Как составить баланс мощности для исследуемой цепи

Баланс мощностей: сумма мощностей, выделяемых источниками, равна сумме мощностей, потребляемых приемниками.

А теперь давайте рассмотрим по порядку и на конкретных примерах, что такое баланс мощностей и как он составляется для различных цепей постоянного тока (о балансе мощностей цепи переменного тока, мы поговорим позже).

Чтобы было более понятно, сразу рассмотрим пример.

Рисунок 1 - Электрическая схема цепи, состоящая из одного резистора и одного источника напряжения
Рисунок 1 – Электрическая схема цепи, состоящая из одного резистора и одного источника напряжения

Имеется схема цепи, изображенная на рисунке 1. Дано значение ЭДС E и сопротивление резистора R. Требуется составить баланс мощностей для данной цепи.

Для начала нужно определить ток:

I=E/R=10/10=1 (A)

Следующим шагом определим мощности источника и приемника. Поскольку это цепь постоянного тока (в цепи действует постоянный источник напряжения), то мощность, отдаваемая источником и мощность, потребляемая приемником, (в данной схеме цепи, приемник только один – это резистор R ) будет активной.

Определим активную мощность, отдаваемую источником напряжения E:

Pист=I·E=1·10=10 (Вт)(Единица измерения активной мощности “Ватт”)

Активная мощность обозначается буквой P. Индекс “ист” сокращенно от “источников”.

Определяем активную мощность приемника:

Рисунок 2 - Формула активной мощности приемника
Рисунок 2 – Формула активной мощности приемника

Для определения активной мощности источника, применяется формула произведения тока I через источник на величину E источника. Для определения активной мощности приемника, применяется формула произведения квадрата тока через приемник (в данном случае приемником является резистор R) на сопротивление этого резистора. Если ранее было известно напряжение резистора, то можно применить формулу для нахождения активной мощности приемника:

Pпр=Ur·I (Индекс “пр” сокращенно от “приемников”).

Таким образом, в источниках напряжения (ЭДС) происходит генерация электрической энергии, а в элементе R происходит потребление энергии. Электрическая энергия преобразуется в тепловую, т. е. резистор R потребляет электрическую энергию, отдаваемую источником E.

Отсюда следует правило баланса мощностей:

Сумма мощностей, выделяемых источниками, равна сумме мощностей, потребляемых приемниками.

Для нашей задачи, схема цепи которой изображена на рисунке 1, запишем баланс активных мощностей:

Pист=Pпр

10 (Вт)=10 (Вт). Баланс выполняется.

Для расчета электрических цепей и проверки правильности найденных токов, делаем проверку баланса мощностей. Если полученная мощность приемников отличается от полученной мощности источников, то баланс мощностей нарушается. Это говорит о том, что токи в цепи найдены неверно. Погрешность баланса мощностей может составлять до 3%.

Т. е отличие между Pист и Pпр не должно превышать 3%. Для определения погрешности, пользуются следующей формулой:

Рисунок 3 - Погрешность баланса мощностей
Рисунок 3 – Погрешность баланса мощностей

В данном случае, погрешность равна нулю и баланс выполняется.

Рассмотрим следующий пример.

Требуется составить баланс мощностей для цепи, изображенной на рисунке 4.

Рисунок 4 - Электрическая схема цепи для составления баланса мощностей
Рисунок 4 – Электрическая схема цепи для составления баланса мощностей

Для начала определим ток в цепи. Резисторы R1 и R2 включены последовательно. Следовательно, общее сопротивление цепи, запишется как:

Rобщ=R1+R2=10+10=20 (Ом)

Тогда ток по закону Ома:

Рисунок 5 - Ток по закону Ома для цепи, изображенной на рисунке 4
Рисунок 5 – Ток по закону Ома для цепи, изображенной на рисунке 4

Так как все ЭДС и сопротивления известны, а ток в цепи мы нашли, определим активную мощность источников и приемников.

Рисунок 6 - Активная мощность приемников для цепи, изображенной на рисунке 4
Рисунок 6 – Активная мощность приемников для цепи, изображенной на рисунке 4

Активная мощность, потребляемая резисторами, составляет 20 (Вт) Определим активную мощность источников.

Pист=I·E1+I·E3-I·E2=1·10+1·30-1·20=20 (Вт)

Активная мощность, отдаваемая всеми источниками ЭДС, составляет 20 (Вт)

Запишем баланс мощностей для данной цепи:

Рисунок 7 - Баланс мощностей для цепи, изображенной на рисунке 4
Рисунок 7 – Баланс мощностей для цепи, изображенной на рисунке 4

Баланс мощностей выполняется, погрешность равна нулю.

