Как составить дробь 2 целых

Перевод дробей

  1. Главная
  2. /
  3. Математика
  4. /
  5. Арифметика
  6. /
  7. Перевод дробей

Если вам необходимо перевести десятичную дробь в обыкновенную или наоборот воспользуйтесь нашим онлайн калькулятором:

Перевод обыкновенной дроби в десятичную

Перевод десятичной дроби в обыкновенную

Просто заполните необходимые поля и получите ответ и подробное решение.

Теория

Как перевести обыкновенную дробь в десятичную

Чтобы перевести обыкновенную дробь в десятичную дробь нужно числитель разделить на знаменатель и к полученному числу прибавить целую часть (если она есть).

Формула

a bc = a + b : c

Пример

Для примера преобразуем следующую дробь:

5 12 = 5 + 1 : 2 = 5 + 0.5 = 5.5

Как перевести десятичную дробь в обыкновенную

Чтобы перевести десятичную дробь в обыкновенную дробь необходимо все цифры после запятой поместить в числитель, а знаменатель будет состоять из единицы и такого количества нулей, сколько цифр в числителе. При этом целая часть числа остаётся неизменной, а полученную дробь нужно сократить, если это возможно.

Примеры

Для примера переведём 5.5 в обыкновенную дробь, а точнее в смешанное число:

5.5 = 5510=55 : 510 : 5=512

Ещё пара примеров:

0.06 = 6100= 6 : 2100 : 2= 350

1.001 = 111000

См. также

Калькулятор “Конвертер десятичных дробей в обыкновенные”

Как записать 2 в виде дроби?

Ответ: Десятичная дробь 2 в обыкновенном виде это 2/1

2=

Число 2 в виде обыкновенной дроби это 2/1

Объяснение конвертации дроби 2 в десятичную

Для того, чтобы найти простейшую дробную форму числа 2 необходимо сперва записать нашу десятичную дробь 2 как обыкновенную. Любое число можно легко записать в виде дроби, для этого нужно всего лишь разделить его на 1 (единицу):

Далее, нам необходимо избавиться от дробной части в числителе (2), т.е. сделать числитель целым числом. Для этого мы умножим числитель и знаменатель на 1 (т.к. в дробном числе 2 после запятой находится 0 знака)

Теперь необходимо сократить получившуюся дробь до самой простой формы. Для этого нужно найти Наибольший Общий Делитель (НОД) для чисел 2 и 1. Для того чтобы найти НОД для двух чисел, вы можете воспользоваться нашим Калькулятором НОД . НОД для чисел 1 и 2 равен 1. Следовательно, для того, чтобы упростить нашу дробь, необходимо разделить числитель и знаменатель на 1:

Вот и все! 2 как обыкновенная правильная дробь в самой простой форме это 2/1.

Поделитесь текущим расчетом

https://calculat.io/ru/number/decimal-as-a-fraction/2Копировать

<a href=”https://calculat.io/ru/number/decimal-as-a-fraction/2″>2 в виде обыкновенной дроби – Calculatio</a>Копировать

2 в виде обыкновенной дроби. Преобразовать десятичную дробь 2 в обыкновенную дробь.

О калькуляторе “Конвертер десятичных дробей в обыкновенные”

Данный онлайн-конвертер десятичных дробей в обыкновенные дроби – это инструмент, который поможет вам быстро и легко конвертировать любое десятичное число в обыкновенную дробь. Например, он может помочь узнать как записать 2 в виде дроби? Конвертер будет особенно полезен тем, кто ежедневно работает с дробями или использует их в учебных или профессиональных целях.

Чтобы использовать данный конвертер, все, что вам нужно сделать, это ввести десятичное число, которое вы хотите конвертировать, в соответствующее поле, например, ‘2’. После того как вы ввели десятичное число, нажмите кнопку ‘Конвертировать’, чтобы начать процесс конвертации.

Конвертер выведет результат и покажет обыкновенную дробь, которая эквивалентна введенному вами десятичному числу, а также предоставит пошаговое объяснение процесса конвертации. Кроме того, конечная дробь будет упрощена до простейшей формы, используя наибольший общий делитель (НОД).

Например, если вы введете ‘2’ в конвертер, он покажет вам, что данное десятичное число эквивалентно дроби ‘2/1’. Он также объяснит, как был получен данный ответ, показав шаги, выполненные в процессе конвертации.

В целом, онлайн-конвертер десятичных дробей в обыкновенные дроби – это необходимый инструмент для всех, кто работает с дробями в повседневной жизни, в учебной или профессиональной сфере. Он быстрый, простой в использовании и предоставляет точные результаты, что делает его ценным инструментом для всех, кто нуждается в конвертации десятичных дробей в обыкновенные.

Калькулятор “Конвертер десятичных дробей в обыкновенные”

Таблица конвертации десятичных дробей в обыкновенные

  • Главная
  • Математика
  • 2 целых как дро…
  • Предмет:

    Математика

  • Автор:

    luna66

  • Создано:

    3 года назад

Ответы 2

Так и пишится
2 и и дробью сотые..

