Как составить электронную формулу элемента побочной группы

ЕГЭ по химии

Построение структурно-электронной формулы элементов B-подгрупп

Материал по химии

Элементы побочной подгруппы еще называют d-элементами или переходными металлами. Они отличаются тем, что их валентные электроны расположены не только на s-подуровне внешнего энергетического слоя, но и на d-подуровне предвнешнего слоя. Валентными электронами называют те, что способны участвовать в образовании химической связи.

Что бы построить модель атома такого элемента, нам необходимо знать одно важное отличие этих элементов от элементов А-подгрупп: если у элементов главных (А) подгрупп количество электронов на внешнем уровне определяется по номеру группы (например, у лития один электрон на внешнем слое, у бериллия – два, у бора – три и так далее), то у элементов побочных подгрупп это количество не зависит от номера группы.

Для определения количества электронов на внешнем уровне, легче всего просто запомнить несколько распространённых примеров (они выделены красным):

Количество электронов на внешнем уровне

Примеры элементов

1

Cu, Ag, Au, Nb, Cr, Mo, Ru, Rh, Pt, Ds

2

Все остальные элементы B-подгрупп, кроме палладия.

Остальные правила работают как с элементами А-подгрупп, так и с элементами Б-подгрупп. Например, заряд ядра определяется по порядковому номеру элемента, количество энергетических уровней по расположению в определенном периоде.

Рассмотрим конфигурацию нескольких элементов побочных подгрупп:

Построение структурно-электронной формулы элементов B-подгрупп


Конфигурация хрома и железа

На рисунке показано, что несмотря на положение элементов в определенных подгруппах, количество электронов у них не равно этой группе.

Для сравнения изучим еще один рисунок, на котором мы можем сравнить элементы А- и Б-подгрупп одной и той же группы:

Конфигурация брома и марганца

На этом рисунке мы снова можем убедиться, что элементы, находящиеся в одной и той же группе. В одном и том же периоде, но в разных подгруппах имеют разное строение.

Что бы разобраться, почему эти элементы называются d-элементами, разберем структурно-электронные формулы некоторых из них, например, хрома, железа и марганца, строение которых описывалось выше. Как уже было сказано, у этих элементов валентными являются не только внешний. Но и предвнешний уровень.

Cr

3s2 3p6 3d5 4s1

↓↑

↑↓ ↑↓ ↑↓

3s

3p

3d

4s

Fe

3s2 3p6 3d6 4s2

↓↑

↑↓ ↑↓ ↑↓
↑↓

↑↓

3s

3p

3d

4s

Mn

3s2 3p6 3d5 4s2

↓↑

↑↓ ↑↓ ↑↓

↑↓

3s

3p

3d

4s

d-орбиталь содержит неспаренные электроны, которые могут вступать в химическую связь. Поэтому высшая валентность хрома равна не двум (по количеству электронов на внешнем уровне), а шести – по общему количеству электронов внешнего энергетического уровня и d-электронов предвнешнего уровня.

Вы можете встретить немного измененный порядок заполнения орбиталей, например, у марганца: 3s2 3p6 4s2 3d5. s- и d-подуровень поменялись местами, в таких формулах учтен уровень энергии орбиталей: чем меньшей энергией обладает орбиталь, тем быстрее она будет заполняться электронами.

Правильнее будет заполнять электроны в следующем порядке:

1s → 2s → 2p → 3s → 3p → 4s → 3d → 4p → 5s → 4d → 5p…

Тренировочные задания ЕГЭ

Задание 1.

Для выполнения заданий 1 – 3 используйте следующий ряд химических элементов:

  1. Ca

  1. Zn

  1. Hg

  1. Cu

  1. Sr

Ответом в заданиях 1 – 3 является последовательность цифр, под которыми указаны химические элементы в данном ряду.

Определите, атомы каких из указанных элементов имеют электронную конфигурацию внешнего энергетического уровня ns2(n-1) d10

Решение задания:

Для начала разберемся со страшной формулой ns2(n-1) d10. Попробуем заменить переменную n на любое число, например, на 4, тогда мы получим 4s2(4-1)d10 или 4s23d10. Эта формула отображает порядок распределения электронов согласно их энергии. Если для нас такой порядок непривычен, то мы можем поменять его местами, тогда получим 3d104s2. Получившаяся формула приблизительна, вместо нее может быть 4d105s2 или 5d106s2 , но по этой формуле мы понимаем, что должны искать элемент с двумя электронами на внешнем энергетическом уровне (это приводит к тому, что медь выбывает из списка претендентов на правильный ответ), и элемент должен иметь d-орбиталь на внешнем уровне (кальций и стронций выпадают)

Верный ответ: 23

Задание 2.

Для выполнения заданий 1 – 3 используйте следующий ряд химических элементов:

  1. Fe

  1. Ti

  1. Sb

  1. Zn

  1. Mg

Ответом в заданиях 1 – 3 является последовательность цифр, под которыми указаны химические элементы в данном ряду.

Определите, атомы каких из указанных в ряду элементов не имеют на внешнем энергетическом уровне неспаренных электронов.

Решение: построим электронные конфигурации данных атомов.

Сурьма – Sb, элемент главной подгруппы пятой группы (А), у таких элементов валентные электроны находятся только на внешнем слое: 5s25p3, что соответствует структурно-электронной формуле:

Элемент имеет три неспаренных p-электрона.

Последовательность расположения электронов на энергетических уровнях выражается следующим рядом чисел:

Уровень

1

2

3

4

5

Кол-во ē

2 ē

8 ē

18 ē

18 ē

5 ē

Магний – Mg, элемент главной подгруппы второй группы (А). поэтому его внешний энергетический слой будет имеет следующую формулу: 3s2

Не имеет неспаренных электронов.

