Как составить алгоритм решения выражения

Нажмите, чтобы узнать подробности

Алгоритм решения числовых выражений содержащих скобки.

1 Рассмотри выражение.

2 Выясни, есть ли в нём скобки.

3 Если есть, то найди значение выражения в скобках.( )

4 Затем выполни умножение или деление по порядку слева направо. * или :

5 Затем выполни сложение или вычитание по порядку слева направо. + или –

  1. Главная
  2. Справочники
  3. Справочник по математике для начальной школы
  4. Числовые и буквенные выражения

Числовые выражения

В этом разделе мы узнаем, что называют числовым выражением и значением выражения, научимся читать выражения.

Числовое выражение – это запись , состоящая из чисел и знаков действий между ними.

Например, 44 + 32

Значение выражения – это результат выполненных действий.

Например, в записи 44 + 32 = 76, значение выражения – это 76.


Чтение числовых выражений

12 + 9 – сумма

49 – 20 – разность

34 – (8 + 21) – из 34 вычесть сумму чисел 8 и 21

13 + (26 – 8) – к 13 прибавить разность чисел 26 и 8


Решение числовых выражений

45 – (30 + 2) = …
Сначала выполняем действие, записанное в скобках. К 30 прибавляем 2.
30 + 2 = 32
Теперь нужно из 45 вычесть 38.
45 – 32 = 13
45 – (30 + 2) = 13


Сравнение значений числовых выражений

 Сравнить числовое выражение – найти значение каждого из выражений и их сравнить.

Давай сравним значения двух выражений: 14 – 6 и 18 – 9.

Для этого найдем значения каждого из них:

14 – 6 = 8

18 – 9 = 9

8 < 9, значит, 

14 – 6 < 18 – 9


Буквенные выражения

Буквенным называется математическое выражение, в котором используются цифры, знаки действий и буквы. Например, (47 + d) – 11.

В этих выражениях буквы могут обозначать различные числа. Число, которым заменяют букву, называют значением.

Для записи буквенных выражений необходимо знать некоторые буквы латинского алфавита. Мы приводим его полностью, чтобы ты знал, с какими буквами можешь встретиться при составлении, решении или чтении буквенных выражений.

Чаще всего используются буквы:

a, b, c, d, x, y, k, m, n


Алгоритм решения буквенного выражения

Алгоритм – значит, порядок, план выполнения команд.

1.   Прочитать буквенное выражение

2.   Записать буквенное выражение

3.   Подставить значение неизвестного в выражении

4.   Вычислить результат

Например, 28 – с

Читаем выражение: Из 28 вычесть с или Найти разность числа 28 и с

Подставим вместо неизвестного «с» число 4.

У нас получается выражение: 28 – 4 

Вычисляем результат:

28 – 4 = 24


Переменные

Буквы, которые содержатся в буквенных выражениях называются переменными. Например, в выражении с + x + 2 переменными являются буквы c и x. Если вместо этих переменных подставить любые числа, то буквенное выражение с + x + 2 обратится в числовое выражение, значение которого можно будет найти.

Числа, которые подставляют вместо переменных называют значениями переменных. Например, изменим значения переменных c и x. Для изменения значений используется знак равенства

c = 2, x = 3

Мы изменили значения переменных c и x. Переменной присвоили значение 2, переменной x присвоили значение 3, тогда выражение с + х + 2 будет выглядеть так:

2 + 3 + 2

Теперь мы можем найти значение этого выражения:

с + х + 2 = 2 + 3 + 2 = 5 + 2 = 7

Советуем посмотреть:

Уравнения


Правило встречается в следующих упражнениях:

1 класс

Страница 18. Урок 11,
Петерсон, Учебник, часть 1

Страница 8. Урок 5,
Петерсон, Учебник, часть 2

Страница 43. Урок 22,
Петерсон, Учебник, часть 2

Страница 45. Урок 23,
Петерсон, Учебник, часть 2

Страница 9. Урок 5,
Петерсон, Учебник, часть 3

Страница 22. Урок 12,
Петерсон, Учебник, часть 3

Страница 31. Урок 16,
Петерсон, Учебник, часть 3

Страница 37. Урок 19,
Петерсон, Учебник, часть 3

Страница 44. Урок 23,
Петерсон, Учебник, часть 3

Страница 88. Урок 35,
Петерсон, Учебник, часть 3

2 класс

Страница 73,
Моро, Волкова, Степанова, Бантова, Бельтюкова, Учебник, часть 1

Страница 89,
Моро, Волкова, Степанова, Бантова, Бельтюкова, Учебник, часть 1

Страница 24. Тест 1. Вариант 1,
Моро, Волкова, Проверочные работы

Страница 69,
Моро, Волкова, Степанова, Бантова, Бельтюкова, Учебник, часть 2

Страница 86. Урок 36,
Петерсон, Учебник, часть 2

Страница 108. Урок 44,
Петерсон, Учебник, часть 2

Страница 24. Урок 8,
Петерсон, Учебник, часть 3

Страница 60. Урок 22,
Петерсон, Учебник, часть 3

Страница 70. Урок 26,
Петерсон, Учебник, часть 3

Страница 71. Урок 26,
Петерсон, Учебник, часть 3

3 класс

Страница 45,
Моро, Волкова, Степанова, Бантова, Бельтюкова, Учебник, часть 1

Страница 54,
Моро, Волкова, Степанова, Бантова, Бельтюкова, Учебник, часть 1

Страница 63,
Моро, Волкова, Степанова, Бантова, Бельтюкова, Учебник, часть 1

Страница 97,
Моро, Волкова, Степанова, Бантова, Бельтюкова, Учебник, часть 1

Страница 13. Урок 4,
Петерсон, Учебник, часть 1

Страница 43. Урок 16,
Петерсон, Учебник, часть 1

Страница 82. Урок 30,
Петерсон, Учебник, часть 1

Страница 48. Урок 19,
Петерсон, Учебник, часть 2

Страница 85. Урок 37,
Петерсон, Учебник, часть 2

Страница 71. Повторение,
Петерсон, Учебник, часть 3

4 класс

Страница 13,
Моро, Волкова, Степанова, Бантова, Бельтюкова, Учебник, часть 1

Страница 34,
Моро, Волкова, Степанова, Бантова, Бельтюкова, Учебник, часть 1

Страница 76,
Моро, Волкова, Степанова, Бантова, Бельтюкова, Учебник, часть 1

Страница 5. ПР. Вариант 2,
Моро, Волкова, Проверочные работы

Страница 22,
Моро, Волкова, Степанова, Бантова, Бельтюкова, Учебник, часть 2

Страница 67,
Моро, Волкова, Степанова, Бантова, Бельтюкова, Учебник, часть 2

Страница 84,
Моро, Волкова, Степанова, Бантова, Бельтюкова, Учебник, часть 2

Страница 16,
Моро, Волкова, Рабочая тетрадь, часть 2

Страница 47,
Моро, Волкова, Рабочая тетрадь, часть 2

Страница 48,
Моро, Волкова, Рабочая тетрадь, часть 2

5 класс

Задание 423,
Виленкин, Жохов, Чесноков, Шварцбург, Учебник

Задание 428,
Виленкин, Жохов, Чесноков, Шварцбург, Учебник

Задание 573,
Виленкин, Жохов, Чесноков, Шварцбург, Учебник

Задание 998,
Виленкин, Жохов, Чесноков, Шварцбург, Учебник

Задание 1327,
Виленкин, Жохов, Чесноков, Шварцбург, Учебник

Задание 1723,
Виленкин, Жохов, Чесноков, Шварцбург, Учебник

Номер 260,
Мерзляк, Полонский, Якир, Учебник

Номер 291,
Мерзляк, Полонский, Якир, Учебник

Номер 2,
Мерзляк, Полонский, Якир, Учебник

Номер 3,
Мерзляк, Полонский, Якир, Учебник

6 класс

Номер 314,
Мерзляк, Полонский, Якир, Учебник

Номер 331,
Мерзляк, Полонский, Якир, Учебник

Номер 401,
Мерзляк, Полонский, Якир, Учебник

Номер 966,
Мерзляк, Полонский, Якир, Учебник

Номер 1036,
Мерзляк, Полонский, Якир, Учебник

Номер 1097,
Мерзляк, Полонский, Якир, Учебник

Номер 3,
Мерзляк, Полонский, Якир, Учебник

Задание 583,
Виленкин, Жохов, Чесноков, Шварцбург, Учебник

Задание 1118,
Виленкин, Жохов, Чесноков, Шварцбург, Учебник

Задание 1510,
Виленкин, Жохов, Чесноков, Шварцбург, Учебник

7 класс

Номер 259,
Мерзляк, Полонский, Якир, Учебник

Номер 315,
Мерзляк, Полонский, Якир, Учебник

Номер 316,
Мерзляк, Полонский, Якир, Учебник

Номер 481,
Мерзляк, Полонский, Якир, Учебник

Номер 906,