  • Автор:

    orlando

  • Оценить ответ:

    0

20

10
двадцать десятых если точно

  • Автор:

    maribelglid

  • Оценить ответ:

    0

Знаешь ответ? Добавь его сюда!

Последние вопросы

  • himiya
    Химия

    34 минут назад

    Органическое вещество А содержит по массе 56,81% углерода; 6,98% водорода и кислород. Вещество А можно получить гидратацией вещества Б.

    На основании данных условия задачи:

    1) проведите необходимые вычисления и установите молекулярную формулу вещества А;

    2) составьте структурную формулу вещества А, которая однозначно отражает порядок атомов в его молекуле;

    3) напишите уравнение реакции получения вещества А гидратацией вещества Б.

  • himiya
    Химия

    36 минут назад

    Через 480 г 15%-ного раствора едкого натра пропускали постоянный электрический ток до тех пор, пока на электродах не выделилось 358,4 л газов (объем приведен к нормальным условиям). Из полученного раствора отобрали пробу массой 96 г для полного осаждения ионов меди из 290 г насыщенного при 25°С раствора сульфата меди(II). Вычислите растворимость медного купороса – пентагидрата сульфата меди(II) при 25°С. В ответе запишите уравнения реакций, которые указаны в условии задачи, и произведите все необходимые вычисления (указывайте единицы измерения искомых физических величин).

  • literatura
    Литература

    43 минут назад

    Художественные выразительные средства в произведении джека лондона любовь к жизни

    можно пару штук хотя бы =_

  • russkii-yazyk
    Русский язык

    1 час назад

    Письмён на писька содержание своей любимой книге перед началом работы составь план в последнем абзаце своего текста напиши почему это книга

    твоя любимая

  • drugie-predmety
    Другие предметы

    2 часа назад

    Что делать если скучно???

  • geometriya
    Геометрия

    2 часа назад

    № 1. Две стороны параллелограмма равны 3 см и 4√2 см, а угол между ними – 135°. Найдите: 1) большую диагональ параллелограмма; 2) площадь параллелограмма.

    № 2. В треугольнике DEF известно, что EF = 10√3 см, DE = 10 см, ∠F = 30°. Найдите угол D.

    С ПОДРОБНЫМ РЕШЕНИЕМ

  • geometriya
    Геометрия

    2 часа назад

    № 1. Две стороны параллелограмма равны 8 см и 3 см, а угол между ними – 120°. Найдите: 1) большую диагональ параллелограмма; 2) площадь параллелограмма.

    № 2 В треугольнике DEF известно, что DF = 8√2 см, EF = 8√3 см, ∠E = 45°. Найдите угол D.

    С ПОДРОБНЫМ РЕШЕНИЕМ

  • geometriya
    Геометрия

    2 часа назад

    № 1. Две стороны параллелограмма равны 4 см и 4√3 см, а угол между ними – 30°. Найдите: 1) большую диагональ параллелограмма; 2) площадь параллелограмма

    № 2. В треугольнике ABC известно, что AC = 3√2 см, BC = 3 см, ∠A = 30°. Найдите угол B.

    С ПОДРОБНЫМ РЕШЕНИЕМ

  • geometriya
    Геометрия

    4 часа назад

    один из углов трапеций вписанной в окружность равен 29, 4 Найдите остальные углы

  • ekonomika
    Экономика

    13 часов назад

    На фото

  • matematika
    Математика

    14 часов назад

    Спростіть вираз -3(2x-1) і знайдіть його значення, якщо х=-2

  • matematika
    Математика

    17 часов назад

    Люди помогите!

    Постройте треугольник АBC, по данным:

    Угол А = 35°

    ВС = 5 см

    АС = 4 см

    Мне не нужен ответ с другого сайта!

    Скажите пожалуйста, как сделать это с помощью циркуля, кто учится в 7 классе.

  • matematika
    Математика

    19 часов назад

    (x-1)^8*(2x+3)^2*(x-7)^4*(3x-5)*(x+6)^3>0

  • matematika
    Математика

    1 день назад

    помогите решить пожалуйста задачу

  • literatura
    Литература

    1 день назад

    пересказ повести мелентьева одни сутки войны пересказ всего текста

Сложение дробей

Алгоритм действий при сложении двух дробей такой:

  1. Перевести смешанные дроби в обыкновенные (избавиться от целой части).
  2. Привести дроби к общему знаменателю. Для этого нужно числитель и знаменатель первой дроби умножить на знаменатель второй дроби, а числитель и знаменатель второй дроби умножить на знаменатель первой дроби.
  3. Выполнить сложение дробей путем сложения их числителей.
  4. Найти наибольший общий делитель (НОД) числителя и знаменателя и сократить дробь, поделив числитель и знаменатель на НОД.
  5. Если числитель итоговой дроби больше знаменателя, то выделить целую часть.