Уровень

1

2

3

Кол-во ē

2 ē

8 ē

2 ē

Железо – Fe, элемент побочной подгруппы (Б), у таких элементов валентными являются как электроны внешнего уровня, так и d-электроны предвнешнего уровня. 3d64s2

↑↓ ↑↓

Есть четыре неспаренных электрона на d-подуровне.

Уровень

1

2

3

4

Кол-во ē

2 ē

8 ē

14 ē

2 ē

Титан -Ti, 3d24s2

↑↓

Есть два неспаренных электрона на d-подуровне.

Уровень

1

2

3

4

Кол-во ē

2 ē

8 ē

10 ē

2 ē

Цинк – Zn, 3d104s2

↑↓ ↑↓ ↑↓ ↑↓ ↑↓ ↑↓

Нет неспаренных электронов.

Уровень

1

2

3

4

Кол-во ē

2 ē

8 ē

18 ē

2 ē

Верный ответ: 45


Как написать электронно-графическую формулу

Чтобы научиться составлять электронно-графические формулы, важно понять теорию строения атомного ядра. Ядро атома составляют протоны и нейтроны. Вокруг ядра атома на электронных орбиталях находятся электроны.

Как написать электронно-графическую формулу

Вам понадобится

  • – ручка;
  • – бумага для записей;
  • – периодическая система элементов (таблица Менделеева).

Инструкция

Электроны в атоме занимают свободные орбитали в последовательности, называемой шкалой энергии:1s / 2s, 2p / 3s, 3p / 4s, 3d, 4p / 5s, 4d, 5p / 6s, 4d, 5d, 6p / 7s, 5f, 6d, 7p. На одной орбитали могут располагаться два электрона с противоположными спинами – направлениями вращения.

Структуру электронных оболочек выражают с помощью графических электронных формул. Для записи формулы используйте матрицу. В одной ячейке могут располагаться один или два электрона с противоположными спинами. Электроны изображаются стрелками. Матрица наглядно показывает, что на s-орбитали могут располагаться два электрона, на p-орбитали – 6, на d – 10, на f -14.

Матрица для записей электронно-графических формул

Рассмотрите принцип составления электронно-графической формулы на примере марганца. Найдите марганец в таблице Менделеева. Его порядковый номер 25, значит в атоме 25 электронов, это элемент четвертого периода.

Запишите порядковый номер и символ элемента рядом с матрицей. В соответствии со шкалой энергии заполоните последовательно 1s, 2s, 2p, 3s, 3p, 4s уровни, вписав по два электрона в ячейку. Получится 2+2+6+2+6+2=20 электронов. Эти уровни заполнены полностью.

Заполните 1s, 2s, 2p, 3s, 3p, 4s уровни матрицы

У вас осталось еще пять электронов и незаполненный 3d-уровень. Расположите электроны в ячейках d-подуровня, начиная слева. Электроны с одинаковыми спинами расположите в ячейках сначала по одному. Если все ячейки заполнены, начиная слева, добавьте по второму электрону с противоположным спином. У марганца пять d-электронов, расположенных по одному в каждой ячейке.

Электронно-графическая формула марганца

Электронно-графические формулы наглядно показывают количество неспаренных электронов, которые определяют валентность.

Обратите внимание

Помните, что химия – наука исключений. У атомов побочных подгрупп Периодической системы встречается «проскок» электрона. Например, у хрома с порядковым номером 24 один из электронов с 4s-уровня переходит в ячейку d-уровня. Похожий эффект есть у молибдена, ниобия и др. Кроме того, есть понятие возбужденного состояния атома, когда спаренные электроны распариваются и переходят на соседние орбитали. Поэтому при составлении электронно-графических формул элементов пятого и последующих периодов побочной подгруппы сверяйтесь со справочником.

Источники:

  • как составить электронную формулу химического элемента

Войти на сайт

или

Забыли пароль?
Еще не зарегистрированы?

This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.

Электронные формулы атомов химических элементов (Таблица)

Таблица содержит электронные формулы атомов химических элементов (слои расположены в порядке заполнения подуровней)

Электронная формула показывает распределение электронов на орбиталях в атоме:

Схема электронной формулы атома углерода и фосфора

Формирование электронной оболочки атома происходит в соответствии с 3-мя принципами:

1. Принцип минимума энергии, который определяет заполнение атомных орбиталей с наименьшей энергией

(1s < 2s < 2p < 3s < 3p < 4s ≈ 3d < 4p < 5s ≈ 4d < 5p < 6s ≈ 4f ≈ 5d < 6p < 7s)

2. Принцип Паули, который диктует присутствие на атомной орбитали не более 2 электронов с противоположно направленными спинами

3. Правило Хунда, по которому происходит заполнение атомных орбиталей электронами так, чтобы их суммарный спин был максимальным.

Ниже показаны примеры графического изображения электронных формул атомов некоторых химических элементов:

Графическое изображение электронных формул атомов

Таблица электронных формул атомов химических элементов

№ элемента

Химический знак

Название элемента

Электронная формула

1

H

водород

1s1

2

He

гелий

1s2

II период

3

Li

литий

1s22s1

4

Be

бериллий

1s22s2

5

B

бор

1s22s22p1

6

C

углерод

1s22s22p2

7

N

азот

1s22s22p3

8

O

кислород

1s22s22p4

9

F

фтор

1s22s22p5

10

Ne

неон

1s22s22p6

III период

11

Na

натрий

1s22s22p63s1

12

Mg

магний

1s22s22p63s2

13

Al

алюминий

1s22s22p63s23p1

14

Si

кремний

1s22s22p63s23p2

15

P

фосфор

1s22s22p63s23p3

16

S

сера

1s22s22p63s23p4

17

Cl

хлор

1s22s22p63s23p5

18

Ar

аргон

1s22s22p63s23p6

 IV период

19

K

калий

1s22s22p63s23p64s1

20

Ca

кальций

1s22s22p63s23p64s2

21

Sc

скандий

1s22s22p63s23p64s23d1

22

Ti

титан

1s22s22p63s23p64s23d2

23

V

ванадий

1s22s22p63s23p64s23d3

24

Cr

хром

1s22s22p63s23p64s13d5

25

Mn

марганец

1s22s22p63s23p64s23d5

26

Fe

железо

1s22s22p63s23p64s23d6

27

Co

кобальт

1s22s22p63s23p64s23d7

28

Ni

никель

1s22s22p63s23p64s23d8

29

Cu

медь

1s22s22p63s23p64s13d10

30

Zn

цинк

1s22s22p63s23p64s23d10

31

Ga

галлий

1s22s22p63s23p64s23d104p1

32

Ge

германий

1s22s22p63s23p64s23d104p2

33

As

мышьяк

1s22s22p63s23p64s23d104p3

34

Se

селен

1s22s22p63s23p64s23d104p4

35

Br

бром

1s22s22p63s23p64s23d104p5

36

Kr

криптон

1s22s22p63s23p64s23d104p6

V период

37

Rb

рубидий

1s 22s 22p 63s 23p64s 23d104p65s1

38

Sr

стронций

1s 22s 22p 63s 23p64s 23d104p65s2

39

Y

иттрий

1s 22s 22p 63s 23p64s 23d104p65s24d1

40

Zr

цирконий

1s 22s 22p 63s 23p64s 23d104p65s24d2

41

Nb

ниобий

1s 22s 22p 63s 23p64s 23d104p65s14d4

42

Mo

молибден

1s 22s 22p 63s 23p64s 23d104p65s14d5

43

Tc

технеций

1s 22s 22p 63s 23p64s 23d104p65s24d5

44

Ru

рутений

1s 22s 22p 63s 23p64s 23d104p65s14d7

45

Rh

родий

1s 22s 22p 63s 23p64s 23d104p65s14d8

46

Pd

палладий

1s 22s 22p 63s 23p64s 23d104p65s04d10

47

Ag

серебро

1s 22s 22p 63s 23p64s 23d104p65s14d10

48

Cd

кадмий

1s 22s 22p 63s 23p64s 23d104p65s24d10

49

In

индий

1s 22s 22p 63s 23p64s 23d104p65s24d105p1

50

Sn

олово

1s 22s 22p 63s 23p64s 23d104p65s24d105p2

51

Sb

сурьма

1s 22s 22p 63s 23p64s 23d104p65s224d105p3

52

Te

теллур

1s 22s 22p 63s 23p64s 23d104p65s24d105p4

53

I

йод

1s 22s 22p 63s 23p64s 23d104p65s24d105p5

54

Xe

ксенон

1s 22s 22p 63s 23p64s 23d104p65s24d105p6

VI период

55

Cs

цезий

1s 22s 22p 63s 23p64s 23d104p65s24d105p66s1

56

Ba

барий

1s 22s 22p 63s 23p64s 23d104p65s24d105p66s2

57

La

лантан

1s 22s 22p 63s 23p64s 23d104p65s24d105p66s25d1

58

Ce

церий

1s 22s 22p 63s 23p64s 23d104p65s24d105p66s24f2

59

Pr

празеодим

1s 22s 22p 63s 23p64s 23d104p65s24d105p66s24f3

60

Nd

неодим

1s 22s 22p 63s 23p64s 23d104p65s24d105p66s24f4

61

Pm

прометий

1s 22s 22p 63s 23p64s 23d104p65s24d105p66s24f5

62

Sm

самарий

1s 22s 22p 63s 23p64s 23d104p65s24d105p66s24f6

63

Eu

европий

1s 22s 22p 63s 23p64s 23d104p65s24d105p66s24f7

64

Gd

гадолиний

1s 22s 22p 63s 23p64s 23d104p65s24d105p66s24f75d1

65

Tb

тербий

1s 22s 22p 63s 23p64s 23d104p65s24d105p66s24f9

66

Dy

диспрозий

1s 22s 22p 63s 23p64s 23d104p65s24d105p66s24f10

67

Ho

гольмий

1s 22s 22p 63s 23p64s 23d104p65s24d105p66s24f11

68

Er

эрбий

1s 22s 22p 63s 23p64s 23d104p65s24d105p66s24f12

68

Tm

тулий

1s 22s 22p 63s 23p64s 23d104p65s24d105p66s24f13

70

Yb

иттербий

1s 22s 22p 63s 23p64s 23d104p65s24d105p66s24f14

71

Lu

лютеций

1s 22s 22p 63s 23p64s 23d104p65s24d105p66s24f145d1

72

Hf

гафний

1s 22s 22p 63s 23p64s 23d104p65s24d105p66s24f145d2

73

Ta

тантал

1s 22s 22p 63s 23p64s 23d104p65s24d105p66s24f145d3

74

W

вольфрам

1s 22s 22p 63s 23p64s 23d104p65s24d105p66s24f145d4

75

Re

рений

1s 22s 22p 63s 23p64s 23d104p65s24d105p66s24f145d5

76

Os

осмий

1s 22s 22p 63s 23p64s 23d104p65s24d105p66s24f145d6

77

Ir

иридий

1s 22s 22p 63s 23p64s 23d104p65s24d105p66s24f145d7

78

Pt

платина

1s 22s 22p 63s 23p64s 23d104p65s24d105p66s14f145d9

79

Au

золото

1s 22s 22p 63s 23p64s 23d104p65s24d105p66s14f145d10

80

Hg

ртуть

1s 22s 22p 63s 23p64s 23d104p65s24d105p66s24f145d10

81

Tl

таллий

1s 22s 22p 63s 23p64s 23d104p65s24d105p66s24f145d106p1

82

Pb

свинец

1s 22s 22p 63s 23p64s 23d104p65s24d105p66s24f145d106p2

83

Bi

висмут