Мерзляк, Полонский, Якир, Учебник

Номер 1071,
Мерзляк, Полонский, Якир, Учебник

Номер 1139,
Мерзляк, Полонский, Якир, Учебник

Номер 1,
Мерзляк, Полонский, Якир, Учебник

Номер 2,
Мерзляк, Полонский, Якир, Учебник

Номер 4,
Мерзляк, Полонский, Якир, Учебник

8 класс

Номер 2,
Мерзляк, Полонский, Якир, Учебник

Номер 3,
Мерзляк, Полонский, Якир, Учебник

Номер 4,
Мерзляк, Полонский, Якир, Учебник

Номер 46,
Мерзляк, Полонский, Якир, Учебник

Номер 47,
Мерзляк, Полонский, Якир, Учебник

Номер 229,
Мерзляк, Полонский, Якир, Учебник

Номер 391,
Мерзляк, Полонский, Якир, Учебник

Номер 392,
Мерзляк, Полонский, Якир, Учебник


Определение

Арифметика — это часть математики, которая занимается работой с числами.

Практически все умеют вычислять значения простых арифметических выражений, включающих сложение, вычитание, умножение или деление. Но при вычислении более сложных выражений, где есть два, три или более действия, многие испытывают затруднения в порядке выполнения в математике.

При работе с формулами и примерами, которые содержат цифры, переменные или буквы, необходимо выполнять правильный алгоритм.

Чтобы получить верный результат, необходимо выполнять действия в математике в определенной последовательности, то есть соблюдая правильный порядок.

Алгоритм выполнения действий первой и второй ступени

Во многих справочниках порядок арифметических действий делится на первоочередные и второстепенные. Чтобы понять это, необходимо сформулировать правило более точно.

К первоочередным относят сложение и вычитание, ко второй ступени относят деление и умножение.

Точнее записать это правило можно следующим образом:

  1. сначала выполнить умножение и деление в порядке слева направо;
  2. далее выполняем сложение и вычитание в том же порядке.

Рассмотрим несколько простых примеров на умножение и деление, сложение и вычитание с числовыми или переменными значениями. Также подробно рассмотрим формулы со скобками, содержащие степени, корни и пр.

Основной порядок выполнение действий для простых выражений

Для простых примеров, не имеющих скобок, существует единый порядок выполнения:

  1. вычисления выполняются слева направо;
  2. сначала делаем умножение и деление;
  3. затем выполняем сложение или вычитание.

Рассмотрим простейшие примеры математического порядка в выражениях с простыми вычислениями, которые легко можно сделать в уме, то есть без использования записи.

Пример 1

Поскольку в данном примере нет скобок, отсутствуют умножение и деление, поэтому выполнение действия производим по единому правилу.

Решение:

  1. из 7 вычитаем 3 (7 — 3 = 4);
  2. прибавляем 6 (4 + 6 = 10).

В итоге получается следующее выражение: 7 — 3 + 6 = 4 + 6 = 10

Ответ: 7 − 3 + 6 = 10

Пример 2

Условие: необходимо вычислить выражение 6 : 2 ⋅ 8 : 3.

Порядок выполнения заключается в применении правил для примеров без скобок. Используется стандартный порядок вычисления, то есть слева направо.

Решение:

  1. делим 6 на 2 (6 : 2 = 3);
  2. умножаем результат на 8 (3 ⋅ 8 = 24);
  3. результат делим на 3 (24 : 3 = 8).

Получаем следующее: 6 : 2 ⋅ 8 : 3 = 3 ⋅ 8 : 3 = 24 : 3 = 8

Ответ: 6 : 2 ⋅ 8 : 3 = 8

Пример 3

Условие: необходимо вычислить, сколько будет 17 − 5 ⋅ 6 : 3 − 2 + 4 : 2.

В данном выражении присутствуют различные виды арифметических действий, включая умножение, деление, деление, вычитание.

Поэтому порядок в математике в данном примере будет следующий:

  1. выполняем деление и умножение в порядке слева направо;
  2. выполняем сложение и вычитание в обычном порядке.

Решение:

  • 5 умножаем на 6 (5 ⋅ 6 = 30);
  • делим 30 на 3 (30 : 3 =10);
  • делим 4 на 2 (4 : 2 = 2);
  • подставляем полученные цифры в исходное выражение (17 — 10 — 2 + 2 = 7).