В левой части равенства получили сумму мощностей, потребляемых приемниками, а в правой части равенства получили сумму мощностей, генерируемых источниками. В данном случае ЭДС E2 работает как приемник, например, аккумулятор в режиме зарядки.

Если действие ЭДС E и тока через Eсовпадают по направлению, то произведение E·I берется со знаком “+”, если не совпадает, то “-“. В нашей цепи I и E2 направлены навстречу друг другу, поэтому произведение I·E2 взяли с минусом.

Баланс мощностей с источниками тока, мы рассмотрим в следующих статьях.

Если понравилась статья, подписывайтесь на канал и не пропускайте новые публикации.

Читайте также:

1. Как электроэнергия передается от электростанций до наших домов;

2. Что такое электрический ток – простыми словами;

В любой
электрической цепи должен соблюдаться
энергетический баланс – баланс мощностей:
алгебраическая сумма мощностей всех
источников энергии равна арифметической
сумме мощностей всех приемников энергии:

.

Мощность
источника ЭДС положительна, если ток в
ветви с источником совпадает по
направлению с ЭДС, такой источник
является генератором.

Мощность
источника ЭДС отрицательна, если ток в
ветви с источником направлен противоположно
ЭДС, в этом случае источник потребляет
энергию.

При
определении мощности источника тока
напряжение
берется
как разность потенциалов между узлом,
к которому подходит ток источникаи узлом, от которого он отходит.

1.8.6. Метод контурных токов

При
расчете методом контурных токов полагают,
что в каждом независимом контуре течет
неизвестный контурный ток, а источники
тока создают известные контурные токи.
Относительно неизвестных контурных
токов составляют систему уравнений
вида:

где
– контурные токи;

– собственные сопротивления контуров;

– сопротивления смежной ветви между
контурами.

Сопротивление
смежной ветви между «k»
и «m» контурами ()
входит в уравнение со знаком «+», если
направления контурных токовивдоль этой ветви одинаковы, и со знаком
«-», если их направления противоположны.

– контурные ЭДС, равные алгебраической
сумме э.д.с. этого контура. В них со знаком
«+» входят те ЭДС, направления которых
совпадают с обходом контура.

Токи
в ветвях находят как суперпозицию
контурных токов.

Если
схема содержит не только источники
ЭДС., но и источники тока, то полагают,
что ток источника тока замыкается по
любым ветвям так, что вместе с ветвью
источника создается замкнутый контур.
Падение напряжения, вызванное током
такого источника на каждом из сопротивлений
контура, учитывается при записи левой
части уравнений. Эти напряжения можно
также учесть с обратным знаком в правой
части уравнений.

ПРИМЕР
1.6.1

Дано:
В;А;Ом; Ом;Ом;Ом;Ом.

Определить
токи в ветвях методом контурных токов

.

Решение:

В схеме
6 ветвей, 4 узла, 1 источник тока. Число
уравнений, которые необходимо составить
методом контурных токов:
.

Задаем
направление контурных токов
и,
полагая, что ток источника тока замыкается
по резисторами.

Составляем
систему уравнений:

Подставляем
числовые значения:

Решая
эти уравнения, находим контурные токи:

А,

А.

Искомые
токи:
A;

А;

А;

А;

А.

Составим
уравнение баланса мощностей:

.

Вт,

Вт.

,
пусть,
тогдаВ.

1.6.1.
Составить уравнения для расчета цепи
методом контурных токов.

Дано:
Ом;Ом;Ом;Ом;В;А.

Определить
токи в ветвях методом контурных токов.

1.6.2.
Составить уравнения для расчета цепи
методом контурных токов.

Дано:
Ом;Ом;Ом;В;А.

Определить
токи в ветвях методом контурных токов.

1.6.3.
Составить уравнения для расчета цепи
методом контурных токов.

Дано:
 Ом; Ом; В; В; В; А.

Определить
токи в ветвях методом контурных токов.

1.6.4.
Составить уравнения для расчета цепи
методом контурных токов.

Дано:
Ом;В;В;В;В;А.

Определить
токи в ветвях методом контурных токов.

1.6.5.
Составить уравнения для расчета цепи
методом контурных токов.

Дано:
Ом;Ом;В;В;А.

Определить
токи в ветвях методом контурных токов.

1.6.6.
Составить уравнения для расчета цепи
методом контурных токов.

Дано:
Ом;А;Ом;В;В.

Определить
токи в ветвях методом контурных токов.

1.6.7. Составить уравнения для расчета
цепи методом контурных токов.

Дано:
Ом;Ом;Ом;Ом;Ом;Ом;В;В;В;А;А.

