Аннотация
Перед тем как перейти к рассмотрению конструкции и работы разного типа антенн, рассмотрим одну из важнейших характеристик антенны – диаграмму направленности и те параметры, которые из нее напрямую вытекают.
Рекомендую, также, ознакомиться с предыдущей статьёй – Ликбез: основы теории по антеннам.
Введение
Антенна, вне зависимости от конструкции, обладает свойством обратимости (может работать как на прием, так и на излучение). Часто в радиорелейных трактах одна и та же антенна может быть подключена одновременно к приемнику и передатчику. Это позволяет излучать и принимать сигнал в одном направлении на разных частотах.
Почти все параметры приемной антенны соответствуют параметрам передающей антенны, но иногда имеют несколько другой физический смысл.
Несмотря на то, что приемная и передающая антенны обладают принципом двойственности, в конструктивном отношении они могут существенно отличаться. Связано это с тем, что передающая антенна должна пропускать через себя значительные мощности для передачи электромагнитного сигнала на большие (максимально возможные) расстояния. Если же антенна работает на прием, то она взаимодействует с полями очень малой напряженности. Вид токопередающей конструкции антенны часто определяет ее конечные габариты.
Пожалуй, основная характеристика любой антенны это диаграмма направленности. Из нее вытекает множество вспомогательных параметров и такие важные энергетические характеристики как коэффициент усиления и коэффициент направленного действия.
Диаграмма направленности
Диаграмма направленности (ДН) – это зависимость напряженности поля, создаваемого антенной на достаточно большом расстоянии, от углов наблюдения в пространстве. В объеме диаграмма направленной антенны может выглядеть так, как показано на рисунке 1.
Рисунок 1
То, что изображено на рисунке выше также еще называют пространственной диаграммной направленностью, которая является поверхностью объема и может иметь несколько максимумов. Главный максимум, выделенный на рисунке красным цветом, называется главным лепестком диаграммы и соответствует направлению главного излучения (или приема). Соответственно первые минимальные или (реже) нулевые значения напряженности поля вокруг главного лепестка определяют его границу. Все остальные максимальные значения поля называются боковыми лепестками.
На практике встречаются различные антенны, которые могут иметь несколько направлений максимального излучения, или не иметь боковых лепестков вовсе.
Для удобства изображения (и технического применения) ДН их принято рассматривать в двух перпендикулярных плоскостях. Как правило, это плоскости электрического вектора E и магнитного вектора H (которые друг другу в большинстве сред перпендикулярны), рисунок 2.
Рисунок 2
В некоторых случаях ДН рассматривают в вертикальной и горизонтальной плоскостях по отношению к плоскости Земли. Плоские диаграммы изображают полярной или декартовой (прямоугольной) системами координат. В полярных координатах диаграмма более наглядна, и при наложении ее на карту можно получить представление о зоне действия антенны радиостанции, рисунок 3.
Рисунок 3
Представление диаграммы направленности в прямоугольной системе координат более удобно для инженерных расчетов, такое построение чаще применяется для исследования самой структуры диаграммы. Для этого диаграммы строят нормированными, с главным максимумом, приведенным к единице. На рисунке ниже приводится типичная нормированная диаграмма направленности зеркальной антенны.
Рисунок 4
В том случае, когда интенсивность бокового излучения довольно небольшая и в линейном масштабе измерение бокового излучения затруднительно, применяют логарифмический масштаб. Как известно децибелы маленькие значения делают большими, а большие – маленькими, поэтому та же самая диаграмма в логарифмическом масштабе выглядит так, как показано ниже:
Рисунок 5
Из одной только диаграммы направленности можно вытащить довольно большое количество важных для практики характеристик. Исследуем подробнее диаграмму, изображенную выше.
Один из наиболее важных параметров – это ширина главного лепестка по нулевому излучению θ0 и ширина главного лепестка по уровню половинной мощности θ0,5. Половина мощности соответствует уровню 3 дБ, или уровню 0,707 по напряженности поля.
Рисунок 6
Из рисунка 6 видно, что ширина главного лепестка по нулевому излучению составляет θ0 = 5,18 град, а ширина по уровню половины мощности θ0,5 = 2,15 град.
Также диаграммы оценивают по интенсивности бокового и обратного излучения (мощности боковых и задних лепестков), отсюда вытекает еще два важных параметры антенны – это коэффициент защитного действия, и уровень боковых лепестков.
Коэффициент защитного действия – это отношение напряженности поля, излученного антенной в главном направлении к напряженности поля, излученного в противоположном направлении. Если рассматривают ориентацию главного лепестка диаграммы в направлении на 180 градусов, то обратного – на 0 градусов. Возможны и любые другие направления излучения. Найдем коэффициент защитного действия рассматриваемой диаграммы. Для наглядности изобразим ее в полярной системе координат (рисунок 7):
Рисунок 7
На диаграмме маркерами m1,m2 изображены уровни излучения в обратном и прямом направлениях соответственно. Коэффициент защитного действия определяется как:
– в относительных единицах. То же самое значение в дБ:
.
Уровень боковых лепестков (УБЛ) принято указывать в дБ, показывая тем самым, насколько уровень бокового излучения слаб по сравнению с уровнем главного лепестка, рисунок 8.