В итоге расширенное решение данного примера выглядит следующим образом:

17 − 5 ⋅ 6 : 3 − 2 + 4 : 2 = 17 — 30 : 3 — 2 + 4 : 2 = 17 — 10 — 2 + 2 = 17 — 10 — 2 + 2 = 7 — 2 + 2 = 5 + 2 = 7

Ответ: 17 − 5 ⋅ 6 : 3 − 2 + 4 : 2 = 7

Если учеником порядок выполнения еще не усвоен, допускается использовать сверху цифры, полученные в результате промежуточных вычислений.

Правила выполнения действий для примеров с буквенными составляющими

Когда в выражении присутствуют буквы, применяется аналогичный порядок вычисления:

  1. делаем умножение и деление;
  2. выполняем сложение и вычитание.

Пример 4

Условие: необходимо обсчитать выражение 5х + 3х — 1х.

Порядок действий:

  1. выполняем сложение;
  2. делаем вычитание.

Решение:

  • складываем 5х и 3х (5х + 3х = 8х);
  • вычитаем 1х (8х — 1х = 7х).

В целом решение выглядит следующим образом: 5х + 3х — 1 = 8х — 1х = 7х

Ответ: 5х + 3х — 1х = 7х

Варианты записи процесса вычисления выражений

Процесс вычисления можно записывать несколькими способами.

Первый способ:

  • Каждое действие записывается отдельно под своим номером по примеру.
  • После выполнения последнего шага ответ обязательно сохраняется в исходном примере.

Примеры 5 — 6

Условие: необходимо вычислить выражение 50 — 23 + 2 ⋅ 4 — 30 : 6.

Решение:

2 ⋅ 4 = 8

30 : 6 = 5

50 — 23 = 27

27 + 8 = 35

35 — 5 = 30

Ответ: 50 — 23 + 2 ⋅ 4 — 30 : 6 = 30

При подсчете результатов операций с использованием двузначных и трехзначных чисел обязательно указывайте свои расчеты в соответствующей графе.


Условие: вычислите значение выражения 324 — 42 + 20 : 4 — 42

Решение:

20 : 4 + 5

324 — 42 = 282

282 + 5 = 287

287 — 42 = 245

Ответ: 324 — 42 + 20 : 4 — 42 = 245

Второй способ называется строковой записью, когда все расчеты выполняются точно в таком же порядке, но результаты записываются сразу после знака равенства.

Порядок действий в математике со скобками

Необходимо запомнить, если выражение содержит круглые скобки, порядок действий в скобках в математике немного изменяется:

  • Действия внутри круглых скобок выполняются в первую очередь.
  • Внутри скобок последовательность операций такая же, как и в примерах без скобок.

Действия в скобках делаем также в соответствии с порядком для простых примеров, то есть слева направо.

Пример 7

Условие: необходимо вычислить значение следующего выражения 25 — 3 + (6 ⋅ 3 — 12) — 7.

Используем порядок действий в математике со скобками:

  1. сначала выполняем работу в скобках;
  2. далее идем последовательно слева направо.

Решение:

  • выполняем умножение в скобках, а затем вычитание (6 ⋅ 3 — 12 = 18 — 12 = 6);
  • делаем последовательную работу за скобками (25 — 3 + 6 — 7 = 22 + 6 — 7 = 28 — 7 = 21).

В итоге решение данного выражения выглядит следующим образом:

25 — 3 + (6 ⋅ 3 — 12) — 7 = 25 — 3 + (18 — 12) — 7 = 25 — 3 + 6 — 7 = 22 + 6 — 7 = 28 — 7 = 21.

Ответ: 25 — 3 + (6 ⋅ 3 — 12) — 7 = 21

Если внутри круглых скобок есть еще несколько скобок, действия сначала выполняются внутри вложенных (внутренних) скобок. Для этого достаточно последовательно использовать основной принцип выполнения в выражениях со скобками.

Пример 8

Условие: вычислите значение выражения 60 — 2 ⋅ (30 — (7 + 3 ⋅ 4)) + 15.

Решение:

60 — 2 ⋅ (30 — (7 + 3 ⋅ 4)) + 15 = 60 — 2 ⋅ (30 — (7 + 12)) + 15 = 60 — 2 ⋅ (30 — 19) + 15 = 60 — 2 ⋅ 11 + 15 = 60 — 22 + 15 = 38 + 15 = 53

Ответ: 60 — 2 ⋅ (30 — (7 + 3 ⋅ 4)) + 15 = 53

Нет времени решать самому?