1s 22s 22p 63s 23p64s 23d104p65s24d105p66s24f145d106p3

84

Po

полоний

1s 22s 22p 63s 23p64s 23d104p65s24d105p66s24f145d106p4

85

At

астат

1s 22s 22p 63s 23p64s 23d104p65s24d105p66s24f145d106p5

86

Rn

радон

1s 22s 22p 63s 23p64s 23d104p65s14d105p66s24f145d106p6

VII период

87

Fr

франций

1s 22s 22p 63s 23p64s 23d104p65s24d105p66s24f145d106p67s1

88

Ra

радий

1s 22s 22p 63s 23p64s 23d104p65s24d105p66s24f145d106p67s2

89

Ac

актиний

1s 22s 22p 63s 23p64s 23d104p65s24d105p66s24f145d106p67s26d1

90

Th

торий

1s 22s 22p 63s 23p64s 23d104p65s24d105p66s24f145d106p67s26d25f0

91

Pa

протактиний

1s 22s 22p 63s 23p64s 23d104p65s24d105p66s24f145d106p67s25f26d1

92

U

уран

1s 22s 22p 63s 23p64s 23d104p65s24d105p66s24f145d106p67s25f36d1

93

Np

нептуний

1s 22s 22p 63s 23p64s 23d104p65s24d105p66s24f145d106p67s25f46d1

94

Pu

плутоний

1s 22s 22p 63s 23p64s 23d104p65s24d105p66s24f145d106p67s25f56d1

95

Am

америций

1s 22s 22p 63s 23p64s 23d104p65s24d105p66s24f145d106p67s25f7

96

Cm

кюрий

1s 22s 22p 63s 23p64s 23d104p65s24d105p66s24f145d106p67s25f76d1

97

Bk

берклий

1s 22s 22p 63s 23p64s 23d104p65s24d105p66s24f145d106p67s25f86d1

98

Cf

калифорний

1s 22s 22p 63s 23p64s 23d104p65s24d105p66s24f145d106p67s25f10

99

Es

эйнштейний

1s 22s 22p 63s 23p64s 23d104p65s24d105p66s24f145d106p67s25f11

100

Fm

фермий

1s 22s 22p 63s 23p64s 23d104p65s24d105p66s24f145d106p67s25f12

101

Md

менделеевий

1s 22s 22p 63s 23p64s 23d104p65s24d105p66s24f145d106p67s25f13

102

No

нобелий

1s 22s 22p 63s 23p64s 23d104p65s24d105p66s24f145d106p67s25f14

103

Lr

лоуренсий

1s 22s 22p 63s 23p64s 23d104p65s24d105p66s24f145d106p67s25f146d1

104

Rf

резерфордий

1s 22s 22p 63s 23p64s 23d104p65s24d105p66s24f145d106p67s25f146d2

105

Db

дубний

1s 22s 22p 63s 23p64s 23d104p65s24d105p66s24f145d106p67s25f146d3

106

Sg

сиборгий

1s 22s 22p 63s 23p64s 23d104p65s24d105p66s24f145d106p67s25f146d4

107

Bh

борий

1s 22s 22p 63s 23p64s 23d104p65s24d105p66s24f145d106p67s25f146d5

108

Hs

хассий

1s 22s 22p 63s 23p64s 23d104p65s24d105p66s24f145d106p67s25f146d6

109

Mt

мейтнерий

1s 22s 22p 63s 23p64s 23d104p65s24d105p66s24f145d106p67s25f146d7

 

s-элементы

p-элементы

d-элементы

f-элементы

Электронные формулы элементов

Запись,
отражающая распределение электронов
в атоме химического элемента по
энергетическим уровням и подуровням,
называется электронной
конфигурацией

этого атома. В основном (невозбужденном)
состоянии атома все электроны удовлетворяют
принципу минимальной энергии. Это
значит, что сначала заполняются подуровни,
для которых:

1)
Главное квантовое число n
минимально;

2)
Внутри уровня сначала заполняется s-
подуровень, затем p-
и лишь затем d-
(l
минимально);

3)
Заполнение происходит так, чтобы (n
+ l)
было минимально (правило Клечковского);

4)
В пределах одного подуровня электроны
располагаются таким образом, чтобы их
суммарный спин был максимален, т.е.
содержал наибольшее число неспаренных
электронов (правило Гунда).

5)
При заполнении электронных атомных
орбиталей выполняется принцип Паули.
Его следствием является, что энергетическому
уровню с номером n
может принадлежать не более чем 2n2
электронов, расположенных на n2
подуровнях.

В
записи электронных формул (или
конфигураций), отражающих эту
последовательность, первая цифра равна
n,
буква после нее соответствует l,
а правый верхний индекс равен числу
электронов в этом состоянии.

Например,
цезий (Сs)
находится в 6 периоде, его 55 электронов
(порядковый номер 55) распределены по 6
энергетическим уровням и их подуровням,
соблюдая последовательность заполнения
электронами орбиталей получим: 55Cs
1
s2
2
s2
2
p6
3
s2
3
p6
4
s2
4
p6
4
d10
5
s2
5
p6
5
d10
6
s1

В
свою очередь электронная формула лития
1s22s1,
углерода – 1s22s22p2,
хлора – 1s22s22p63s23p5.

Заселенность
электронных оболочек может быть
представлена в виде квантовых ячеек
(квадратов или горизонтальных линий).
В отличие от электронных формул, здесь
используются не два, а все четыре
квантовых числа. Видно, что энергия
электронов в многоэлектронных атомах
определяется как квантовым числом n,
так и l;
электроны отличаются значениями ml,
а у спаренных электронов различны только
спины. Свободные ячейки в нашем примере
означают свободные p-орбитали,
которые могут занимать электроны при
возбуждении атома (рис. 8).