Рисунок 8
УБЛ в районе -18 дБ считается довольно хорошим показателем для высоконаправленной антенны. На рисунке изображены уровни первых боковых лепестков. Аналогично можно указывать также уровни всех последующих, но практической ценности их значение имеет мало, а представляет скорее академический интерес. Дело в том, что первые боковые лепестки находятся как правило “ближе всех остальных” к максимуму диаграммы направленности и могут оказывать помехи. Например, если сопровождение объекта происходит на уровне главного лепестка диаграммы -3дБ, а уровень первого бокового лепестка близок к этому значению (например -5:7 дБ), то велика вероятность начать цеплять объект боковым излучением со всеми вытекающими отсюда последствиями (неправильное позиционирование, потеря объекта и др.). Низкий УБЛ необходим не только для радиолокации, но и для области связи, ведь наличие паразитного излучения это всегда дополнительные помехи.
Коэффициент направленного действия и коэффициент усиления
Это два немаловажных параметра любой антенной системы, которые напрямую вытекают из определения диаграммы направленности. КНД и КУ часто путают между собой. Перейдем к их рассмотрению.
Коэффициент направленного действия
Коэффициент направленного действия (КНД) – это отношение квадрата напряженности поля, созданного в главном направлении (Е02), к среднему значению квадрата напряженности поля по всем направлениям (Еср2). Как понятно из определения, КНД характеризует направленные свойства антенны. КНД не учитывает потери, так как определяется по излучаемой мощности. Из сказанного выше можно указать формулу для расчета КНД:
D=E02/Eср2
Если антенна работает на прием, то КНД показывает, во сколько раз улучшится отношение сигнал/шум по мощности, при замене направленной антенны ненаправленной, если помехи приходят равномерно со всех направлений.
Для передающей антенны КНД показывает, во сколько раз нужно уменьшить мощность излучения, если ненаправленную антенну заменить направленной, при сохранении одинаковых напряженностей поля в главном направлении.
КНД абсолютно ненаправленной антенны, очевидно, равно единице. Физически пространственная диаграмма направленности такой антенны выглядит в виде идеальной сферы:
Рисунок 9
Такая антенна одинаково хорошо излучает во всех направлениях, но на практике нереализуема. Поэтому это своего рода математическая абстракция.
Коэффициент усиления
Как уже было сказано выше, КНД не учитывает потери в антенне. Параметр, который характеризует направленные свойства антенны и учитывает потери в ней, называется коэффициентом усиления.
Коэффициент усиления (КУ) G – это отношение квадрата напряженности поля, созданного антенной в главном направлении (Е02), к среднему значению квадрата напряженности поля (Еоэ2), созданного эталонной антенной, при равенстве подводимых к антеннам мощностей. Также отметим, что при определении КУ учитываются КПД эталонной и измеряемой антенны.
Понятие эталонной антенны очень важно в понимании коэффициента усиления, и в разных частотных диапазонах используют разные типы эталонных антенн. В диапазоне длинных/средних волн за эталон принят вертикальный несимметричный вибратор длиной четверть волны (рисунок 10).
Рисунок 10
Для такого эталонного вибратора Dэ=3,28, поэтому коэффициент усиления длинноволновой/средневолновой антенны определяется через КНД так: G=D*ŋ/3,28, где ŋ – КПД антенны.
В диапазоне коротких волн в качестве эталонной антенны принимают симметричный полуволновый вибратор, для которого Dэ=1,64, тогда КУ:
G=D*ŋ/1,64
В диапазоне СВЧ (а это почти все современные Wi-Fi, LTE и др. антенны) за эталонный излучатель принят изотропный излучатель, дающий Dэ=1, и имеющий пространственную диаграмму, изображенную на рисунке 9.
Коэффициент усиления является определяющим параметром передающих антенн, так как показывает, во сколько раз необходимо уменьшить мощность, подводимую к направленной антенне, по сравнению с эталонной, чтобы напряженность поля в главном направлении осталась неизменной.
КНД и КУ в основном выражают в децибелах: 10lgD, 10lgG.
Заключение
Таким образом, мы рассмотрели некоторые полевые характеристики антенны, вытекающие из диаграммы направленности и энергетические характеристики (КНД и КУ). Коэффициент усиления антенны всегда меньше коэффициента направленного действия, так как КУ учитывает потери в антенне. Потери могут возникать из-за отражения мощности обратно в линию питания облучателя, затекания токов за стенки (например, рупора), затенение диаграммы конструктивными частями антенны и др. В реальных антенных системах разница между КНД и КУ может составлять 1.5-2 дБ.
Текущая версия страницы пока не проверялась опытными участниками и может значительно отличаться от версии, проверенной 13 января 2018 года; проверки требуют 17 правок.
У этого термина существуют и другие значения, см. ДН.
ДН типичной направленной антенны (азимутальная).
Диаграмма направленности (антенны) — графическое представление зависимости коэффициента усиления антенны или коэффициента направленного действия антенны от направления антенны в заданной плоскости[1]. Также термин «диаграмма направленности» применим к другим устройствам, излучающим сигнал различной природы, например акустическим системам. Диаграмма направленности антенны определяет также положение и размер слепой зоны антенны.
