? Альтернативы

Частные конторы никакие блок-схемы не используют, в книжках по алгоритмам [6] вместо них применяют словесное описание (псевдокод) как более краткую форму. Возможно блок-схемы применяют на государственных предприятиях, которые должны оформлять документацию согласно требованиям ЕСПД, но есть сомнения — даже для регистрации программы в Государственном реестре программ для ЭВМ никаких блок-схем не требуется.

Тем не менее, рисовать блок-схемы заставляют школьников (примеры из учебников ГОСТ не соответствуют) — выносят вопросы на государственные экзамены (ГИА и ЕГЭ), студентов — перед защитой диплом сдается на нормоконтроль, где проверяется соответствие схем стандартам.

Разработка блок-схем выполняется на этапах проектирования и документирования, согласно каскадной модели разработки ПО, которая сейчас почти не применяется, т.к. сопровождается большими рисками, связанными с ошибками на этапах проектирования.

Появляются подозрения, что система образования прогнила и отстала лет на 20, однако аналогичная проблема наблюдается и за рубежом. Международный стандарт ISO 5807:1985 мало чем отличается от ГОСТ 19.701-90, более нового стандарта за рубежом нет. Там же производится множество программ для выполнения этих самых схем — Dia, MS Visio, yEd, …, а значит списывать их не собираются. Вместо блок-схем иногда применяют диаграммы деятельности UML [6], однако удобнее они оказываются, разве что при изображении параллельных алгоритмов.

Периодически поднимается вопрос о том, что ни блок-схемы, ни UML не нужны, да и документация тоже не нужна. Об этом твердят программисты, придерживающиеся методологии экстремального программирования (XP) [7], ходя даже в их кругу нет единого мнения.

В ряде случаев, программирование невозможно без рисования блок-схем, т.к. это один процесс — существуют визуальные языки программирования, такие как ДРАКОН [8], кроме того, блок-схемы используются для верификации алгоритмов (формального доказательства их корректности) методом индуктивных утверждений Флойда [9].

В общем, единого мнения нет. Очевидно, есть области, в которых без чего-то типа блок-схем обойтись нельзя, но более гибкой альтернативы нет. Для формальной верификации необходимо рисовать подробные блок-схемы, но для проектирования и документирования такие схемы не нужны — я считаю разумным утверждение экстремальных программистов о том, что нужно рисовать лишь те схемы, которые помогают в работе и не требуют больших усилий для поддержания в актуальном состоянии [10].

 Содержание

Алгоритм. Понятие алгоритма.        2

Свойства алгоритма.        2

Система команд исполнителя        3

Формальное исполнение алгоритма        3

Способы записи алгоритмов.        3

1. Естественный язык (словесная запись алгоритма)        3

2. Язык блок-схем (графическая запись алгоритмов).        4

3. Алгоритмический язык (псевдокоды).        5

4. Формальный язык (язык программирования).        5

Структуры алгоритмов.        5

Структура следование        6

Структура ветвление (развилка).        6

Структура повторение (цикл)        7

Контрольные вопросы.        10

 

Алгоритм. Понятие алгоритма.

Алгоритм – понятное и точное предписание (указание) исполнителю совершить определенную последовательность действий для достижения указанной цели или решения поставленной задачи.

Алгоритм – список команд, набор инструкций, выполнив которые можно получить определенный результат.

Сборником алгоритмов можно назвать книгу кулинарных рецептов. Рассмотрим простейший алгоритм.

Пр. 1. Алгоритм заварки чая.

1. Подготовить исходные величины – заварку, воду, чайник, заварник

2. Налить в чайник воду.

3. Насыпать в заварник заварку.

4. Довести воду до кипения.

5. Налить в заварник кипяток и подождать 3 минуты.

6. Заварка готова.

Свойства алгоритма.

Не каждый набор команд можно назвать алгоритмом. Алгоритм обладает определенными свойствами:

1. Конечность. Суть свойства: алгоритм не может быть бесконечным, он должен закончиться за конечное число шагов.

2. Результативность. Суть свойства: выполнив алгоритм, должны получить результат. Установление факта, что задача решения не имеет, является тоже результатом исполнения алгоритма.

3. Дискретность (прерывистость). Суть свойства: алгоритм разбивается на отдельные шаги (команды), которые выполняются одна за другой.

4. Понятность. Суть свойства: команды алгоритма должны быть понятны исполнителю. В алгоритме используются только команды из системы команд исполнителя.

5. Определенность. Суть свойства: каждая команда однозначно определяет действия исполнителя.