Наши эксперты помогут!

Процедура упрощения

Если пример содержит числовое или буквенное выражение в круглых скобках, которое нужно возвести в степень, то необходимо следовать таким правилам:

  1. Сначала делаем все вычисления внутри скобок.
  2. Затем вычисляем все скобки слева направо (от начала до конца примера).
  3. Все остальное делаем как обычно.

Пример 9

Условие: необходимо вычислить значение выражения 2³ ⋅ (4² − 12).

Выполняем вычисления в соответствие с порядком арифметических действий:

  1. рассчитываем значение в скобках;
  2. выполняем умножение.

Решение:

4² − 12 = 16 — 12 = 4

2³ ⋅ 4 = 8 ⋅ 4 = 32

Ответ: 2³ ⋅ (4² − 12) = 32

Порядок выполнения действий в сложных выражениях

Числовые и переменные примеры могут содержать символы различных арифметических операций. При преобразовании и вычислении значений таких примеров, все шаги выполняются в определенном порядке, который необходимо соблюдать.

Рассмотрим пример.

Пример 10

Рассчитайте значение 5 + (7 — 2 · 3) · (6 — 4) : 2.

Пример содержит круглые скобки, поэтому сначала выполним операции в заключенных в эти скобки.

  1. Начнем решение с выражения 7 − 2 · 3. В нем нужно сначала умножить, а потом вычесть: 7 − 2 · 3 = 7 − 6 = 1.
  2. Переходим ко второму выражению в скобках 6 — 4. Здесь только одно действие — вычитание: 6−4 = 2.
  3. Подставляем полученные значения в исходное выражение:

5 + (7 − 2 · 3) · (6 − 4) : 2 = 5 + 1 · 2 : 2.

В полученном значении сначала выполняем умножение и деление слева направо, а затем вычитание:

5 + 1 · 2 : 2 = 5 + 2 : 2 = 5 + 1= 6.

Все выполнено, мы сохранили следующий порядок их выполнения: 5 + (7 − 2 · 3) · (6 − 4) : 2.

Краткое решение: 5 + (7 −2 · 3) · (6 − 4) : 2 = 5 + 1 · 2 : 2 = 5 + 1 = 6.

Ответ: 5 + (7 — 2 · 3) · (6 — 4) : 2 = 6

Если ученик затрудняется в выполнении порядка арифметических действий, необходимо потренироваться на простейших примерах, которые содержат только сложение и вычитание. Только затем уже переходить к выражениям с умножением и делением.

Только после полного усвоения правил выполнения действий для простейших арифметических заданий, можно приступать к вычислению более сложных примеров со скобками.

Вычисление выражений, содержащих несколько скобок, возведение в степень или буквенные значения будет доступно только после того, как ученик легко будет справляться с простыми примерами.

В данном уроке использованы подходы интегрирования предметов информатики с математикой, задействованы информационные технологии, включены аспекты развития функциональной грамотности – формирование творческого потенциала учащихся.

Цель:

  • обобщить и систематизировать знания об арифметических действия с натуральными числами, используя алгоритм;
  • совершенствовать навыки самостоятельного выполнения заданий с использованием компьютерных программ: «Математические пазлы», «Элвин и бурундуки».
  • развивать умение составлять алгоритмы и применять полученные знания в нестандартных условиях.

Ход урока

I. Организационный момент

– Создадим хорошее, дружелюбное настроение. Улыбнитесь друг другу, садитесь!

– Мы с вами должны работать по формуле ” трёх у”:

  • УВЕРЕННОСТЬ.
  • УСПЕХ.
  • УДОВОЛЬСТВИЕ.

II. Устный счёт. Сообщение темы и цели урока

– Словарная работа. Выполнение задания в Интернете.

Здесь остаются два ученика, получают карточку с заданием и выполняют его:

Карточка:

  1. Запустить обозреватель (браузер интернета) Internet Explorer.
  2. Выйти в Интернет.
  3. В поисковике напечатать слово «АЛГОРИТМ».
  4. Найти происхождение слова «АЛГОРИТМ».
  5. Подготовить сообщение.

– Чтобы тему урока узнать, надо подумать и расшифровать.

– Ответьте на несколько вопросов:

  1. назовите самое большое число (9625);
  2. назовите число, в котором количество единиц 1 и 2 класса одинаковые (1001);
  3. назовите число, в котором 511 десятков (5111);
  4. назовите число, в котором 72 сотни (7206);
  5. какое число предшествует числу 3213 (3212).