Вычитание дробей

Алгоритм действий при вычитании двух дробей:

  1. Перевести смешанные дроби в обыкновенные (избавиться от целой части).
  2. Привести дроби к общему знаменателю. Для этого нужно числитель и знаменатель первой дроби умножить на знаменатель второй дроби, а числитель и знаменатель второй дроби умножить на знаменатель первой дроби.
  3. Вычесть одну дробь из другой, путем вычитания числителя второй дроби из числителя первой.
  4. Найти наибольший общий делитель (НОД) числителя и знаменателя и сократить дробь, поделив числитель и знаменатель на НОД.
  5. Если числитель итоговой дроби больше знаменателя, то выделить целую часть.

Умножение дробей

Алгоритм действий при умножении двух дробей:

  1. Перевести смешанные дроби в обыкновенные (избавиться от целой части).
  2. Умножить числитель первой дроби на числитель второй дроби и знаменатель первой дроби на знаменатель второй.
  3. Найти наибольший общий делитель (НОД) числителя и знаменателя и сократить дробь, поделив числитель и знаменатель на НОД.
  4. Если числитель итоговой дроби больше знаменателя, то выделить целую часть.

Деление дробей

Алгоритм действий при делении двух дробей:

  1. Перевести смешанные дроби в обыкновенные (избавиться от целой части).
  2. Чтобы произвести деление дробей, нужно преобразовать вторую дробь, поменяв местами её числитель и знаменатель, а затем произвести умножение дробей.
  3. Умножить числитель первой дроби на числитель второй дроби и знаменатель первой дроби на знаменатель второй.
  4. Найти наибольший общий делитель (НОД) числителя и знаменателя и сократить дробь, поделив числитель и знаменатель на НОД.
  5. Если числитель итоговой дроби больше знаменателя, то выделить целую часть.

В предыдущих уроках было сказано, что дробь, состоящая из целой и дробной части, называется смешанной.

Все дроби, имеющие целую и дробную часть, носят одно общее название — смешанные числа.

Смешанные числа так же как и обыкновенные дроби можно складывать, вычитать, умножать и делить. В данном уроке мы рассмотрим каждое из этих действий по отдельности.

Сложение целого числа и правильной дроби

Встречаются задачи, в которых требуется сложить целое число и правильную дробь. Например, сложить число 2 и дробь одна вторая. Чтобы решить этот пример, нужно число 2 представить в виде дроби две первых . Затем сложить дроби с разными знаменателями:

два прибавить одну вторую будет две целых одна вторая

А теперь внимательно посмотрим на этот пример. Смотрим на его начало и на его конец. Начало у него выглядит так: два плюс одна вторая, а конец так: две целых одна вторая. Различие в том, что в первом случае число 2 и дробь одна вторая соединяются знаком сложения, а во втором случае они записаны вместе. На самом деле это одно и то же. Дело в том, что две целых одна вторая это свёрнутая форма записи смешанного числа, а два плюс одна вторая — развёрнутая.

Когда перед нами смешанное число вида две целых одна вторая , мы должны понимать, что знак сложения опущен.

Какой можно сделать вывод? Если потребуется сложить целое число и правильную дробь, можно опустить плюс и записать целое число и дробь вместе.

Значит значение выражения два плюс одна вторая равно две целых одна вторая

два плюс одна вторая будет две целых и одна вторая

Если к двум целым пиццам прибавить половину пиццы, то получится две целые пиццы и ещё половина пиццы:

две целых плюс половина решение в пиццах


Пример 2. Найти значение выражения 152

Представим число 3 в виде дроби 1522. Затем сложим дроби с разными знаменателями:

1523

Это первый способ. Второй способ намного проще. Можно поставить знак равенства и записать целую и дробную часть вместе. То есть опустить знак сложения:

1526


Пример 3. Найти значение выражения две плюс две пятых

Можно записать вместе число 2 и дробь пять вторых, но этот ответ не будет окончательным, поскольку в дроби пять вторых можно выделить целую часть.

Поэтому в данном примере сначала нужно выделить целую часть в дроби пять вторых . Пять вторых это две целых и одна вторая:

выделение целой части в дроби пять вторых

Теперь в главном выражении две плюс две пятых вместо дроби пять вторых запишем смешанное число две целых одна вторая

две плюс две пятых шаг 2

Получили новое выражение два плюс две целых одна вторая. В этом выражении смешанное число две целых одна вторая запишем в развёрнутом виде:

два плюс два плюс одна вторая

Применим сочетательный закон сложения. Сложим две двойки, получим 4:

четыре плюс половина

Теперь свернём полученное смешанное число:

четыре плюс половина сворачивание

Это окончательный ответ. Подробное решение этого примера можно записать следующим образом:

две плюс две пятых окончательное решение


Сложение смешанных чисел

Встречаются задачи, в которых требуется сложить смешанные числа. Например, найти значение выражения 1531. Чтобы решить этот пример, нужно целые и дробные части сложить по отдельности.