Основные положения[править | править код]
Диаграммой направленности (ДН) антенны по полю часто называют зависимость модуля комплексной амплитуды вектора напряженности электрической компоненты электромагнитного поля, создаваемого антенной в дальней зоне, от угловых координат и точки наблюдения в горизонтальной и вертикальной плоскости, то есть зависимость .
ДН обозначается символом . ДН нормируют — все значения делят на максимальное значение и обозначают нормированную ДН символом . Очевидно, .
Также можно определить ДН как комплексную величину. В этом случае, аналогично указанному выше, ДН есть:
- ,
где — комплексная амплитуда вектора в точке дальней зоны.
ДН характеризуется шириной её главного луча на уровне 0,5 от её максимального значения по мощности и коэффициентом усиления , которые связаны соотношениями:
- , , ,
где , — эффективная площадь и протяженность апертуры антенны.
ДН обычно описываются не только в плоскости, но и в трехмерном отображении. Для упрощения их рассмотрения, принимают две проекции ДН:
- горизонтальную (азимутальная)
- вертикальную (по углу места)
При совместном рассмотрении проекций проясняется более полная картина самой ДН и, как подтверждает практика, по этим данным можно судить об эффективности антенны применительно к решению конкретной задачи.
Существуют амплитудные , фазовые Δω(θ, φ) и поляризационные ↑↓(θ, φ) ДН.
По форме диаграммы направленности антенны обычно подразделяются на узконаправленные и широконаправленные. Узконаправленные антенны имеют один ярко выраженный максимум, который называют основным лепестком, и побочные максимумы (обычно имеющие отрицательное влияние), амплитуду которых стремятся уменьшить. Узконаправленные антенны применяют для концентрации мощности радиоизлучения в одном направлении для увеличения дальности действия радиоаппаратуры, а также для повышения точности угловых измерений в радиолокации. Широконаправленные антенны имеют хотя бы в одной плоскости диаграмму направленности, которую стремятся приблизить к круговой. Они находят применение, например, в телерадиовещании. Часто лепестки диаграммы направленности называют лучами антенны.
Диаграмма направленности антенны определяется амплитудно-фазовым распределением компонент электромагнитного поля в апертуре антенны — некоторой условной расчётной плоскости, связанной с её конструкцией. Разработка антенны с требуемой диаграммой направленности сводится, таким образом, к задаче обеспечения нужной картины электромагнитного поля в плоскости апертуры. Существуют фундаментальные ограничения, связывающие обратной зависимостью ширину луча и относительный размер антенны, то есть размер, делённый на длину волны. Поэтому узкие лучи требуют антенн больших размеров или применения более коротких волн. С другой стороны, максимальное сужение луча при заданном размере антенны ведёт к возрастанию уровня боковых лепестков. Поэтому в данном моменте приходится идти на приемлемый компромисс.
ДН обычно измеряют в горизонтальной или вертикальной плоскостях, для облучателей — в плоскостях Е или Н.
Диаграмма направленности антенны обладает свойством взаимности, то есть имеет аналогичные характеристики на передачу и приём в одном и том же диапазоне волн.
Экспериментальное изучение[править | править код]
Исследование ДН небольших антенн производят в безэховых камерах. Для больших антенн, не помещающихся в камеру, используют их уменьшенные модели; длину волны излучения также уменьшают в соответствующее число раз.
В случае построения диаграммы направленности для радиотелескопов выбирается яркий точечный источник на небе (зачастую — Солнце). Далее проводится серия наблюдений под разными углами, позволяющая построить распределение интенсивности в зависимости от направления, то есть искомую диаграмму направленности.
Формирование диаграммы направленности[править | править код]
Формирование диаграммы направленности в антеннах может осуществляться аналоговым либо цифровым способом.
Цифровой метод применяется в цифровых антенных решётках. Цифровое диаграммообразование подразумевает под собой цифровой синтез диаграммы направленности в режиме приёма, а также формирование заданного распределения электромагнитного поля в раскрыве антенной решётки в режиме передачи[2][3][4].
Наибольшее распространение получило выполнение цифрового диаграммообразования (англ. digital beamforming) на основе операции быстрого преобразования Фурье[5][6][7], позволяющего формировать ортогональную систему так называемых вторичных пространственных каналов, в которой максимум диаграммы направленности одного канала совпадает с нулями остальных.
См. также[править | править код]
- Антенна
- Дальняя зона
- Индикатриса рассеяния
- Основное уравнение радиолокации
Примечания[править | править код]
- ↑ ГОСТ 24375-80. Радиосвязь. Термины и определения
- ↑ Слюсар, В.И. Схемотехника цифрового диаграммообразования. Модульные решения. Электроника: наука, технология, бизнес. – 2002. – № 1. C. 46 – 52. (2002). Дата обращения: 3 марта 2019. Архивировано 12 мая 2021 года.
- ↑ Слюсар, В.И. Модульные решения в схемотехнике цифрового диаграммообразования. Известия вузов. Сер. Радиоэлектроника.- Том 46, № 12. C. 48 – 62. (2003). Дата обращения: 3 марта 2019. Архивировано 3 марта 2019 года.