Бор

2p1

2s2

1s2

Рис.
8. Графическое изображение электронной
формулы бора.

Исследуя
изменение химических свойств элементов
в зависимости от величины их относительной
атомной массы (атомного веса),
Д.
И. Менделеев
в
1869 г. открыл закон
периодичности

этих свойств: «Свойства
элементов, а потому и свойства образуемых
ими простых и сложных тел стоят в
периодической зависимости от атомных
весов элементов
».
Поскольку химические свойства обусловлены
строением электронных оболочек атома,
периодическая
система Менделеева

– это естественная классификация
элементов по электронным структурам
их атомов (прил. 4). Простейшая основа
такой классификации – число электронов
в нейтральном атоме, которое равно
заряду ядра. Но при образовании химической
связи электроны могут перераспределяться
между атомами, а заряд ядра остается
неизменным, поэтому современная
формулировка периодического закона
гласит: «Свойства
элементов находятся в периодической
зависимости от зарядов ядер их атомов»
.

Это
обстоятельство отражено в периодической
системе в виде горизонтальных и
вертикальных рядов – периодов и групп.

Период
– горизонтальный ряд, имеющий одинаковое
число электронных уровней, номер периода
совпадает со значением главного
квантового числа n
внешнего уровня (слоя); таких периодов
в периодической системе семь. Второй и
последующие периоды начинаются щелочным
элементом (ns1)
и заканчивается благородным газом
(ns2np6).

По
вертикали
периодическая система подразделяется
на восемь групп, которые делятся на
главные
– А
,
состоящие из s
и p-элементов,
и побочные
– B-подгруппы
,
содержащие d-элементы.
Подгруппа III B, кроме d-элементов,
содержит по 14 4f
и 5f-элементов
(семейства 4f-лантаноидов
и 5f-актиноидов).
Главные подгруппы содержат на внешнем
электронном слое одинаковое число
электронов, которое равно номеру группы.
В главных подгруппах валентные электроны
(электроны, способные образовывать
химические связи) расположены на s
и p-орбиталях
внешнего энергетического уровня, в
побочных – на s-орбиталях
внешнего и d-орбиталях
предвнешнего слоя. Для f-элементов
валентными являются (n – 2)f– (n – 1)d
и ns-электроны.
Сходство элементов внутри каждой группы
– наиболее важная закономерность в
периодической системе. Следует, кроме
того, отметить такую закономерность,
как диагональное
сходство

у пар элементов Li и Mg, Be и Al, B и Si и др. Эта
закономерность обусловлена тенденцией
смены свойств по вертикали (в группах)
и их изменением по горизонтали (в
периодах).

Структура
электронной оболочки атомов элемента
изменяется периодически с ростом
порядкового номера элемента, с одной
стороны, и, с другой стороны, свойства
определяются строением электронной
оболочки и, следовательно, находятся в
периодической зависимости от заряда
ядра атома.

Периодичность
атомных характеристик

Периодический
характер изменения химических свойств
атомов элементов зависит от изменения
радиуса атома и иона.

За
радиус свободного атома принимают
положение главного максимума плотности
внешних электронных оболочек. Это так
называемый орбитальный
радиус
.
Если рассматривать относительные
величины атомных радиусов, то легко
обнаружить периодичность их зависимости
от номера элемента.

В
периодах

орбитальные атомные радиусы по мере
увеличения заряда ядра Z
в общем монотонно уменьшаются из-за
роста степени взаимодействия внешних
электронов с ядром. В
подгруппах

радиусы в основном увеличиваются из-за
возрастания числа электронных оболочек.

У
s
и p-элементов
изменение радиусов, как в периодах, так
и в подгруппах более выражены, чем у d
и f-элементов,
так как d
и f-электроны
внутренние. Уменьшение радиусов у d
и f-элементов в периодах называется d
и
f-сжатием.
Следствием f-сжатия
является то, что атомные радиусы
электронных аналогов d-элементов
пятого и шестого периодов практически
одинаковы.

Элементы

Zn
– Hf

Nb
– Ta

rатома,
нм

0,160
– 0,159

0,145
– 0,146

Эти
элементы из-за близости их свойств
называются элементами-близнецами.

Образование
ионов приводит к изменению ионных
радиусовпо
сравнению с атомными. При этом радиусы
катионов всегда меньше, а радиусы анионов
всегда больше соответствующих атомных
радиусов.

Свойства
атомов рассматриваются, как способность
отдавать, или принимать электроны из-за
стремления атомов приобрести устойчивую
электронную конфигурацию, аналогичную
инертным газам. Металлические свойства
рассматриваются, как способность атомов
элементов отдавать электроны и проявлять
восстановительные свойства, а
неметаллические свойства – присоединять
электроны и проявлять окислительные
свойства.

Энергией
ионизации

атома I
называется энергия, необходимая для
перевода нейтрального атома в положительно
заряженный ион. Ее величина зависит от
величины заряда ядра, от радиуса атома
и от взаимодействия между электронами.
Энергия ионизации выражается в кДж∙моль–1
или эВ. Для химических исследований
наибольшее значение имеет потенциал
ионизации
первого
порядка – энергия, затрачиваемая на
полное удаление слабосвязанного
электрона из атома в невозбужденном,
состоянии.

Эо– e = Э+I1
– первый потенциал ионизации;

Э+ – e = Э2+I2
– второй потенциал ионизации и т.д.
I1 < I2 < I3 < I4

Энергия
ионизации определяет характер и прочность
химической связи, и восстановительные
свойства
элементов (табл.
28).