Определить
токи в ветвях методом контурных токов.

Соседние файлы в предмете [НЕСОРТИРОВАННОЕ]

  • #
  • #

    28.05.2015444.78 Кб10Э1.pdf

  • #
  • #
  • #
  • #
  • #
  • #
  • #
  • #
  • #

Баланс мощностей в цепи постоянного тока

Баланс мощностей является следствием закона сохранения энергии — суммарная мощность вырабатываемая (генерируемая) источниками электрической энергии равна сумме мощностей потребляемой в цепи.

Источники E1 и E2 вырабатывают электрическую энергию, т.к. направление ЭДС и тока в ветвях с источниками совпадают (если ЭДС и ток в ветвях направлены в противоположную сторону, то источник ЭДС потребляет энергию и его записывают со знаком минус). Баланс мощностей для заданной цепи запишется так:

С учетом погрешности расчетов баланс мощностей получился.

Какова допустимая погрешность?? У меня выходит 0,561

По идее баланс мощности должен равняться нулю, но так как мы округляем некоторые значения при расчете — возникает погрешность, которая может составлять примерно 0,1 — 5% от потребляемой мощности.

Про знаки ЭДС сказано про знаки мощностей приёмников — нет.

Баланс мощностей

Содержание:

Баланс мощностей

Для любой электрической цепи суммарная мощность , развиваемая источниками электрической энергии (источниками тока и ЭДС), равна суммарной мощности , расходуемой потребителями (резисторами):

Мощность, рассеиваемая резистором, , мощность источника ЭДС , мощность источника тока .

Мощности, рассеиваемые резисторами, всегда положительные, в то время как мощности источников электрической энергии, в зависимости от соотношения направления падений напряжения и тока в них, могут иметь любой знак. Мощность положительна, когда направление тока через источник тока противоположно падению напряжения на нем. Он питает электрическую цепь. В противном случае источник питания является отрицательным, и вы являетесь потребителем электрической энергии. Следует заметить, что направление падения напряжения всегда противоположно направлению ЭДС, поэтому для источника ЭДС условием положительной мощности является совпадение направлений ЭДС и тока.

Пример расчёта разветвлённой цепи постоянного тока

Рассмотрим решение задачи для цепи, представленной на рис. 1.6, описанными выше методами расчёта.

Дано

1) все неизвестные токи, используя законы Кирхгофа; показать, что баланс мощностей имеет место;

1) Применение законов Кирхгофа. Баланс мощностей.

Всего в схеме семь ветвей =7, ветвей с источниками тока = 1, число неизвестных токов равно , количество узлов – , число уравнений по первому закону Кирхгофа , число уравнений по второму закону Кирхгофа –

Возможно вам будут полезны данные страницы:

Выберем положительные направления токов и обозначим их стрелками. Выберем и обозначим стрелками направления обхода трёх независимых контуров: Составим систему уравнений по законам Кирхгофа

для узла а ;

для узла b

для узла с или ;

для контура ,

для контура

для контура

Полученные уравнения после подстановки в них числовых значений будут иметь следующий вид:

Решение данной системы:

Баланс мощностей для рассматриваемой цепи

Получено тождество 252 Вт = 252 Вт.

Примечание: падение напряжения на источнике тока определено по второму закону Кирхгофа для контура, содержащего и , как

Баланс мощностей

В любой электрической цепи должен соблюдаться энергетический баланс -баланс мощностей: алгебраическая сумма мощностей всех источников равна арифметической сумме мощностей всех приемников энергии.

В левой части равенства слагаемое берется со знаком “+” если Е и I совпадают по направлению и со знаком если не совпадают.

Если направления ЭДС и тока I в источнике противоположны, то физически это означает, что данный источник работает в режиме потребителя.

На странице -> решение задач по электротехнике собраны решения задач и заданий с решёнными примерами по всем темам теоретических основ электротехники (ТОЭ).

Услуги:

Присылайте задания в любое время дня и ночи в ➔

Официальный сайт Брильёновой Натальи Валерьевны преподавателя кафедры информатики и электроники Екатеринбургского государственного института.

Все авторские права на размещённые материалы сохранены за правообладателями этих материалов. Любое коммерческое и/или иное использование кроме предварительного ознакомления материалов сайта natalibrilenova.ru запрещено. Публикация и распространение размещённых материалов не преследует за собой коммерческой и/или любой другой выгоды.

Сайт предназначен для облегчения образовательного путешествия студентам очникам и заочникам по вопросам обучения . Наталья Брильёнова не предлагает и не оказывает товары и услуги.