- ↑ Слюсар, В.И. Схемотехника цифровых антенных решёток. Грани возможного. Электроника: наука, технология, бизнес. – 2004. – № 8. C. 34 – 40. (2004). Дата обращения: 3 марта 2019. Архивировано 17 мая 2017 года.
- ↑ Слюсар В.И. Точность измерений угловых координат линейной цифровой антенной решеткой при неидентичностях приемных каналов.// Известия высших учебных заведений. Радиоэлектроника. – 1999. – Том 42, № 1. – C. 18. – [1].
- ↑ Слюсар В.И., Дубик А.Н. Метод многоимпульсной передачи сигналов в МІМО-системе.// Известия высших учебных заведений. Радиоэлектроника.- 2006. – Том 49, № 3. – С. 75 – 80. [2] Архивная копия от 3 марта 2019 на Wayback Machine
- ↑ Слюсар В.И., Дубик А.Н., Волошко С.В. МІМО-метод передачи телекодовой информации.// Известия высших учебных заведений. Радиоэлектроника.- 2007. – Том 50, № 3. – С. 61 – 70. [3] Архивная копия от 3 марта 2019 на Wayback Machine
Литература[править | править код]
- Лавров, А. С. Антенно-фидерные устройства: учеб. пособие для вузов / А. С. Лавров, Г. Б. Резников. — М.: «Советское радио», 1974. — 368 с.
- Дудник, П. И. Многофункциональные радиолокационные системы: учеб. пособие для вузов / П. И. Дудник, А. Р. Ильчук [и др.]. — М.: Дрофа, 2007. — 283 с. — ISBN 978-5-358-00196-1.
- Mahafza, B. R. Radar Systems Analysis and Design Using MATLAB / Bassem R. Mahafza. — CHAPMAN&HALL/CRC, 2000. — 532 с. — ISBN 1-58488-182-8.
Ссылки[править | править код]
- Диаграммы направленности различных типов антенн.
- Двухпутная диаграмма направленности, получаемая при отличающихся направлениях зондирования и приема
Теория радиоволн: антенны
Время на прочтение
4 мин
Количество просмотров 374K
Помимо свойств радиоволн, необходимо тщательно подбирать антенны, для достижения максимальных показателей при приеме/передаче сигнала.
Давайте ближе познакомимся с различными типами антенн и их предназначением.
Антенны — преобразуют энергию высокочастотного колебания от передатчика в электромагнитную волну, способную распространяться в пространстве. Или в случае приема, производит обратное преобразование — электромагнитную волну, в ВЧ колебания.
Диаграмма направленности — графическое представление коэффициента усиления антенны, в зависимости от ориентации антенны в пространстве.
Антенны
Симметричный вибратор
В простейшем случае состоит из двух токопроводящих отрезков, каждый из которых равен 1/4 длины волны.
Широко применяется для приема телевизионных передач, как самостоятельно, так и в составе комбинированных антенн.
Так, к примеру, если диапазон метровых волн телепередач проходит через отметку 200 МГц, то длина волны будет равна 1,5 м.
Каждый отрезок симметричного вибратора будет равен 0,375 метра.
Диаграмма направленности симметричного вибратора
В идеальных условиях, диаграмма направленности горизонтальной плоскости, представляет собой вытянутую восьмерку, расположенную перпендикулярно антенне. В вертикальной плоскости, диаграмма представляет собой окружность.
В реальных условиях, на горизонтальной диаграмме присутствуют четыре небольших лепестка, расположенных под углом 90 градусов друг к другу.
Из диаграммы можем сделать вывод о том, как располагать антенну, для достижения максимального усиления.
В случае не правильно подобранной длины вибратора, диаграмма направленности примет следующий вид:
Основное применение, в диапазонах коротких, метровых и дециметровых волн.
Несимметричный вибратор
Или попросту штыревая антенна, представляет из себя «половину» симметричного вибратора, установленного вертикально.
В качестве длины вибратора, применяют 1, 1/2 или 1/4 длины волны.
Диаграмма направленности следующая:
Представляет собой рассеченную вдоль «восьмерку». За счет того, что вторая половина «восьмерки» поглощается землей, коэффициент направленного действия у несимметричного вибратора в два раза больше, чем у симметричного, за счет того, что вся мощность излучается в более узком направлении.
Основное применение, в диапазонах ДВ, КВ, СВ, активно устанавливаются в качестве антенн на транспорте.
Наклонная V-образная
Конструкция не жесткая, собирается путем растягивания токопроводящих элемементов на кольях.
Имеет смещение диаграммы направленности в стороны противоположную острию буквы V
Применяется для связи в КВ диапазоне. Является штатной антенной военных радиостанций.
Антенна бегущей волны
Также имеет название — антенна наклонный луч.
Представляет из себя наклонную растяжку, длина которой в несколько раз больше длины волны. Высота подвеса антенны от 1 до 5 метров, в зависимости от диапазона работы.
Диаграмма направленности имеет ярко выраженный направленный лепесток, что говорит о хорошем усилении антенны.
Широко применяется в военных радиостанциях в КВ диапазоне.