Таблица
28

Соседние файлы в предмете [НЕСОРТИРОВАННОЕ]

  • #
  • #
  • #
  • #
  • #
  • #
  • #
  • #
  • #
  • #
  • #


Загрузить PDF


Загрузить PDF

Электронная конфигурация атома — это численное представление его электронных орбиталей. Электронные орбитали — это области различной формы, расположенные вокруг атомного ядра, в которых математически вероятно нахождение электрона. Электронная конфигурация помогает быстро и с легкостью сказать читателю, сколько электронных орбиталей есть у атома, а также определить количество электронов, находящихся на каждой орбитали. Прочитав эту статью, вы освоите метод составления электронных конфигураций.

  1. 1

    Найдите атомный номер вашего атома. Каждый атом имеет определенное число электронов, связанных с ним. Найдите символ вашего атома в таблице Менделеева. Атомный номер — это целое положительное число, начинающееся от 1 (у водорода) и возрастающее на единицу у каждого последующего атома. Атомный номер — это число протонов в атоме, и, следовательно, это еще и число электронов атома с нулевым зарядом.

  2. 2

    Определите заряд атома. Нейтральные атомы будут иметь столько же электронов, сколько показано в таблице Менделеева. Однако заряженные атомы будут иметь большее или меньшее число электронов — в зависимости от величины их заряда. Если вы работаете с заряженным атомом, добавляйте или вычитайте электроны следующим образом: добавляйте один электрон на каждый отрицательный заряд и вычитайте один на каждый положительный.

    • Например, атом натрия с зарядом -1 будет иметь дополнительный электрон в добавок к своему базовому атомному числу 11. Иначе говоря, в сумме у атома будет 12 электронов.
    • Если речь идет об атоме натрия с зарядом +1, от базового атомного числа 11 нужно отнять один электрон. Таким образом, у атома будет 10 электронов.
  3. 3

    Запомните базовый список орбиталей. По мере того, как у атома увеличивается число электронов, они заполняют различные подуровни электронной оболочки атома согласно определенной последовательности. Каждый подуровень электронной оболочки, будучи заполненным, содержит четное число электронов. Имеются следующие подуровни:

    • s-подуровень (любое число в электронной конфигурации, которое стоит перед буквой “s”) содержит единственную орбиталь, и, согласно Принципу Паули, одна орбиталь может содержать максимум 2 электрона, следовательно, на каждом s-подуровне электронной оболочки может находиться 2 электрона.
    • p-подуровень содержит 3 орбитали, и поэтому может содержать максимум 6 электронов.
    • d-подуровень содержит 5 орбиталей, поэтому в нем может быть до 10 электронов.
    • f-подуровень содержит 7 орбиталей, поэтому в нем может быть до 14 электронов.
    • g-, h-, i- и k-подуровни являются теоретическими. Атомы, содержащие электроны в этих орбиталях, неизвестны. g-подуровень содержит 9 орбиталей, поэтому теоретически в нем может быть 18 электронов. В h-подуровне может быть 11 орбиталей и максимум 22 электрона; в i-подуровне —13 орбиталей и максимум 26 электронов; в k-подуровне — 15 орбиталей и максимум 30 электронов.
    • Запомните порядок орбиталей с помощью мнемонического приема:[1]

      Sober Physicists Don’t Find Giraffes Hiding In Kitchens (трезвые физики не находят жирафов, скрывающихся на кухнях).
  4. 4

    Разберитесь в записи электронной конфигурации. Электронные конфигурации записываются для того, чтобы четко отразить количество электронов на каждой орбитали. Орбитали записываются последовательно, причем количество атомов в каждой орбитали записывается как верхний индекс справа от названия орбитали. Завершенная электронная конфигурация имеет вид последовательности обозначений подуровней и верхних индексов.

    • Вот, например, простейшая электронная конфигурация: 1s2 2s2 2p6. Эта конфигурация показывает, что на подуровне 1s имеется два электрона, два электрона — на подуровне 2s и шесть электронов на подуровне 2p. 2 + 2 + 6 = 10 электронов в сумме. Это электронная конфигурация нейтрального атома неона (атомный номер неона — 10).
  5. 5

    Запомните порядок орбиталей. Имейте в виду, что электронные орбитали нумеруются в порядке возрастания номера электронной оболочки, но располагаются по возрастанию энергии. Например, заполненная орбиталь 4s2 имеет меньшую энергию (или менее подвижна), чем частично заполненная или заполненная 3d10, поэтому сначала записывается орбиталь 4s. Как только вы будете знать порядок орбиталей, вы сможете с легкостью заполнять их в соответствии с количеством электронов в атоме. Порядок заполнения орбиталей следующий: 1s, 2s, 2p, 3s, 3p, 4s, 3d, 4p, 5s, 4d, 5p, 6s, 4f, 5d, 6p, 7s, 5f, 6d, 7p.

    • Электронная конфигурация атома, в котором заполнены все орбитали, будет иметь следующий вид: 1s2 2s2 2p6 3s2 3p6 4s2 3d10 4p6 5s2 4d10 5p6 6s2 4f14 5d10 6p6 7s2 5f14 6d107p6
    • Обратите внимание, что приведенная выше запись, когда заполнены все орбитали, является электронной конфигурацией элемента Uuo (унуноктия) 118, атома периодической системы с самым большим номером. Поэтому данная электронная конфигурация содержит все известные в наше время электронные подуровни нейтрально заряженного атома.
  6. 6

    Заполняйте орбитали согласно количеству электронов в вашем атоме. Например, если мы хотим записать электронную конфигурацию нейтрального атома кальция, мы должны начать с поиска его атомного номера в таблице Менделеева. Его атомный номер — 20, поэтому мы напишем конфигурацию атома с 20 электронами согласно приведенному выше порядку.