– Расположите полученные числа, начиная с наименьшего.

Какое зашифрованное слово получили? (Алгоритм.)

Оцените свою работу, отметив галочкой соответствующий смайлик.

III. Сообщение темы урока. «Порядок действий. Алгоритм»

– Что же такое «Алгоритм»?

– Что такое «алгоритм», как вы поняли? (При работе с компьютерными программами очень важно соблюдать порядок действий – алгоритм.)

– Выполняя задания устного счета, мы действовали по алгоритму? (Да)

– Почему вы так считаете? (Потому что действовали в строгом порядке.)

– Какая тема урока? (Порядок действий – алгоритм.)

– Какие цели можем поставить? (Научиться правильно применять алгоритм к заданиям. Самостоятельно составлять алгоритм действий.)

IV. Актуализация знаний по математике

4.1 Повторение таблицы умножения. Математический пазл.

– Ребята, вы любите составлять «Пазлы»? С помощью математического «Пазла» мы проверим таблицу умножения. Чтобы выполнить это задание, нам нужен алгоритм.

Алгоритм работы с «Математическим пазлом».

  1. Запустить программу.
  2. Прочитать пример, решить его.
  3. С помощью мыши и курсора нажать на кнопку правильного ответа.
  4. Чтобы перейти к следующей таблице, нажми кнопку «перейти».

V. Работа над темой урока

5.1 Работа над числовыми выражениями.

– Давайте вспомним, что такое алгоритм?

– В математике порядок действий тоже очень важен. Давайте выполним задание: разбор примера на порядок действий.

– Что нужно сделать, чтобы решить эти математические выражения? (Знать алгоритм решения числовых выражений.)

Вывод: что бы ответ в выражении получился верным, необходимо правильно выполнить алгоритм решения выражения.

Решение математических выражений

  1. (58 + 19) – 28 + (70 – 36) =
  2. (68 – 19) : 7 + (72 – 48) : 4 = 13

Алгоритм решения числовых выражений:

1. Рассмотри выражение.
2. Выясни, есть ли в нём скобки.
3. Если есть, то найди значение выражения в скобках( ).
4. Затем выполни умножение или деление по порядку слева направо * или :
5. Затем выполни сложение или вычитание по порядку слева направо + или –

4.2 Творческая работа над задачей.

Алгоритм работы над задачей.

– Ребята, необходимо ли использовать алгоритм при решении текстовых задач? (Да)

– Почему? (Потому, что действуя последовательно, мы дадим правильный ответ на вопрос задачи?)

– Ребята, представьте себе, что к вам обратился автор учебника математики с просьбой: разработать алгоритм действий для решения задачи.

– Поработаем в парах. Расположите этапы решения задачи в правильной последовательности на чистом листе бумаги, рассуждайте вместе, советуйтесь.

(Один ученик работает у доски)

1. Прочти задачу.
2. Назови условие.
3. Назови требование.
4. Запиши кратко, если необходимо.
5. Составь план решения.
6. Реши задачу.
7. Назови ответ.

– Посмотрите на работу, выполненную у доски.

– Допущены ли ошибки? Нет ошибок.

– Были ли вами допущены ошибки? Сверьте с доской.

– Обязательно ли соблюдать порядок действий алгоритма при решении задачи? (Да!)

– Почему? (Следование по алгоритму приводит к правильному выполнению задачи.)

Оцените свою работу, отметив галочкой соответствующий смайлик.

Нужно придумать задачу на движение и оформить ее в виде математического проекта.

Работа с объектами в программе Paint. Дан набор картинок, вам необходимо выбрать по желанию пару движущихся объектов для создания проекта, представляющих движение разного вида.

Принцип работы с инструментами: выделение, перемещение, перетаскивание, линии, надпись.

Оцените свою работу, отметив галочкой соответствующий смайлик.

5.3 Умножение на однозначное число.

Составление алгоритма умножения на однозначное число столбиком.

– А сейчас мы будем работать с умножением на однозначное число столбиком.

Вспомните алгоритм умножения, воспроизведите его на доске.

Работа в программе «Элвин и бурундуки».

VI. Итог урока

– Сегодня на уроке часто звучало слово алгоритм.

– Что же такое алгоритм? (Порядок при выполнении каких-либо действий)

Насколько он необходим? (Следование по алгоритму приводит к правильному выполнению задачи)

В течение урока вы оценивали свою работу на листах. Посчитайте «улыбающиеся» смайлики и поставьте себе оценку.