В развернутом и свернутом состоянии выглядит так:
Антенна волновой канал
Здесь: 1 — фидер, 2 — рефлектор, 3 — директоры, 4 — активный вибратор.
Антенна с параллельными вибраторами и директорами, близкими к 0,5 длины волны, расположенными вдоль линии максимального излучения. Вибратор — активный, к нему подводятся ВЧ колебания, в директорах, наводятся ВЧ токи за счет поглощения ЭМ волны. Расстояние между рифлектором и директорами подпирается таким образом, чтобы при совпадении фаз ВЧ токов образовывался эффект бегущей волны.
За счет такой конструкции, антенна имеет явную направленность:
Рамочная антенна
Направленность — двулепестковая
Применяется для приема ТВ программ дециметрового диапазона.
Как разновидность — рамочная антенна с рефлектором:
Логопериодическая антенна
Свойства усиления большинства антенн сильно меняются в зависимости от длины волны. Одной из антенн, с постоянной диаграммой направленности на разных частотах, является ЛПА.
Отношение максимальной к минимальной длине волн для таких антенн превышает 10 — это довольно высокий коэффициент.
Такой эффект достигается применением разных по длине вибраторов, закрепленных на параллельных несущих.
Диаграмма направленности следующая:
Активно применяется в сотовой связи при строительстве репитеров, используя способность антенн, принимать сигналы сразу в нескольких частотных диапазонах: 900, 1800 и 2100 МГц.
Поляризация
Поляризация — это направленность вектора электрической составляющей электромагнитной волны в пространстве.
Различают: вертикальную, горизонтальную и круговую поляризацию.
Поляризация зависит от типа антенны и ее расположения.
К примеру, вертикально расположенный несимметричный вибратор, дает вертикальную поляризацию, а горизонтально расположенный — горизонтальную.
Антенны горизонтальной поляризации дают больший эффект, т.к. природные и индустриальные помехи, имеют в основном вертикальную поляризацию.
Горизонтально поляризованные волны, отражаются от препятствий менее интенсивно, чем вертикально.
При распространении вертикально поляризованных волн, земная поверхность поглощает на 25% меньше их энергии.
При прохождении ионосферы, происходит вращение плоскости поляризации, как следствие, на приемной стороне не совпадает вектор поляризации и КПД приемной части падает. Для решения проблемы, применяют круговую поляризацию.
Все эти факторы факторы следует учитывать при расчете радиолиний с максимальной эффективностью.
PS:
Данная статья обрисовывает лишь небольшую часть антенн и не претендует на замену учебнику антенно-фидерных устройств.
Как построить диаграмму направленности
Содержание
- Построение диаграммы направленности антенны
- Расчет коэффициента направленного действия
- Расчёт входного сопротивления
- Содержание
- Основные положения [ править | править код ]
- Экспериментальное изучение [ править | править код ]
- Формирование диаграммы направленности [ править | править код ]
Построение диаграммы направленности антенны
Для антенны, состоящей из нескольких вибраторов, с учетом влияния земли диаграмма направленности антенны определяется формулой
F(И,ц)= F1(И,ц) F2(И,ц) F3(И,ц), (2.1)
где F1(И,ц) — множитель, определяющий диаграмму одного вибратора;
F2(И,ц) — множитель антенны (решетки);
F3(И,ц) — множитель земли;
И и ц — угол места и азимут.
В горизонтальной плоскости диаграмма направленности антенны
антенна сопротивление направленность вибратор
F(ц)= F1(ц) F2(ц) F3(ц). (2.2)
Множитель, определяющий диаграмму одного вибратора
где А- постоянный коэффициент,
В выражении (2.4) коэффициент А =1.Подставив (2.3) — (2.5) в (2.2) получим, что выражение для диаграммы направленности антенны в горизонтальной плоскости имеет вид:
Диаграмма направленности антенны в горизонтальной плоскости, построенная с помощью САПР MathCAD, представлена на рисунке 2.1.
Рисунок 2.1- Диаграмма направленности антенны в горизонтальной плоскости
В вертикальной плоскости диаграмма направленности антенны
F(И)= F1(И) F2(И) F3(И). (2.7)
Множитель, определяющий диаграмму одного вибратора
В выражении (2.9) коэффициент А =1.
Подставив (2.8 — 2.10) в (2.7), получим, что выражение для диаграммы направленности антенны в вертикальной плоскости имеет вид:
Диаграмма направленности антенны в вертикальной плоскости, построенная с помощью САПР MathCAD, представлена на рисунке 2.2.
Рисунок 2.2- Диаграмма направленности антенны в вертикальной плоскости
Расчет коэффициента направленного действия
Коэффициент направленного действия определяется, как у антенны бегущей волны, следующей приближенной формулой:
где L — длина антенны,
K1 — коэффициент, зависящий от длины антенны.
Подставив dд=0,06м; dр=0,16 м, в (2.13), получим, что длина антенны L=0,28 м.
Коэффициент К1 определим, используя график зависимости К1 от ,представленный
Рисунок 2.3 — Вспомогательный график для расчета коэффициента направленного действия антенны
Так как =0,644; то К1? 11,5. Подставив полученные численные значения в формулу (2.12), получим, что коэффициент направленного действия антенны D=7,402.