6. Массовость. Суть свойства: алгоритм должен обеспечивать решение не одной конкретной задачи, а класса задач данного типа.

7. Эффективность. Суть свойства: каждый шаг алгоритма должен быть выполнен точно и за конечное время, а, значит, весь алгоритм должен быть выполнен за разумно конечное (эффективное) время.

Система команд исполнителя

Исполнитель – это тот, кто будет исполнять алгоритм.

Совокупность команд, которые могут быть выполнены конкретным исполнителем, называется системой команд исполнителя.

Формальное исполнение алгоритма

Исполнитель может не иметь представления о цели выполнения алгоритма. Он должен строго и точно выполнять действия, предписанные алгоритмом, не понимая, зачем и почему это надо делать. Такое исполнение называется формальным исполнением алгоритма, что позволяет передать исполнение алгоритма автомату.

Способы записи алгоритмов.

1. Естественный язык (словесная запись алгоритма)

Обычно используется для алгоритмов, ориентированных на исполнителя – человека. Команды алгоритма нумеруют, чтобы иметь возможность на них ссылаться. Словесная запись алгоритма была использована выше для составления алгоритма заварки чая (см. Пр. 1, стр. 2)

2. Язык блок-схем (графическая запись алгоритмов). 

Конец

Начало

Команды алгоритмов помещаются внутрь блоков, соединенных стрелками, показывающими очередность выполнения команд алгоритма.

  • Овал обозначает начало и конец алгоритма (блок начало и блок конец).
  • Команды обработки информации помещают в блоках имеющих вид прямоугольников (блок арифметических выражений, блок присваиваний).
  • Проверка условий – ромб. В результате проверки условия возникают два возможных пути для продолжения алгоритма. Эти пути изображаются стрелками со знаками “+” и “–” (иногда пишут “да” и “нет”). Переход по стрелке со знаком “+” происходит если условие соблюдено а переход по стрелке “–”, если условие не выполняется.
  • Операции ввода и вывода помещают в блоки, имеющие вид параллелограммов (блок ввода/вывода).

Для записи команд внутри блоков используется естественный язык с элементами математической символики.

Начало

Конец

Ввод

a, b

P:=2(a+b)

Вывод

P

Пр. 2.

Задача. Даны длина и ширина прямо-угольника. Определить периметр этого прямоугольника.

Решение. Выделяем исходные данные и результаты.

Исходные данные: а – длина, b – ширина прямоугольника.

Результат: P – периметр прямоугольника.

Составим алгоритм решения задачи и запишем его на языке блок-схем (см. рис.)

3. Алгоритмический язык (псевдокоды).

Псевдокод представляет собой систему обозначений и правил, предназначенную для единообразной записи алгоритмов. Он занимает промежуточное место между естественным и формальным языком.

С одной стороны он близок к обычному естественному языку, поэтому алгоритмы на нем могут записываться и читаться как обычный текст. С другой стороны, в псевдокоде используются некоторые формальные конструкции и математическая символика, что приближает запись алгоритма к общепринятой математической записи.

Единого или формального определения псевдокода не существует, поэтому возможны различные псевдокоды, отличающиеся набором служебных слов и основных (базовых) конструкций.

Запишем алгоритм нахождения периметра прямоу-гольника (см. Пр. 2), на алгоритмическом языке:

алг периметр прямоугольника

нач ввод a, b

P := 2∙(a + b)

вывод P

кон

4. Формальный язык (язык программирования).

Обычно используется для алгоритмов, ориентированных на исполнителя – ЭВМ. Алгоритм, записанный на языке программирования – программа.

Структуры алгоритмов.

Из простых команд и проверок условий образуются составные команды (структуры).

Действие

Действие

Действие

Любой алгоритм может быть построен из базовых структур: следование, ветвление, цикл.

Структура следование

Эта структура образуется из последовательности команд, следующих одна за другой. При исполнении алгоритма команды выполняются одна за другой в том порядке, как они записаны.

Под действием понимается либо простая, либо составная команда. 

Линейным называется алгоритм, в котором все этапы решения задачи выполняются строго последовательно.

Алгоритмы заварки чая, нахождения периметра прямоугольника, приведенные выше, являются линейными.

Структура ветвление (развилка).

Выбор одного из двух возможных действий, в зависимости от результата проверки условия, осуществляется с помощью развилки (ветвления).

Ветвление может использоваться в двух видах: полное и неполное.