  • 5 смайликов оценка «5»,
  • 4 смайлика, оценка «4».

VII. Рефлексия

Ребята выскажите своё мнение о работе на уроке.

Сегодня …

  • было интересно…
  • было трудно…
  • я научился…
  • у меня получилось…

Когда мы работаем с различными математическими выражениями, включающими в себя цифры, буквы и переменные, нам приходится выполнять большое количество арифметических действий: деление и умножение, сложение и вычитание степеней и др. Когда нужно сделать расчет и преобразование или вычитание значение, очень важно соблюдать правильную очередность или расстановку этих действий. Другими словами, действия в арифметике имеют свой особый порядок выполнения. Порядок действий в математике и для любого математика крайне важен.

В этой не слишком длинной и сложной статье мы расскажем, какие действия должны делаться математически в первую очередь, а какие после (к примеру, сначала идет деление или умножение). Для начала разберем несколько простых выражений, в которых есть только переменные или числовые значения или символы, а также знаки деления, умножения, вычитания и сложения (к примеру, пять плюс ноль равно пять). Потом возьмем примеры со скобками и рассмотрим, в каком порядке следует решать эти примеры по действиям. В третьей части мы приведем нужный порядок преобразований и вычислений в тех примерах по действиям, которые включают в себя знаки корней, степеней и других функций.

Порядок вычисления простых выражений

Определение 1

В случае выражений без скобок порядок действий определяется однозначно:

  1. Все действия выполняются слева направо.
  2. Сперва мы выполняем деление и умножение, во вторую – вычитание и сложение (нужно прибавлять). Теперь понятен ответ на вопрос, что первое деление или умножение.

Смысл этих правил легко уяснить. Традиционный порядок записи слева направо определяет основную последовательность вычислений, а необходимость сначала умножить или разделить объясняется самой сутью этих операций.

Возьмем для наглядности этого двойного правила несколько задач. Мы использовали только самые простые числовые выражения, чтобы все вычисления можно было провести в уме. Так можно быстрее запомнить нужный порядок и быстро получить проверочные результаты.

Пример с прибавлением и вычитанием 1

Условие: вычислите, сколько будет 7−3+6.

Решение

В нашем выражении или высказывании, которое обычно решают средние классы, скобок нет, умножение и деление также отсутствуют, поэтому выполняем все действия в указанном порядке. Вначале делаем минус три из семи, затем делаем плюс к остатку шесть и в итоге получаем десять. Вот запись всего решения:

7−3+6=4+6=10

Ответ: 7−3+6=10.

Пример на умножение и деление 2

Условие: в каком порядке будут выполняться вычисления в выражении 6:2·8:3?

Решение

Чтобы дать ответ на этот вопрос, что делается первым деление или умножение, перечитаем правило для выражений без кавычек (скобок), сформулированное нами до этого. У нас здесь есть только умножение и деление, значит, мы сохраняем записанный порядок того, что нужно вычесть, и считаем последовательно слева направо.

Ответ: сначала выполняем деление шести на два, результат умножаем на восемь и получившееся в итоге число делим на три.

Пример 3

Условие: подсчитайте, сколько будет 17−5·6:3−2+4:2.

Решение

Сначала определим верный порядок действий (приоритетность), поскольку у нас здесь есть все основные компоненты арифметических операций – сложение, вычитание, умножение, деление. Первым делом нам надо делить и перемножать. Что сначала деление или умножение? Эти действия не имеют приоритета друг перед другом, поэтому выполняем их в написанном порядке слева направо. То есть 5 надо умножить на 6 и получить 30, потом 30 разделить на 3 и получить 10. После этого делим 4 на 2, это 2. Подставим найденные значения в исходное выражение:

17−5·6:3−2+4:2=17−10−2+2

Здесь уже нет ни деления, ни умножения, поэтому делаем оставшиеся вычисления по порядку и получаем ответ:

17−10−2+2=7−2+2=5+2=7

Ответ: 17−5·6:3−2+4:2=7.

Пока порядок выполнения действий не заучен твердо, можно расставить над знаками арифметических действий цифры, означающие порядок вычисления. Например, для задачи выше мы могли бы записать так:

Порядок вычисления простых выражений.

Если у нас есть буквенные выражения, то с ними мы поступаем точно так же: сначала умножаем и делим, затем складываем и вычитаем.

Что такое действия первой и второй ступени

Иногда в справочниках все арифметические действия делят на действия первой и второй ступени. Сформулируем нужное определение.