Расчёт входного сопротивления
Для расчёта входного сопротивления воспользуемся формулой:
Ток в активном вибраторе, вычисленный по формуле (1.21) I0=0,001762+i0,006028 А, поэтому входное сопротивление антенны, рассчитанное по формуле (2.14) будет 44,674 ? j152,834 Ом. Реактивная составляющая входного сопротивления не равна нулю потому, что ранее принятое собственное сопротивление активного вибратора не компенсирует наведённое сопротивление. Для получения высокого коэффициента бегущей волны необходимо равенство нулю реактивной части Zвх. При выполнении условия
X00’= ?Xнав=X00 — Xвх (2.15)
происходит взаимная компенсация наведенного и собственного реактивного сопротивлений. Подставив X00= ?120 Ом, Xвх= -152,834 Ом в формулу (2.15), получим собственное сопротивление активного вибратора Х00’=32,834 Ом. Таким образом Zвх= 44,674 Ом.
Диаграмма направленности антенны — это графическое изображение коэффициента усиления антенны или коэффициента направленного действия антенны в полярной системе координат в зависимости от направления антенны в пространстве.
Диаграмма направленности (ДН) передающей (приемной) антенны характеризует интенсивность излучения (приема) антенны в различных направлениях в пространстве. Для передающей антенны рассматривают (ДН) по напряженности поля или по уровню его мощности. Направление максимального излучения — главный лепесток антенны, остальные лепестки (ДН) антенны являются побочными, в т.ч. и задний лепесток. Для удобства строят нормированные (ДН) в вертикальной и горизонтальной плоскостях. В нормированной диаграмме направленности величина главного лепестка принимается за единицу, остальные лепестки рисуются пропорционально в масштабе относительно главного.
Для телевизионных антенн уменьшение угла раскрыва главного лепестка и подавление боковых лепестков приводит к повышению качества приёма сигнала: уменьшается уровень “пролаза” паразитных излучений источников помех, повышается чёткость картинки изображения за счёт устранения, в некоторых случаях, повторов изображения. Хорошее качество изображения могут обеспечить только многоэлементные узконаправленные антенны.
Диаграмма направленности параболической антенны составляет от 0.2 град до 2 град. Чем больше размер антенны при хорошем качестве зеркала, тем уже (ДН) и соответственно устойчивей приём со спутника.
Диаграмма направленности является одной из самых наглядных характеристик приёмных свойств антенны. Построение диаграмм направленности производится в полярных или в прямоугольных (декартовых) координатах. Рассмотрим для примера построенную в полярных координатах диаграмму направленности антенны типа «волновой канал» в горизонтальной плоскости (рис. 1). Координатная сетка состоит из двух систем линий. Одна система линий представляет собой концентрические окружности с центром в начале координат. Окружности наибольшего радиуса соответствует максимальной ЭДС, значение которой условно принято равным единице, а остальные окружности — промежуточные значения ЭДС от единицы до нуля. Другая система линий, образующих координатную сетку, представляет собой пучок прямых, которые делят центральный угол в 360° на равные части. В нашем примере этот угол разделен на 36 частей по 10° в каждой.
Положим, что радиоволна приходит с направления, показанного на рис. 1 стрелкой (угол 10°). Из диаграммы направленности видно, что этому направлению прихода радиоволны соответствует максимальная ЭДС на клеммах антенны. При приеме радиоволн, приходящих с любого другого направления, ЭДС на клеммах антенны будет меньше. Например, если радиоволны приходят под углами 30 и 330° (т. е. под углом 30° к оси антенны со стороны директоров), то значение ЭДС будет равно 0,7 максимальной, под углами 40 и 320° — 0,5 максимальной и т. д.
На диаграмме направленности (рис. 1) видны три характерные области — 1, 2 и 3. Область 1, которой соответствует наибольший уровень принятого сигнала, называют основным, или главным лепестком диаграммы направленности. Области 2 и 3, находящиеся со стороны рефлектора антенны, носят название задних и боковых лепестков диаграммы направленности. Наличие задних и боковых лепестков свидетельствует о том, что антенна принимает радиоволны не только спереди (со стороны директоров), но и сзади (со стороны рефлектора), что снижает помехоустойчивость приема. В связи с этим при настройке антенны стремятся уменьшить число и уровень задних и боковых лепестков.
Описанную диаграмму направленности, характеризующую зависимость ЭДС на клеммах антенны от направления прихода радиоволны, часто называют диаграммой направленности по «полю», так как ЭДС пропорциональна напряженности электромагнитного поля в точке приема. Возведя в квадрат ЭДС, соответствующую каждому направлению прихода радиоволны, можно получить диаграмму направленности по мощности (пунктирная линия на рис. 2).
Для численной оценки направленных свойств антенны пользуются понятиями угла раствора основного лепестка диаграммы направленности и уровня задних и боковых лепестков. Углом раствора основного лепестка диаграммы направленности называют угол, в пределах которого ЭДС на клеммах антенны спадает до уровня 0,7 от максимальной. Угол раствора можно также определить, пользуясь диаграммой направленности по мощности, по ее спаду до уровня 0,5 от максимальной (угол раствора по «половинной» мощности). В обоих «случаях численное значение угла раствора получается, естественно, одним и тем же.