Условие

Действие

Блок-схема неполной развилки

Условие

Блок-схема полной развилки

Действие 1

Действие 2

Рассмотрим ветвление на конкретных примерах.

 Пр. 3. Фрагмент алгоритма        Пр. 4. Фрагмент алгоритма

«Поедание яблока»        «Покупка билетов»

Билеты есть?

Купить

Подойти к кассе

Отойти от кассы

Съесть

Выбросить

Яблоко гнилое?

Взять яблоко

Структура повторение (цикл)

Цикл – алгоритмическая структура, организующая многократное повторение действий.

Действия, которые повторяются в цикле, называют телом цикла.

Циклы бывают двух видов: цикл «До»  и цикл «Пока».

Условие

Действие

Блок-схема цикла «До»

Условие

Действие

Блок-схема цикла «Пока»

Цикл «Пока» – цикл с предусловием (сначала проверяется условие, потом выполняется тело цикла). В цикле «Пока» тело цикла выполняется, пока выполняется условие.

Цикл «До» – цикл с постусловием (сначала выполняется тело цикла, потом проверяется условие). В цикле «До» тело цикла выполняется до тех пор, пока не выполнится условие.

Рассмотрим циклы на конкретных примерах.

Пр. 5. Фрагмент алгоритма        Пр. 6. Фрагмент алгоритма

«Перейти дорогу»        «Помыть тарелки»

 Горит красный?

Посмотреть на светофор

Стоять

Перейти дорогу

Взять тарелку

Помыть

Убрать

Тарелки кончились?

Рассмотрим пример алгоритма, в котором внутри цикла находится ветвление.

 Пр. 7. Алгоритм Евклида для нахождения наибольшего общего делителя (НОД) двух натуральных чисел:

1. Если числа равны, то взять первое число в качестве ответа и закончить исполнение алгоритма, иначе перейти к п.2

2. Определить большее из двух чисел.

3. Заменить большее число на разность большего и меньшего чисел.

4. Перейти к п.1

Блок-схема алгоритма Евклида:

Начало

Ввод

a, b

a ≠ b

a > b

Заменить

a на a-b

Заменить

b на b-a

Вывод

a

Конец

Например, a = 32, b = 24

Трассировочная таблица:

шаг

Операция

a

b

Условие

Ввод а

32

Ввод b

24

а ≠ b

32 ≠ 24, да

а > b

32 > 24, да

а на а-b

8

а ≠ b

8 24, да

а > b

8 > 24, нет

b на b-a

16

а ≠ b

8 16, да

а > b

8 > 16, нет

b на b-a

8

а ≠ b

8 8, нет

Вывод а

Конец

Данный алгоритм представляет собой структуру следование. В алгоритме используется полная развилка и цикл «Пока», причем развилка находится внутри цикла.

 Контрольные вопросы.

  1. Что такое алгоритм?
  2. Какие вы знаете свойства алгоритма? В чем суть каждого свойства?
  3. Как вы понимаете термин «исполнитель»?
  4. Что такое система команд исполнителя?
  5. Что означает формальное исполнение алгоритма?
  6. Какие способы записи алгоритмов вы знаете?
  7. Расскажите подробно о языке блок-схем.
  8. Какой формальный язык вы знаете?
  9. Как называется алгоритм, записанный на языке программирования
  10. Какие алгоритмические структуры вы знаете?
  11. Какой алгоритм называется линейным? Привести пример.
  12. Что такое ветвление? Виды ветвлений? Привести примеры.
  13. Что такое цикл? Виды циклов? Привести примеры.
  14. Что такое тело цикла?
  15. Чем цикл «До» отличается от цикла «Пока»?

Каждый человек на протяжении своей жизни решает множество задач разной сложности. Но даже самые простые из задач выполняются последовательно, то есть за несколько шагов. Эту последовательность можно назвать алгоритмом. Последовательности бывают разные, но начинать их изучение лучше всего с линейных.

Algo_970x90-20219-0c5b45.png

Прежде чем приступить к рассмотрению основной темы статьи, следует сделать краткое отступление и сказать несколько слов про алгоритмический язык.

Алгоритмический язык

Представьте, что человеку, работающему за компьютером, поставлена некая вычислительная задача. В языке программирования решение этой задачи выполняется с помощью алгоритмизации. Решение предполагает:
— разбиение на этапы;
— разработку алгоритма;
— составление программы решения на алгоритмическом языке;
— ввод данных;
— отладку программы (возможны ошибки — их надо исправить);
— выполнение на ПК;
— анализ результатов.