К действиям первой ступени относятся действия, где нужно вычитать и слагать, а ко второй – умножать и делить.

Зная эти названия, мы можем записать данное ранее правило относительно порядка действий так:

Определение 2

В выражении, в котором нет скобок, сначала надо выполнить действия второй ступени в направлении слева направо, затем действия первой ступени (в том же направлении).

Решение примеров по действиям в выражениях со скобками

Скобки сами по себе являются знаком, который сообщает нам нужный порядок выполнения действий. В таком случае нужное правило можно записать так:

Определение 3

Если в выражении есть скобки, то первым делом выполняется действие в них, после чего мы умножаем и делим, а затем складываем и вычитаем по направлению слева направо.

Что касается самого выражения в скобках, его можно рассматривать в качестве составной части основного выражения. При подсчете значения выражения в скобках мы сохраняем все тот же известный нам порядок действий. Проиллюстрируем нашу мысль примером.

Пример или образец задачи 4

Условие: вычислите, сколько будет равно 5+(7−2·3)·(6−4):2.

Решение

В данном выражении есть скобки, поэтому начнем с них. Первым делом вычислим, сколько будет 7−2·3. Здесь нам надо умножить 2 на 3 и вычесть результат из 7:

7−2·3=7−6=1

Считаем результат во вторых скобках. Там у нас всего одно действие: 6−4=2.

Теперь нам нужно подставить получившиеся значения в первоначальное выражение:

5+(7−2·3)·(6−4):2=5+1·2:2

Начнем с умножения и деления, потом выполним вычитание и получим:

5+1·2:2=5+2:2=5+1=6

На этом вычисления можно закончить.

Ответ: 5+(7−2·3)·(6−4):2=6.

Не пугайтесь, если в условии у нас содержится выражение, в котором одни скобки заключают в себе другие. Нам надо только применять правило выше последовательно по отношению ко всем выражениям в скобках. Возьмем такое задание.

Пример 5

Условие: вычислите, сколько будет 4+(3+1+4·(2+3)).

Решение

У нас есть скобки в скобках. Начинаем с 3+1+4·(2+3), а именно с 2+3. Это будет 5. Значение надо будет подставить в выражение и подсчитать, что 3+1+4·5. Мы помним, что сначала надо умножать, а потом слагать: 3+1+4·5=3+1+20=24. Подставив найденные значения в исходное выражение, вычислим ответ: 4+24=28.

Ответ: 4+(3+1+4·(2+3))=28.

Иначе говоря, при вычислении значения выражения, включающего скобки в скобках, мы начинаем с внутренних скобок и продвигаемся к внешним.

Допустим, нам надо найти, сколько будет (4+(4+(4−6:2))−1)−1. Начинаем с выражения во внутренних скобках. Поскольку 4−6:2=4−3=1, исходное выражение можно записать как (4+(4+1)−1)−1. Снова обращаемся к внутренним скобкам:  4+1=5. Мы пришли к выражению (4+5−1)−1. Считаем 4+5−1=8 и в итоге получаем разность 8-1, результатом которой будет 7.

Порядок вычисления в выражениях со степенями, корнями, логарифмами и иными функциями

Если у нас в условии стоит выражение со степенью, корнем, логарифмом  или тригонометрической функцией (синусом, косинусом, тангенсом и котангенсом) или иными функциями, то первым делом мы вычисляем значение функции. После этого мы действуем по правилам, указанным в предыдущих пунктах. Иначе говоря, функции по степени важности приравниваются к выражению, заключенному в скобки.

Разберем пример такого вычисления.

Пример 6

Условие: найдите, сколько будет (3+1)·2+62:3−7.

Решение

У нас есть выражение со степенью, значение которого надо найти в первую очередь. Считаем: 62=36. Теперь подставим результат в выражение, после чего оно примет вид (3+1)·2+36:3−7.

Дальше действуем по знакомому алгоритму: считаем, сколько у нас получится в скобках, потом в оставшемся выражении выполняем умножение и деление, а следом – сложение и вычитание (слагаемое и вычитаемое).

(3+1)·2+36:3−7=4·2+36:3−7=8+12−7=13

Ответ: (3+1)·2+62:3−7=13.

В отдельной статье, посвященной вычислению значений выражений, мы приводим и другие, более сложные примеры подсчетов в случае выражений с корнями, степенью и др. Рекомендуем вам с ней ознакомиться.

Добавить комментарий