Для начала запишем смешанные числа в развёрнутом виде:

1532

Применим сочетательный закон сложения. Сгруппируем целые и дробные части по отдельности:

2 plus 3 plus 1 na 2 plus 1 na 8

Вычислим целые части: 2 + 3 = 5. В главном выражении заменяем выражение в скобках (2 + 3) на полученную пятёрку:

5 plus 1 na 2 plus 1 na 8

Теперь вычислим дробные части. Это сложение дробей с разными знаменателями. Как складывать такие дроби мы уже знаем:

1535

Получили  1536 . Теперь в главном выражении 5 plus 1 na 2 plus 1 na 8 заменяем дробные части на полученную дробь 1536

1537

Теперь свернем полученное смешанное число:

1538

Таким образом, значение выражения 1531 равно 1539. Попробуем изобразить это решение в виде рисунка. Если к двум целым и половине пиццы прибавить три целые и одну восьмую пиццы, то получится пять целых пицц и ещё пять восьмых пиццы:

5 plus 1 na 2 plus 1 na 8 pic

Подобные примеры нужно решать быстро, не останавливаясь на подробностях. Находясь в школе, нам пришлось бы записать решение этого примера следующим образом:

15310

Если в будущем увидите такое короткое решение, не пугайтесь. Вы уже понимаете, что откуда взялось.


Пример 2. Найти значение выражения 5 на 5 на 6 плюс 3 на 3 на 4 пример

Запишем смешанные числа в развёрнутом виде:

5 на 5 на 6 плюс 3 на 3 на 4 рисунок 1

Сгруппируем целые и дробные части по отдельности:

5 на 5 на 6 плюс 3 на 3 на 4 рисунок 2

Вычислим целые части: 5 + 3 = 8. В главном выражении заменяем выражение в скобках (5 + 3) на полученное число 8

5 на 5 на 6 плюс 3 на 3 на 4 рисунок 3

Теперь вычислим дробные части:

1544

Получили смешанное число 1545. Теперь в главном выражении 5 на 5 на 6 плюс 3 на 3 на 4 рисунок 3 заменяем выражение в скобках на полученное смешанное число 1545

5 на 5 на 6 плюс 3 на 3 на 4 рисунок 4

Получили выражение 5 на 5 на 6 плюс 3 на 3 на 4 рисунок 4. В данном случае число 8 надо прибавить к целой части смешанного числа 1545 . Для этого смешанное число 1545 можно временно развернуть, чтобы было понятнее, что с чем складывать:

1547

Сложим целые части. Получаем 9

1549

Сворачиваем готовый ответ:

1550

Таким образом, значение выражения 5 на 5 на 6 плюс 3 на 3 на 4 пример равно 1551.

Полное решение этого примера выглядит следующим образом:

1552


Для решения подобных примеров существует универсальное правило. Выглядит оно следующим образом:

Чтобы сложить смешанные числа, надо:

  • привести дробные части этих чисел к общему знаменателю;
  • отдельно выполнить сложение целых и дробных частей.

Если при сложении дробных частей получилась неправильная дробь, выделить целую часть в этой дроби и прибавить ее к полученной целой части.

Применение готовых правил допустимо в том случае, если суть темы полностью понятна. Решение по-шаблону, поглядывая в другие подобные примеры, приводит к ошибкам на обнаружение которых уходит дополнительное время. Поэтому, сначала разумнее понять тему, а затем пользоваться готовым правилом.

Пример 3. Найти значение выражения 4 na 2 na 3 plus 3 na 2 na 5

Воспользуемся готовым правилом. Приведём дробные части к общему знаменателю, затем по отдельности сложим целые и дробные части:

4 na 2 na 3 plus 3 na 2 na 5 step 2


Сложение целого и смешанного числа

Встречаются задачи, в которых нужно сложить целое и смешанное число. Например, сложить 2 и смешанное число 1561 . В этом случае целые части складываются отдельно, а дробная часть остаётся без изменения:

1562

Здесь смешанная дробь 1561 была развёрнута в ходе решения, затем целые части были сгруппированы и сложены. В конце целая и дробная части были свёрнуты. В результате получили ответ 1563.

Попробуем изобразить это решение в виде рисунка. Если к двум целым пиццам прибавить три целые и треть пиццы, то получятся пять целых и треть пиццы:

2 plus 3 na 1 na 3 pic


Пример 2. Найти значение выражения 1564

В этом примере, как и в предыдущем, нужно сложить целые части:

1573

Осталось свернуть целую и дробную части, но дело в том, что дробная часть 1574  представляет собой неправильную дробь. Сначала нужно выделить целую часть в этой неправильной дроби. Затем целую часть этой дроби прибавить к 4, а дробную часть оставить без изменения. Продолжим данный пример на новой строке:

1575


Вычитание дроби из целого числа

Встречаются задачи, в которых требуется вычесть дробь из целого числа. Например, вычесть из числа 1 дробь одна вторая. Чтобы решить такой пример, нужно целое число 1 представить в виде дроби 1na1 , и выполнить вычитание дробей с разными знаменателями:

1 na 1 minus 1 na 2 ravno 1 na 2 step 1

Если имеется одна целая пицца и мы вычтем из неё половину пиццы, то у нас получится половина пиццы:

1 na 1 minus 1 na 2 ravno 1 na 2 step 2


Пример 2. Найти значение выражения 1581.