Алгоритмический язык является средством описания алгоритмов, а уже алгоритм, в свою очередь, представляет собой чёткое описание определённой последовательности действий, направленных на решение необходимой задачи.

Свойства алгоритма

Их несколько:
конечность. Любой алгоритм должен быть завершённым, а окончание наступает после выполнения определённого числа шагов;
однозначность, понятность. Не допускается разных толкований, неопределённости и двусмысленности — всё должно быть чётко и ясно, а также понятно исполнителю — и правила выполнения действий линейного алгоритма, и сами действия;
результативность. Итог работы — результат, полученный за конечное число шагов;
универсальность, массовость. Качественный алгоритм способен решать не одну задачу, а целый класс задач, имеющих схожую постановку/структуру.

Линейная структура

Любой алгоритм составляется из ряда базовых структур. Простейшей базовой структурой является следование — структура с линейными характеристиками. Из этого можно сформулировать определение.

Линейный алгоритм — это алгоритм, образуемый командами, которые выполняются однократно и именно в той последовательности, в которой записаны. Линейная структура, по сути, проста. Записать её можно как в текстовой, так и в графической форме.

Представим, что у нас стоит задача пропылесосить ковёр в комнате. В текстовой форме алгоритм будет следующим:
— принести пылесос к месту уборки;
— включить;
— пропылесосить;
— выключить;
— унести пылесос.

И каждый раз, когда нам надо будет пылесосить, мы будем выполнять один и тот же алгоритм.

Теперь поговорим про графическую форму представления.

Algo_970x90-20219-0c5b45.png

Блок-схема

Для изображения алгоритма графически используют блок-схемы. Они представляют собой геометрические фигуры (блоки), соединённые стрелками. Стрелки показывают связь между этапами и последовательность их выполнения. Каждый блок сопровождается надписью.

Рассмотрим фигуры, которые используются при визуализации типичной линейной последовательности.

Блок начала-конца:

Screenshot_1-1801-a35d16.png

Блок ввода-вывода данных (отображает список вводимых и выводимых переменных):

Screenshot_2-1801-52cab0.png

Арифметический блок (отображает арифметическую операцию/группу операций):

Screenshot_3-1801-df500e.png

Условный блок (позволяет описать условие). Алгоритмы с таким блоком используются при графической визуализации алгоритмов с ветвлением:

Screenshot_4-1801-3103cc.png

Условного блока нет в классическом линейном алгоритме, так как в нём, как уже было сказано ранее, все операции выполняются последовательно, то есть одна за другой. В линейном алгоритме размещение блоков выглядит следующим образом:

Screenshot_5-1801-f1511b.png

А вот, как решается задача по нахождению площади треугольника по формуле Герона. Здесь a, b, c – это длины сторон, S – площадь треугольника, P – периметр.

Screenshot_6-1801-c010e2.png

Следует обратить внимание, что запись «=» — это не математическое равенство, а операция присваивания. В результате этой операции переменная, стоящая слева от оператора, получает значение, которое указано справа. Значение не обязательно должно быть сразу определено (a = 3) — оно может вычисляться посредством выражения (a = b + z), где b = 1, a z = 2.

Примеры линейных алгоритмов

Если рассмотреть примеры решения на языке Pascal (именно этот язык до сих пор используется для изучения основ алгоритмизации и программирования), то можно увидеть следующую картину:

Screenshot_7-1801-f9ba66.png

И, соответственно, блок-схема программы линейной структуры будет выглядеть следующим образом:

Screenshot_8-1801-8a0c1b.png

Как составить программу линейной структуры?

Порядок следующий:
— определите, что именно относится к исходным данными, а также каков типы/класс этих данных, выберите имена переменных;
— определите, каков тип данных будет у искомого результата, выберите название переменных (переменной);
— определите, какие математические формулы связывают результат и исходные данные;
— если требуется наличие промежуточных данных, определите класс/типы этих данных и выберите имена;
— опишите все используемые переменные;
— запишите окончательный алгоритм. Он должен включать в себя ввод данных, вычисления, вывод результатов.

На этом всё, в следующий раз рассмотрим на примерах программу разветвлённой структуры. Если же вас интересует тема алгоритмизации в контексте разработки программного обеспечения, ждём вас на профессиональном курсе OTUS!

Algo_970x550-20219-265dfd.png

Источники:
• https://inep.sfedu.ru/wp-content/uploads/2018/05/25/lection_27.pdf;
• https://www.sites.google.com/site/415ict/textbooks/prog-9/02-linejnyj-algoritm.

Добавить комментарий