Баланс мощностей электрической цепи

Электрическая цепь предполагает передачу определенной мощности от источника к потребителю. При этом, должно сохраняться равновесие, если схема состоит из сопротивлений, индуктивности. Статья раскроет тему, что такое баланс мощностей в простой цепи переменного тока. Будет описан этот показатель для постоянного напряжения, приведены формулы вычисления.

Определение

Вычисление данного параметра в электрической цепи основано на известном законе сохранения энергии. Из него следует, что мгновенные показатели, передаваемые от источника, должны быть равны сумме значений, которую получают потребители.

Баланс для мощностей представляет собой общеизвестный нам закон сохранения энергии. Выражение данного закона в этом случае — сумма всей энергии от источников (генератора или блока питания) равняется сумме, которую получают приемники.

Можно использовать альтернативный вариант. Для него формула при этом имеет вид как на рисунке ниже:

Стоит принять во внимание, что любая электрическая схема имеет сопротивление. Описываемая величина с сопутствующими значениями рассчитывается с учетом разновидности напряжений. Принимая во внимание закон сохранения энергии, стоит учитывать, что по электрической схеме всегда передается энергия.

Назначение

Составление простого баланса мощностей используют для точного определения расхождений между передаваемой и получаемой энергиями. Также, уравнение баланса мощностей применяется для решения многих электротехнических задач.

Переменный ток

Баланс мощностей в простой цепи переменного тока рассчитывается по более сложной формуле. Баланс мощностей в простой цепи синусоидального тока учитывает комплексные, реактивные и активные параметры.

  1. Комплексная. Состоит из мощностей передаваемых и получаемых. Необходимо будет выполнить расчет, в котором все слагаемые левой части формулы являются положительными (идут со знаками +), при условии, когда совпадает направление заряженных частиц «Ik» с «ЭДС». Должно соблюдаться правило не совпадения «Jk» с направлением напряжения «Uk». Если условия не соответствуют установленным требованиям, все данные левой части формулы становятся отрицательными. Формула приведена ниже.
  2. Активные. Значения, отдающиеся источником равны принимаемым потребителями. Вычисление активной мощности полностью зависит от представленной комплексной энергии. Активное значение является расходуемым, невосполнимым, так как уходит на работу приборов. Данный метод вычисления и его формула представлены ниже.
  3. Реактивная мощность источника с потребителем равны. Единственное отличие заключается в том, что этот параметр не растрачиваемый. Данный показатель просто циркулирует по схеме. Формула представлена ниже.

Главное отличие рассматриваемой величины — это наличие ненаправленного движения переменного тока по проводникам. Параметр такой схемы может быть увеличен или уменьшен (например, генератором), что может повлиять на конечный результат.

Постоянный ток

В электрической цепи постоянного тока напряжение и мощность всегда одного значения. Поэтому сделать вычисление намного проще. Можно сделать расчет на основе достаточно простого примера.

  1. В цепи имеется ЭДС «Е» и резистор «R». При расчете должна быть найдена сила тока.
  2. I=E/R. Подставляем имеющиеся значения, получаем I=10/10=1 ампер.
  3. Так мы нашли силу тока. Теперь нам будет нужен параметр мощности приемника «R» и источника.
  4. Pист=I×E=1×10=10 Ватт. Это значение для источника.
  5. Теперь для того, чтобы найти Р для приемника делаем расчет как на рисунке ниже.
  6. Теперь составим общий баланс — 10 ватт=10 ватт. Данный подсчет показал, что для представленной схемы сохраняется равновесие.

При вычислении параметров этой схемы имеет смысл учесть расход приемника. Резистор при нагреве выделяет тепло, а значит выполняется преобразование электричества в тепло. Беря во внимание физический закон сохранения, тепло выделяемое резистором также будет равно 10 Ватт.

Заключение

В статье было приведено описание, способ расчета баланса мощностей для постоянного и переменного тока. Для электротехники данный баланс очень важен, ведь с помощью него можно выполнять различные расчеты.

Видео по теме

[spoiler title=”источники:”]

http://natalibrilenova.ru/balans-moschnostej/

http://profazu.ru/knowledge/electrical/balans-moshhnostej.html

[/spoiler]

ads

Баланс мощностей является следствием закона сохранения энергии — суммарная мощность вырабатываемая (генерируемая) источниками электрической энергии равна сумме мощностей потребляемой в цепи.

Баланс мощностей используют для проверки правильности расчета электрических цепей. 

Здесь мы рассмотрим баланс для цепей постоянного тока.

Например. У нас есть электрическая цепь.

Баланс мощности

Мы нашли все токи.

шаг 2

Для проверки правильности решения  составляем баланс мощностей.