Представим число 2 в виде дроби 14167 , и выполним вычитание дробей с разными знаменателями:

1582

Если имеются две целые пиццы и мы вычтем из низ половину, то останется одна целая и половина пиццы:

2 minus 1 na 2 рисунок 1

Такие примеры можно решать в уме. Достаточно суметь воспроизвести их в своём воображении. К примеру, найдём значение выражения 3 минус 1 на 3, не приводя на бумаге никаких вычислений.

Представим, что число 3 это три пиццы:

3 na 1 na 2 рисунок 1

Нужно вычесть из них одна третья. Мы помним, что треть выглядит следующим образом:

3 минус 1 на 3 рисунок 2

Теперь представим, во что превратятся три пиццы, если отрезать от них эту треть

3 минус 1 на 3 рисунок 3

Получилось две целых две третьих (две целых и две трети пиццы).

Чтобы убедиться в правильности решения, можно найти значение выражения 3 минус 1 на 3 обычным методом, представив число 3 в виде дроби, и выполнив вычитание дробей с разными знаменателями:

3 минус 1 на 3 решение


Пример 3. Найти значение выражения 1591

Представим число 3 в виде дроби 1592. Затем выполним вычитание дробей с разными знаменателями:

1593


Вычитание смешанного числа из целого числа

Теперь мы готовы к тому, чтобы вычесть смешанное число из целого числа. Найдём значение выражения пять минус одна целая и одна вторая .

Чтобы решить этот пример, число 5 нужно представить в виде дроби, а смешанное число одна целая и одна вторая перевести в неправильную дробь. После перевода смешанного числа одна целая и одна вторая в неправильную дробь, получим дробь 15123. Теперь выполним вычитание дробей с разными знаменателями:

15124

Если из пяти целых пицц вычесть одну целую и половину пиццы, то останутся три целые пиццы и половина пиццы:

5-1 na 1 na 2 рисунок


Пример 2. Найти значение выражения 15131

Представим 6 в виде дроби 15132 , а смешанное число 15133, в виде неправильной дроби. После перевода смешанного числа 15133  в неправильную дробь, получим дробь 15134. Теперь выполним вычитание дробей с разными знаменателями:

15135

Примеры на вычитание дроби из числа или вычитание смешанной дроби из числа опять же можно выполнять в уме. Этот процесс легко поддаётся воображению.

К примеру, если нужно быстро найти значение выражения 2 minus 2 na 3 step 1, то вовсе необязательно представлять число 2 в виде дроби и выполнять вычитание дробей с разными знаменателями. Число 2 можно вообразить, как две целые пиццы и далее представить, как от одной из них отрезали две третьих (два куска из трёх)

2 minus 2 na 3 step 3

Тогда от той пиццы, от которой отрезали две третьих останется одна третья пиццы. Плюс одна из пицц останется нетронутой. Получится одна целая пицца и треть пиццы:

2 minus 2 na 3 step 2

Если на рисунке вы закроете рукой две третьих пиццы (она закрашена), то сразу всё поймёте.


Вычитание смешанных чисел

Встречаются задачи, в которых требуется вычесть из одного смешанного числа другое смешанное число. Например, найдём значение выражения: 15141

Чтобы решить этот пример, нужно смешанные числа 15142 и 15143 перевести в неправильные дроби, затем выполнить вычитание дробей с разными знаменателями:

15144

Если от трёх целых и половины пиццы вычесть две целые и треть пиццы, то останутся одна целая и одна шестая пиццы:

3 na 1 na minus 2 na 1 na 3 рисунок


Пример 2. Найти значение выражения 15141

Переводим смешанные числа 15142 и 15143 в неправильные дроби и выполняем вычитание дробей с разными знаменателями:

15144

К вычитанию смешанных чисел мы ещё вернёмся. В вычитании дробей есть немало тонкостей, которым новичок пока не готов. Например, возможен случай, когда уменьшаемое может оказаться меньше вычитаемого. Это может вывести нас в мир отрицательных чисел, которых мы ещё не изучали.

А пока изучим умножение смешанных чисел. Благо оно не такое сложное, как сложение и вычитание.


Умножение целого числа на дробь

Чтобы целое число умножить на дробь, достаточно умножить это целое число на числитель дроби, а знаменатель оставить без изменения.