Уровень задних и боковых лепестков диаграммы направленности по напряжению определяется как отношение ЭДС на клеммах антенны при приеме со стороны максимума заднего или бокового лепестка к ЭДС со стороны максимума основного лепестка. Когда антенна имеет несколько задних и боковых лепестков различной величины, то указывается уровень наибольшего лепестка.
Не нашли то, что искали? Воспользуйтесь поиском:
Диаграмма направленности (антенны) — графическое представление зависимости коэффициента усиления антенны или коэффициента направленного действия антенны от направления антенны в заданной плоскости [1] . Также термин «диаграмма направленности» применим к другим устройствам, излучающим сигнал различной природы, например акустическим системам.
Содержание
Основные положения [ править | править код ]
Диаграммой направленности (ДН) антенны по полю часто называют зависимость модуля комплексной амплитуды вектора напряженности E ¯ <displaystyle <ar >> электрической компоненты электромагнитного поля, создаваемого антенной в дальней зоне, от угловых координат θ <displaystyle heta > и ϕ <displaystyle phi > точки наблюдения в горизонтальной и вертикальной плоскости, то есть зависимость E ( θ , ϕ ) <displaystyle E( heta ,phi )> .
ДН обозначается символом f ( θ , ϕ ) <displaystyle f( heta ,phi )> . ДН нормируют — все значения E ( θ , ϕ ) <displaystyle E( heta ,phi )> делят на максимальное значение E m <displaystyle E_> и обозначают нормированную ДН символом F ( θ , ϕ ) <displaystyle F( heta ,phi )> . Очевидно, 0 ≤ F ( θ , ϕ ) ≤ 1 <displaystyle 0leq F( heta ,phi )leq 1> .
Также можно определить ДН как комплексную величину. В этом случае, аналогично указанному выше, ДН есть:
F ∘ ( θ , ϕ ) = E ∘ m ( θ , ϕ ) max θ , ϕ [ | E ∘ m ( θ , ϕ ) | ] <displaystyle <stackrel <circ >>left( heta ,phi
ight)=<frac <<stackrel <circ >>_left( heta ,phi
ight)><max _< heta ,phi >left[left|<stackrel <circ >>_( heta ,phi )
ight|
ight]>>> ,
где E ∘ m <displaystyle <stackrel <circ >>_> — комплексная амплитуда вектора в точке дальней зоны.
ДН характеризуется шириной Θ A <displaystyle Theta _> её главного луча на уровне 0,5 от её максимального значения по мощности и коэффициентом усиления G <displaystyle G> , которые связаны соотношениями:
G = 4 π S A λ 2 <displaystyle G=<frac <4pi S_><lambda ^<2>>>> , S A = π d A 2 4 <displaystyle S_=<frac <pi d_^<2>><4>>> , Θ A = λ d A <displaystyle Theta _=<frac <lambda >>> ,
где S A <displaystyle S_> , d A <displaystyle d_> — эффективная площадь и протяженность апертуры антенны.
ДН обычно описываются не только в плоскости, но и в трехмерном отображении. Для упрощения их рассмотрения, принимают две проекции ДН:
- горизонтальную (азимутальная)
- вертикальную (по углу места)
При совместном рассмотрении проекций проясняется более полная картина самой ДН и, как подтверждает практика, по этим данным можно судить об эффективности антенны применительно к решению конкретной задачи.
Существуют амплитудные A ( θ , ϕ ) <displaystyle A( heta ,phi )> , фазовые Δω(θ, φ) и поляризационные P ¯ <displaystyle <ar
>> ↑↓(θ, φ) ДН.
По форме диаграммы направленности антенны обычно подразделяются на узконаправленные и широконаправленные. Узконаправленные антенны имеют один ярко выраженный максимум, который называют основным лепестком, и побочные максимумы (обычно имеющие отрицательное влияние), амплитуду которых стремятся уменьшить. Узконаправленные антенны применяют для концентрации мощности радиоизлучения в одном направлении для увеличения дальности действия радиоаппаратуры, а также для повышения точности угловых измерений в радиолокации. Широконаправленные антенны имеют хотя бы в одной плоскости диаграмму направленности, которую стремятся приблизить к круговой. Они находят применение, например, в телерадиовещании. Часто лепестки диаграммы направленности называют лучами антенны.
Диаграмма направленности антенны определяется амплитудно-фазовым распределением компонент электромагнитного поля в апертуре антенны — некоторой условной расчётной плоскости, связанной с её конструкцией. Разработка антенны с требуемой диаграммой направленности сводится, таким образом, к задаче обеспечения нужной картины электромагнитного поля в плоскости апертуры. Существуют фундаментальные ограничения, связывающие обратной зависимостью ширину луча и относительный размер антенны, то есть размер, делённый на длину волны. Поэтому узкие лучи требуют антенн больших размеров или применения более коротких волн. С другой стороны, максимальное сужение луча при данном размере антенны ведет к возрастанию уровня боковых лепестков. Поэтому в данном моменте приходится идти на приемлемый компромисс.