    • Заполняйте орбитали согласно приведенному выше порядку, пока не достигнете двадцатого электрона. На первой 1s орбитали будут находится два электрона, на 2s орбитали — также два, на 2p — шесть, на 3s — два, на 3p — 6, и на 4s — 2 (2 + 2 + 6 +2 +6 + 2 = 20.) Иными словами, электронная конфигурация кальция имеет вид: 1s2 2s2 2p6 3s2 3p6 4s2.
    • Обратите внимание: орбитали располагаются в порядке возрастания энергии. Например, когда вы уже готовы перейти на 4-й энергетический уровень, то сначала записывайте 4s орбиталь, а затем 3d. После четвертого энергетического уровня вы переходите на пятый, на котором повторяется такой же порядок. Это происходит только после третьего энергетического уровня.
  7. 7

    Используйте таблицу Менделеева как визуальную подсказку. Вы, вероятно, уже заметили, что форма периодической системы соответствует порядку электронных подуровней в электронных конфигурациях. Например, атомы во второй колонке слева всегда заканчиваются на “s2“, а атомы на правом краю тонкой средней части оканчиваются на “d10” и т.д. Используйте периодическую систему как визуальное руководство к написанию конфигураций — как порядок, согласно которому вы добавляете к орбиталям соответствует вашему положению в таблице. Смотрите ниже:

    • В частности, две самые левые колонки содержат атомы, чьи электронные конфигурации заканчиваются s-орбиталями, в правом блоке таблицы представлены атомы, чьи конфигурации заканчиваются p-орбиталями, а в нижней части атомы заканчиваются f-орбиталями.
    • Например, когда вы записываете электронную конфигурацию хлора, размышляйте следующим образом: “Этот атом расположен в третьем ряду (или “периоде”) таблицы Менделеева. Также он располагается в пятой группе орбитального блока p периодической системы. Поэтому, его электронная конфигурация будет заканчиваться на …3p5
    • Обратите внимание: элементы в области орбиталей d и f таблицы характеризуются энергетическими уровнями, которые не соответствуют периоду, в котором они расположены. Например, первый ряд блока элементов с d-орбиталями соответствует 3d орбиталям, хотя и располагается в 4 периоде, а первый ряд элементов с f-орбиталями соответствует орбитали 4f, несмотря на то, что он находится в 6 периоде.
  8. 8

    Выучите сокращения написания длинных электронных конфигураций. Атомы на правом краю периодической системы называются благородными газами. Эти элементы химически очень устойчивы. Чтобы сократить процесс написания длинных электронных конфигураций, просто записывайте в квадратных скобках химический символ ближайшего благородного газа с меньшим по сравнению с вашим атомом числом электронов, а затем продолжайте писать электронную конфигурацию последующих орбитальных уровней. Смотрите ниже:

    • Чтобы понять эту концепцию, полезно будет написать пример конфигурации. Давайте напишем конфигурацию цинка (атомный номер 30), используя сокращение, включающее благородный газ. Полная конфигурация цинка выглядит так: 1s2 2s2 2p6 3s2 3p6 4s2 3d10. Однако мы видим, что 1s2 2s2 2p6 3s2 3p6 — это электронная конфигурация аргона, благородного газа. Просто замените часть записи электронной конфигурации цинка химическим символом аргона в квадратных скобках ([Ar].)
    • Итак, электронная конфигурация цинка, записанная в сокращенном виде, имеет вид: [Ar]4s2 3d10.
    • Учтите, если вы пишете электронную конфигурацию благородного газа, скажем, аргона, писать [Ar] нельзя! Нужно использовать сокращение благородного газа, стоящего перед этим элементом; для аргона это будет неон ([Ne]).

    Реклама

  1. Изображение с названием ADOMAH Table v2

    1

    Освойте периодическую таблицу ADOMAH. Данный метод записи электронной конфигурации не требует запоминания, однако требует наличия переделанной периодической таблицы, поскольку в традиционной таблице Менделеева, начиная с четвертого периода, номер периода не соответствует электронной оболочке. Найдите периодическую таблицу ADOMAH — особый тип периодической таблицы, разработанный ученым Валерием Циммерманом. Ее легко найти посредством короткого поиска в интернете.[2]

    • В периодической таблице ADOMAH горизонтальные ряды представляют группы элементов, такие как галогены, инертные газы, щелочные металлы, щелочноземельные металлы и т.д. Вертикальные колонки соответствуют электронным уровням, а так называемые “каскады” (диагональные линии, соединяющие блоки s,p,d и f) соответствуют периодам.
    • Гелий перемещен к водороду, поскольку оба этих элемента характеризуются орбиталью 1s. Блоки периодов (s,p,d и f) показаны с правой стороны, а номера уровней приведены в основании. Элементы представлены в прямоугольниках, пронумерованных от 1 до 120. Эти номера являются обычными атомными номерами, которые представляют общее количество электронов в нейтральном атоме.
  2. 2

    Найдите ваш атом в таблице ADOMAH. Чтобы записать электронную конфигурацию элемента, найдите его символ в периодической таблице ADOMAH и вычеркните все элементы с большим атомным номером. Например, если вам нужно записать электронную конфигурацию эрбия (68), вычеркните все элементы от 69 до 120.

    • Обратите внимание на номера от 1 до 8 в основании таблицы. Это номера электронных уровней, или номера колонок. Игнорируйте колонки, которые содержат только вычеркнутые элементы. Для эрбия остаются колонки с номерами 1,2,3,4,5 и 6.
  3. 3

    Посчитайте орбитальные подуровни до вашего элемента. Смотря на символы блоков, приведенные справа от таблицы (s, p, d, and f), и на номера колонок, показанные в основании, игнорируйте диагональные линии между блоками и разбейте колонки на блоки-колонки, перечислив их по порядку снизу вверх. И снова игнорируйте блоки, в которых вычеркнуты все элементы. Запишите блоки-колонки, начиная от номера колонки, за которым следует символ блока, таким образом: 1s 2s 2p 3s 3p 3d 4s 4p 4d 4f 5s 5p 6s (для эрбия).