Например, умножим число 5 на дробь одна вторая. Чтобы решить этот пример, нужно число 5 умножить на числитель дроби одна вторая, а знаменатель оставить без изменения:

15151

В ответе получилась неправильная дробь. Выделим в ней целую часть:

15152

Если имеются пять целых пицц и мы возьмём от этого количества половину, то у нас окажется две целые пиццы и половина пиццы:

5 na 1 na 2 рисунок


Пример 2. Найти значение выражения 15161

Умножим число 3 на числитель дроби 15163

15162

В ответе получилась неправильная дробь 15164, но мы выделили её целую часть и получили 2.

Также, можно было сократить эту дробь. Получился бы тот же результат. Выглядело бы это следующим образом:

15165

Если имеются три целые пиццы и мы возьмём от этого количества две третьих, то у нас окажется две целые пиццы:

3 na 2 na 3 рисунок


Пример 3. Найти значение выражения 15171

Этот пример решается так же, как и предыдущие. Целое число и числитель дроби нужно перемножить:

15172


Пример 4. Найти значение выражения 15181

Умножим число 3 на числитель дроби одна вторая

15183


Умножение смешанного числа на дробь

Чтобы умножить смешанное число на дробь, нужно смешанное число перевести в неправильную дробь, затем выполнить перемножение обыкновенных дробей.

Пример 1. Найти значение выражения 2 na 1 na 2 na 2 na 3 ravno 1

Переведём смешанное число  в неправильную дробь. После перевода это число превратится в дробь три вторых. Затем можно будет умножить эту дробь на две третьих

2 na 1 na 2 na 2 na 3 ravno 1 решение

Допустим, имеются одна целая и половина пиццы:

2 na 1 na 2 na 2 na 3 ravno 1 рисунок 1

Умножить эти куски на две третьих означает взять от них две трети. Чтобы взять от них две трети, сначала разделим их на три равные части. Разделим пополам ту пиццу, которая слева. Тогда у нас получится три равных куска:

2 na 1 na 2 na 2 na 3 ravno 1 рисунок 2

Теперь если мы возьмем две третьих (два куска из трёх имеющихся), то получим одну целую пиццу. Для наглядности закрасим эти два куска:

2 na 1 na 2 na 2 na 3 ravno 1 рисунок 3

Поэтому значение выражения 2 na 1 na 2 na 2 na 3 ravno 1 было равно 1

2 na 1 na 2 na 2 na 3 ravno 1 рисунок 4


Умножение смешанных чисел

Встречаются задачи, в которых требуется перемножить смешанные числа. Например, перемножить  и две целых одна вторая. Чтобы решить этот пример, нужно перевести эти смешанные числа в неправильные дроби, затем выполнить умножение неправильных дробей:

1 na 1 na 2 na 2 na 1 na 2 решение

Попробуем разобраться в этом примере с помощью рисунка. Допустим, имеются одна целая и половина пиццы:

1 na 1 na 2 na 2 na 1 na 2 рисунок 1

Теперь разберемся со смешанным множителем две целых одна вторая. Этот множитель означает, что одну целую и половину пиццы нужно взять 2 раза и еще одна вторая раза.

С множителем 2 всё понятно, он означает что одну целую и половину пиццы нужно взять два раза. Давайте возьмём два раза целую пиццу и половину:

1 na 1 na 2 na 2 na 1 na 2 рисунок 2

Но ещё осталось взять одна вторая от изначальной целой пиццы и половины, ведь множителем было смешанное число две целых одна вторая. Для этого вернёмся к изначальной одной целой и половине пиццы, и разделим их на равные части так, чтобы можно было взять от них ровно половину. А половину мы сможем взять, если разделим целую пиццу на четыре части, а половину на две части:

1 na 1 na 2 na 2 na 1 na 2 рисунок 3

Мы разделили нашу целую пиццу и половину на равные части, и теперь можем сказать, что является половиной от этих кусков. Половиной от этих кусков является три четвёртых пиццы. Это можно хорошо увидеть, если мы упорядочим наши равные кусочки следующим образом:

1 na 1 na 2 na 2 na 1 na 2 рисунок 4

А если смотреть на изначальную целую пиццу и половину с точки зрения такого порядка, как на этом рисунке, то половиной от них является три четвёртыхпиццы.

Поэтому значение выражения 1 na 1 na 2 na 2 na 1 na 2 равно 3 na 3 na 4

1 na 1 na 2 na 2 na 1 na 2 рисунок 5


Пример 2. Найти значение выражения 2 на 1 на 3 на 3 на 1 на 4 пример

Переводим смешанные числа в неправильные дроби и перемножаем эти неправильные дроби. Если в ответе получится неправильная дробь, выделим в ней целую часть:

2 на 1 на 3 на 3 на 1 на 4 решение


Деление целого числа на дробь

Чтобы разделить целое число на дробь, нужно это целое число умножить на дробь, обратную делителю.

Например, разделим число 3 на дробь одна вторая. Здесь число 3 — это делимое, а дробь одна вторая — делитель.