ДН обычно измеряют в горизонтальной или вертикальной плоскостях, для облучателей — в плоскостях Е или Н.
Диаграмма направленности антенны обладает свойством взаимности, то есть имеет аналогичные характеристики на передачу и приём в одном и том же диапазоне волн.
Экспериментальное изучение [ править | править код ]
Исследование ДН небольших антенн производят в безэховых камерах. Для больших антенн, не помещающихся в камеру, используют их уменьшенные модели; длину волны излучения также уменьшают в соответствующее число раз.
В случае построения диаграммы направленности для радиотелескопов выбирается яркий точечный источник на небе (зачастую — Солнце). Далее проводится серия наблюдений под разными углами, позволяющая построить распределение интенсивности в зависимости от направления, то есть искомую диаграмму направленности.
Формирование диаграммы направленности [ править | править код ]
Формирование диаграммы направленности в антеннах может осуществляться аналоговым либо цифровым способом.
Цифровой метод применяется в цифровых антенных решётках. Цифровое диаграммообразование подразумевает под собой цифровой синтез диаграммы направленности в режиме приёма, а также формирование заданного распределения электромагнитного поля в раскрыве антенной решётки — в режиме передачи [2] [3] [4] .
Наибольшее распространение получило выполнение цифрового диаграммообразования (англ. digital beamforming ) на основе операции быстрого преобразования Фурье [5] [6] [7] , позволяющего формировать ортогональную систему так называемых вторичных пространственных каналов, в которой максимум диаграммы направленности одного канала совпадает с нулями остальных.
Диаграмма
направленности параболической
антенны рассчитывается приближенными
методами. Рассмотрим
два из возможных способов расчета
диаграммы.
а)
Расчет диаграммы направленности по
методу, предложенному A.
М.
Моделем
[2] для случая, когда облучатель антенны
выбран в виде
диполя или диполя с рефлектором.
Приближенная
формула, полученная в работе А. М. Моделя,
выведена
с учетом распределения токов на
поверхности зеркала. Сущность
этого способа заключается в следующем:
сначала определяется
плотность тока на поверхности зеркала,
а затем по известному распределению
плотности тока на поверхности зеркала
рассчитывается поле антенны на
большом расстоянии. Получаемые этим
методом формулы
справедливы в пределах небольших углов
излучения и для
зеркал малой кривизны
.
Диаграмма направленности антенны
с облучателем в виде диполя и рефлектора
может быть вычислена по следующей
формуле:
(19)
где
;;
-угол,
образованный осью z
и проекцией на плоскость раскрыва
направления излучения (в горизонтальной
плоскости =90,
в вертикальной плоскости =0),
рис.8.
–
волновое
число
J0(a);
J1(a);J2
(а) — функции Бесселя нулевого, первого
и второго порядка
от аргумента а
(«Таблицы
функций»» Янке
и Эмде, Москва, 1949);
— угол,
образуемый осью х
и
направлением излучения;
R0
—
радиус раскрыва антенны.
Рис8.
Обозначения при расчете диаграммы
направленности
по формуле (19.).
б)
Расчет диаграммы направленности по
известному закону распределения
поля в раскрыве зеркала.
Облучатели,
чаще всего применяемые на практике,
имеют диаграмму
направленности с круговой симметрией
или асимметрией, которой
можно пренебречь, как указывалось в
разд. 3 гл. III.
Для большинства
облучателей распределение поля в
раскрыве зеркала с
достаточной точностью аппроксимируется
функцией (1—
х2)p.Поле
на
поверхности раскрыва антенны считается
синфазным. В этом случае
диаграмма направленности антенны по
полю может быть рассчитана по формуле:
(20)
или после
интегрирования
(21)
где
R
– радиус зеркала;
;
-длина
волны;
p+1
(u)
— функция, значения которой имеются в
книге Янке и Эмде
«Таблицы функций»,
Москва, 1949);
р
—
1, 2, 3… — величина, которая находится
при выборе оптимальных
размеров зеркала;
— угол
в рассматриваемой плоскости, отсчитываемый
от оси
антенны.
Множитель
постоянный коэффициент.
Окончательно
выражение диаграммы направленности
зеркала в вертикальной
и горизонтальной плоскостях примет
вид:
(22)
Так
как в таблицах приведены значения
функции p+1
(u)
только
для
аргументов, не превышающих 10, то для
расчета боковых лепестков
диаграммы может быть использована
формула, дающая достаточное
приближение,
(23)
где
или формула,
приведенная в книге А. А. Пистолькорса
«Антенны»,
(24)
где
— угол между осью параболы и направлением
излучения;
R—
радиус
раскрыва;
J1–
функция Бесселя первого
порядка.
Параметры
диаграммы направленности при распределении
раскрыве
зеркала по закону (1—
х2)p
приведены в табл. 3.
Таблица
3.
p |
Эффективность |
Ширина (в |
Положение первого нуля |
Отношение |
0 |
1 |
-17,6 |
||
1 |
0,75 |
-24,6 |
||
2 |
0,56 |
-30,6 |
||
3 |
0,44 |
– |
||
4 |
0,36 |
– |