    • Обратите внимание: Приведенная выше электронная конфигурация Er записана в порядке возрастания номера электронного подуровня. Ее можно также записать в порядке заполнения орбиталей. Для этого следуйте по каскадам снизу вверх, а не по колонкам, когда вы записываете блоки-колонки: 1s2 2s2 2p6 3s2 3p6 4s2 3d10 4p6 5s2 4d10 5p6 6s2 4f12.
  4. 4

    Посчитайте электроны для каждого электронного подуровня. Подсчитайте элементы, в каждом блоке-колонке которые не были вычеркнуты, прикрепляя по одному электрону от каждого элемента, и запишите их количество рядом с символом блока для каждого блока-колонки таким образом: 1s2 2s2 2p6 3s2 3p6 3d10 4s2 4p6 4d10 4f12 5s2 5p6 6s2. В нашем примере это электронная конфигурация эрбия.

  5. 5

    Учитывайте неправильные электронные конфигурации. Существует восемнадцать типичных исключений, относящихся к электронным конфигурациям атомов в состоянии с наименьшей энергией, также называемом основным энергетическим состоянием. Они не подчиняются общему правилу только по последним двум-трем положениям, занимаемым электронами. При этом действительная электронная конфигурация предполагает нахождение электронов в состоянии с более низкой энергией в сравнении со стандартной конфигурацией атома. К атомам-исключениям относятся:

    • Cr (…, 3d5, 4s1); Cu (…, 3d10, 4s1); Nb (…, 4d4, 5s1); Mo (…, 4d5, 5s1); Ru (…, 4d7, 5s1); Rh (…, 4d8, 5s1); Pd (…, 4d10, 5s0); Ag (…, 4d10, 5s1); La (…, 5d1, 6s2); Ce (…, 4f1, 5d1, 6s2); Gd (…, 4f7, 5d1, 6s2); Au (…, 5d10, 6s1); Ac (…, 6d1, 7s2); Th (…, 6d2, 7s2); Pa (…, 5f2, 6d1, 7s2); U (…, 5f3, 6d1, 7s2); Np (…, 5f4, 6d1, 7s2) и Cm (…, 5f7, 6d1, 7s2).

    Реклама

Советы

  • Чтобы найти атомный номер атома, когда он записан в форме электронной конфигурации, просто сложите все числа, которые идут за буквами (s, p, d, и f). Это работает только для нейтральных атомов, если вы имеете дело с ионом, то ничего не получится — вам придется добавить или вычесть количество дополнительных или потерянных электронов.
  • Число, идущее за буквой — это верхний индекс, не сделайте ошибку в контрольной.
  • “Стабильности полузаполненного” подуровня не существует. Это упрощение. Любая стабильность, которая относится к “наполовину заполненным” подуровням, имеет место из-за того, что каждая орбиталь занята одним электроном, поэтому минимизируется отталкивание между электронами.
  • Каждый атом стремится к стабильному состоянию, а самые стабильные конфигурации имеют заполненные подуровни s и p (s2 и p6). Такая конфигурация есть у благородных газов, поэтому они редко вступают в реакции и в таблице Менделеева расположены справа. Поэтому, если конфигурация заканчивается на 3p4, то для достижения стабильного состояния ей необходимо два электрона (чтобы потерять шесть, включая электроны s-подуровня, потребуется больше энергии, поэтому потерять четыре легче). А если конфигурация оканчивается на 4d3, то для достижения стабильного состояния ей необходимо потерять три электрона. Кроме того, полузаполненные подуровни (s1, p3, d5..) являются более стабильными, чем, например, p4 или p2; однако s2 и p6 будут еще более устойчивыми.
  • Когда вы имеете дело с ионом, это значит, что количество протонов не равно количеству электронов. Заряд атома в этом случае будет изображен сверху справа (как правило) от химического символа. Поэтому атом сурьмы с зарядом +2 имеет электронную конфигурацию 1s2 2s2 2p6 3s2 3p6 4s2 3d10 4p6 5s2 4d10 5p1. Обратите внимание, что 5p3 изменилось на 5p1. Будьте внимательны, когда конфигурация нейтрального атома заканчивается на подуровни, отличные от s и p. Когда вы забираете электроны, вы можете забрать их только с валентных орбиталей (s и p орбиталей). Поэтому, если конфигурация заканчивается на 4s2 3d7 и атом получает заряд +2, то конфигурация будет заканчиваться 4s0 3d7. Обратите внимание, что 3d7 не меняется, вместо этого теряются электроны s-орбитали.
  • Существуют условия, когда электрон вынужден “перейти на более высокий энергетический уровень”. Когда подуровню не хватает одного электрона до половинной или полной заполненности, заберите один электрон из ближайшего s или p- подуровня и переместите его на тот подуровень, которому необходим электрон.
  • Имеется два варианта записи электронной конфигурации. Их можно записывать в порядке возрастания номеров энергетических уровней или в порядке заполнения электронных орбиталей, как было показано выше для эрбия.
  • Также вы можете записывать электронную конфигурацию элемента, записав лишь валентную конфигурацию, которая представляет собой последний s и p подуровень. Таким образом, валентная конфигурация сурьмы будет иметь вид 5s2 5p3.
  • Ионы не то же самое. С ними гораздо сложнее. Пропустите два уровня и действуйте по той же схеме в зависимости от того, где вы начали, и от того, насколько велико количество электронов.

Реклама

Об этой статье

Эту страницу просматривали 481 953 раза.

Была ли эта статья полезной?

Добавить комментарий