Чтобы решить этот пример, нужно число 3 умножить на дробь, обратную дроби одна вторая. А обратная дробь для дроби одна вторая это дробь две первых. Поэтому умножаем число 3 на дробь 15221

3 na 1 na 2 решение

Допустим, имеются три целые пиццы:

3 na 1 na 2 рисунок 1

Если мы зададим вопрос «cколько раз одна вторая (половина пиццы) содержится в трёх пиццах», то ответом будет «шесть раз».

Действительно, если мы разделим каждую пиццу пополам, то у нас получится шесть половинок:

3 na 1 na 2 рисунок 2

Поэтому значение выражения 3 na 1 na 2 выражение равно 6.


Пример 2. Найти значение выражения 2 на 3 на 2 пример

Чтобы решить этот пример, нужно число 2 умножить на дробь, обратную дроби три вторых. А обратная дробь для дроби три вторых это дробь две третьих

2 на 3 на 2 решение

Допустим, имеются две целые пиццы:

2 на 3 на 2 рисунок 1

Зададим вопрос «Сколько раз три вторых пиццы содержится в этих двух пиццах?» Чтобы ответить на этот вопрос, выделим целую часть в дроби три вторых. После выделения целой части в этой дроби получим 

Теперь поставим вопрос так: «Сколько раз  (одна целая и половина пиццы) содержится в двух пиццах?».

Чтобы ответить на этот вопрос, нужно найти в двух пиццах такое количество пиццы, которое изображено на следующем рисунке:

2 на 3 на 2 рисунок 5

В двух пиццах одна целая и половина пиццы содержится один раз. Это можно увидеть, если вторую пиццу разделить пополам:

2 на 3 на 2 рисунок 2

А оставшаяся половина это треть от , которая не вместилась. Третью она является по той причине, что в одной целой и половине пиццы целую часть пиццы можно разделить пополам. Тогда каждый кусок будет третью от этого количества:

2 на 3 на 2 рисунок 4

Поэтому значение выражения 2 на 3 на 2 пример равно одна целая одна третья


Пример 3. Найти значение выражения 5 na 9 na 2

Чтобы решить этот пример, нужно число 5 умножить на дробь, обратную дроби 9 na 4. А обратная дробь для дроби 9 na 4 это дробь 4 na 9. Поэтому умножаем число 5 на 4 na 9

5 na 9 na 4 решение

Дробь 9 na 4 это 2 целых и одна четвертая. Проще говоря, две целые и четверть пиццы:

5 na 9 na 4 рисунок 1

А выражение 5 na 9 na 2 определяет сколько раз  содержится в пяти целых пиццах. Ответом было смешанное число 2 na 2 na 9.

То есть  пиццы содержится в пяти целых пиццах 2 na 2 na 9 раза.

Давайте нащупаем в пяти пиццах два раза по 

5-1 na 1 na 2 рисунок 3

Белым цветом осталось не выделено две четверти. Эти две четверти представляют собой две девятых от , которые не вместились. Двумя девятыми они являются по той причине, что в  пиццы каждую целую пиццу можно разделить на четыре части. Тогда каждый кусок будет девятой частью от этого количества, а два куска соответственно двумя из девяти:

5-1 na 1 na 2 рисунок 4

Поэтому значение выражения 5 na 9 na 2 равно 2 na 2 na 9


Деление дроби на целое число

Чтобы разделить дробь на целое число, нужно данную дробь умножить на число, обратное делителю. Таким делением мы занимались в прошлом уроке. Вспомним ещё раз.

Пример 1. Разделим дробь одна вторая на число 2

Чтобы разделить дробь одна вторая на 2, нужно данную дробь умножить на число, обратное числу 2. А обратное числу 2 это дробь одна вторая

1 на 2 на 2 решение

Пусть имеется половина пиццы:

рисунок половина пиццы

Разделим её поровну на две части. Тогда каждая получившаяся часть будет одной четвертой пиццы:

1 na 2 na 2 рисунок

Поэтому значение выражения 1 na 2 na 2 равно одна четвертая


Пример 2. Найти значение выражения 5 на 7 на 2 пример

Чтобы решить этот пример, нужно дробь 5 на 7 умножить на число, обратное числу 2. Обратное числу 2 это дробь одна вторая

5 на 7 на 2 решение


Пример 3. Найти значение выражения 3 на 5 на 3 пример

Умножаем первую дробь Три пятых на число, обратное числу 3. Обратное числу 3 это дробь одна третья

3 на 5 на 3 решение


Деление целого числа на смешанное число

Встречаются задачи, в которых требуется разделить целое число на смешанное число. Например, разделим 2 на .

Чтобы решить этот пример, нужно делитель перевести в неправильную дробь. Затем умножить число 2 на дробь, обратную делителю.

Переведём делитель  в неправильную дробь, получим три вторых. Затем умножим 2 на дробь, обратную дроби три вторых. Обратная для дроби три вторых это дробь две третьих

2 на 1 на 1 на 2 решение

Допустим, имеются две целые пиццы:

2 на 3 на 2 рисунок 1

Зададим вопрос «Сколько раз  (одна целая и половина пиццы) содержится в двух целых пиццах?». Похожий пример мы решали ранее, когда учились делить целое число на дробь.