шаг 3

Источники E1 и E2 вырабатывают электрическую энергию, т.к. направление ЭДС и тока в ветвях с источниками совпадают (если  ЭДС и ток в ветвях направлены в противоположную сторону, то источник ЭДС потребляет энергию и его записывают со знаком минус). Баланс мощностей для заданной цепи запишется так:

шаг 3 - копия

С учетом погрешности расчетов баланс мощностей получился.

Баланс мощностей электрической цепи

Электрическая цепь предполагает передачу определенной мощности от источника к потребителю. При этом, должно сохраняться равновесие, если схема состоит из сопротивлений, индуктивности. Статья раскроет тему, что такое баланс мощностей в простой цепи переменного тока. Будет описан этот показатель для постоянного напряжения, приведены формулы вычисления.

Определение

Вычисление данного параметра в электрической цепи основано на известном законе сохранения энергии. Из него следует, что мгновенные показатели, передаваемые от источника, должны быть равны сумме значений, которую получают потребители.

Баланс для мощностей представляет собой общеизвестный нам закон сохранения энергии. Выражение данного закона в этом случае — сумма всей энергии от источников (генератора или блока питания) равняется сумме, которую получают приемники.

Баланс мощностей

Можно использовать альтернативный вариант. Для него формула при этом имеет вид как на рисунке ниже:

Баланс мощностей альтернативный вариант

Стоит принять во внимание, что любая электрическая схема имеет сопротивление. Описываемая величина с сопутствующими значениями рассчитывается с учетом разновидности напряжений. Принимая во внимание закон сохранения энергии, стоит учитывать, что по электрической схеме всегда передается энергия.

Назначение

Составление простого баланса мощностей используют для точного определения расхождений между передаваемой и получаемой энергиями. Также, уравнение баланса мощностей применяется для решения многих электротехнических задач.

Переменный ток

Баланс мощностей в простой цепи переменного тока рассчитывается по более сложной формуле. Баланс мощностей в простой цепи синусоидального тока учитывает комплексные, реактивные и активные параметры.

  1. Комплексная. Состоит из мощностей передаваемых и получаемых. Необходимо будет выполнить расчет, в котором все слагаемые левой части формулы являются положительными (идут со знаками +), при условии, когда совпадает направление заряженных частиц «Ik» с «ЭДС». Должно соблюдаться правило не совпадения «Jk» с направлением напряжения «Uk». Если условия не соответствуют установленным требованиям, все данные левой части формулы становятся отрицательными. Формула приведена ниже.формула с комплексными параметрами
  2. Активные. Значения, отдающиеся источником равны принимаемым потребителями. Вычисление активной мощности полностью зависит от представленной комплексной энергии. Активное значение является расходуемым, невосполнимым, так как уходит на работу приборов. Данный метод вычисления и его формула представлены ниже.формула с активными параметрами
  3. Реактивная мощность источника с потребителем равны. Единственное отличие заключается в том, что этот параметр не растрачиваемый. Данный показатель просто циркулирует по схеме. Формула представлена ниже.

Формула с реактивными параметрами

Главное отличие рассматриваемой величины — это наличие ненаправленного движения переменного тока по проводникам. Параметр такой схемы может быть увеличен или уменьшен (например, генератором), что может повлиять на конечный результат.

Постоянный ток

В электрической цепи постоянного тока напряжение и мощность всегда одного значения. Поэтому сделать вычисление намного проще. Можно сделать расчет на основе достаточно простого примера.

  1. В цепи имеется ЭДС «Е» и резистор «R». При расчете должна быть найдена сила тока.Надо найти баланс мощностей для схемы
  2. I=E/R. Подставляем имеющиеся значения, получаем I=10/10=1 ампер.
  3. Так мы нашли силу тока. Теперь нам будет нужен параметр мощности приемника «R» и источника.
  4. Pист=I×E=1×10=10 Ватт. Это значение для источника.
  5. Теперь для того, чтобы найти Р для приемника делаем расчет как на рисунке ниже.Находим мощность приемника по формуле
  6. Теперь составим общий баланс — 10 ватт=10 ватт. Данный подсчет показал, что для представленной схемы сохраняется равновесие.

При вычислении параметров этой схемы имеет смысл учесть расход приемника. Резистор при нагреве выделяет тепло, а значит выполняется преобразование электричества в тепло. Беря во внимание физический закон сохранения, тепло выделяемое резистором также будет равно 10 Ватт.

Заключение

В статье было приведено описание, способ расчета баланса мощностей для постоянного и переменного тока. Для электротехники данный баланс очень важен, ведь с помощью него можно выполнять различные расчеты.

Видео по теме



Добавить комментарий