В двух пиццах одна целая и половина пиццы содержится один раз. Это можно увидеть, если вторую пиццу разделить пополам:

2 на 3 на 2 рисунок 2

А оставшаяся половина это треть от , которая не вместилась. Третью она является по той причине, что в одной целой и половине пиццы целую часть пиццы можно разделить пополам. Тогда каждый кусок будет третью от этого количества:

2 на 3 на 2 рисунок 4

Поэтому значение выражения 2 на 1 на 1 на 2 пример равно одна целая одна третья


Пример 2. Найти значение выражения 5 на 2 на 1 на 7 пример

Переводим делитель 2 на 1 на 7 в неправильную дробь, получаем 15 на 7. Теперь умножаем число 5 на дробь, обратную дроби 15 на 7. Обратная для дроби 15 на 7 это дробь 7 на 15

5 на 2 на 1 на 7 решение

Сначала мы получили ответ 152611, затем сократили эту дробь на 5, и получили 7 на 3, но этот ответ нас тоже не устроил, поскольку он представлял собой неправильную дробь. Мы выделили в этой неправильной дроби целую часть. В результате получили ответ две целых одна третья


Деление смешанного числа на целое число

Чтобы разделить смешанное число на целое число, нужно смешанное число перевести в неправильную дробь, затем умножить эту дробь на число, обратное делителю.

Например, разделим  на 2. Чтобы решить этот пример, нужно делимое  перевести в неправильную дробь. Затем умножить эту дробь на число, обратное делителю 2.

Переведём смешанное число  в неправильную дробь, получим три вторых.

Теперь умножаем три вторых на число, обратное числу 2. Обратное числу 2 это дробь одна вторая

1 на 1 на 2 на 2 решение

Допустим, имеется одна целая и половина пиццы:

1 на 1 на 2 на 2 рисунок 1

Разделим это количество пиццы поровну на две части. Для этого сначала разделим на две части целую пиццу:

1 на 1 на 2 на 2 рисунок 2

Затем разделим поровну на две части и половину:

1 на 1 на 2 на 2 рисунок 3

Теперь если мы сгруппируем эти кусочки на две группы, то получим по три четвёртых пиццы в каждой группе:

1 на 1 на 2 на 2 рисунок 3

Поэтому значение выражения 1 на 1 на 2 на 2 пример равно три четвёртых


Пример 2. Найти значение выражения 3 на 1 на 5 на 4 пример

Переведём делимое 3 на 1 на 5 на 4 в неправильную дробь, получим 16 на 5. Теперь умножаем 16 на 5 на число, обратное числу 4. Обратное числу 4 это дробь 15294.

3 на 1 на 5 на 4 решение


Деление смешанных чисел

Чтобы разделить смешанные числа, нужно перевести их в неправильные дроби, затем выполнить обычное деление дробей. То есть умножить первую дробь на дробь, обратную второй.

Пример 1. Найти значение выражения 2 на 1 на 2 на 1 на 1 на 4 шаг 1

Переведём смешанные числа в неправильные дроби. Получим следующее выражение:

2 на 1 на 2 на 1 на 1 на 4 шаг 2

Как решать дальше мы уже знаем. Первую дробь пять вторых нужно умножить на дробь, обратную второй. Обратная для второй дроби это дробь 4 на 5 .

Дорешаем данный пример до конца:

2 на 1 на 2 на 1 на 1 на 4 шаг 3

Допустим, имеются две целые и половина пиццы:

2 на 1 на 2 на 1 на 1 на 4 рисунок 1

Если зададим вопрос «Сколько раз одна целая одна четвертая (одна целая и четверть пиццы) содержится в двух целых и половине пиццы», то ответом будет «два раза»:

2 на 1 на 2 на 1 на 1 на 4 шаг 4


Пример 2. Найти значение выражения 15311

Переведём смешанные числа в неправильные дроби. Получим следующее выражение:

15312

Теперь умножаем первую дробь на дробь, обратную второй. Обратная для дроби это дробь 15314

15316

Сначала мы получили дробь15317. Эту дробь мы сократили на 9. В результате получили дробь 15318, но такой ответ нас тоже не устроил и мы выделили в дроби 15318 целую часть. В результате получили окончательный ответ 15319.


Задания для самостоятельного решения

Задание 1. Найдите значение выражения:

Решение:

Задание 2. Найдите значение выражения:

Решение:

Задание 3. Найдите значение выражения:

Решение:

Задание 4. Найдите значение выражения:

Решение:

Задание 5. Найдите значение выражения:

Решение:


Понравился урок?
Вступай в нашу новую группу Вконтакте и начни получать уведомления о новых уроках

Возникло желание поддержать проект?
Используй кнопку ниже


Добавить комментарий