Как составить формулу сульфата натрия

Текущая версия страницы пока не проверялась опытными участниками и может значительно отличаться от версии, проверенной 1 февраля 2022 года; проверки требуют 9 правок.

Сульфат натрия
Изображение химической структуры
Sodium sulfate.jpg
Общие
Систематическое
наименование
сульфат натрия, натрий сернокислый
Традиционные названия глауберова соль, тенардит
Хим. формула Na2SO4
Рац. формула Na2SO4
Физические свойства
Состояние белые гигроскопичные кристаллы
Молярная масса 142,04 г/моль
Плотность 2,68 г/см³
Термические свойства
Температура
 • плавления 883 °C
Энтальпия
 • образования −1387,9 кДж/моль
Химические свойства
Растворимость
 • в воде 19,2 (20 °C), 42,3 (100 °C)
Классификация
Рег. номер CAS 7757-82-6
PubChem 24436
Рег. номер EINECS 231-820-9
SMILES

[O-]S(=O)(=O)[O-].[Na+].[Na+]

InChI

InChI=1S/2Na.H2O4S/c;;1-5(2,3)4/h;;(H2,1,2,3,4)/q2*+1;/p-2

PMZURENOXWZQFD-UHFFFAOYSA-L

Кодекс Алиментариус E514(i) и E514
RTECS WE1650000
ChEBI 32149
ChemSpider 22844
Безопасность
NFPA 704

NFPA 704 four-colored diamond

0

1

0

Приведены данные для стандартных условий (25 °C, 100 кПа), если не указано иное.
Логотип Викисклада Медиафайлы на Викискладе

Сульфат натрия, сернокислый натрий, Na2SO4 — натриевая соль серной кислоты. Это бесцветные кристаллы, хорошо растворяющиеся в воде, образует кристаллогидраты, самый известный из них — декагидрат, получивший традиционное название — «глауберова соль». Обладает низкой токсичностью. Не путать с питьевой содой — гидрокарбонатом натрия, кислой натриевой солью угольной кислоты.

Свойства[править | править код]

Бесцветные кристаллы. Безводный Na2SO4 устойчив выше температуры 32,384 °C, ниже этой температуры в присутствии воды образуется кристаллогидрат Na2SO4·10H2O.

Нахождение в природе[править | править код]

В природе безводный сульфат натрия встречается в виде минерала тенардита. Кристаллогидрат Na2SO4·10H2O образует минерал мирабилит (глауберову соль). Встречаются также двойные соли сульфата натрия с другими сульфатами, например астраханит Na2SO4·MgSO4·4H2O, глауберит Na2SO4·CaSO4. Значительные количества сульфата натрия содержатся в рапе и донных отложениях солёных озёр хлорид-сульфатного типа и заливе Кара-Богаз-Гол. В них при понижении температуры идёт реакция:

2NaCl + MgSO4 ⇆ MgCl2 + Na2SO4

В России крупнейшим производителем природного сульфата натрия является компания ОАО «Кучуксульфат» — 600 тыс. тонн в год.

Получение[править | править код]

Промышленный способ получения сульфата натрия — взаимодействие NaCl с H2SO4 в специальных «сульфатных» печах при 500—550 °C; одновременно получается хлороводород.

{displaystyle {ce {2 NaCl + H2SO4 -> Na2SO4 + 2 HCl}}}

В настоящее время такой способ практически не используется, так как имеются достаточно большие запасы природного сырья.

Также сульфат натрия получается как отход (не имеющий запаха) в производстве хромпика.

Применение[править | править код]

В мире большое количество сульфата натрия использовались ранее при производстве синтетических моющих средств, однако во многих странах в последние годы произошёл переход на концентрированные (компактные) стиральные порошки, в которых сульфат либо не используется, либо используется в небольших количествах. В России производители стиральных порошков закупают более 300 тысяч тонн сульфата натрия.

Второе по количеству применение сульфата натрия — стекольное производство. Также это вещество используют в больших объёмах при получении целлюлозы сульфатным методом, а также в текстильной, кожевенной промышленности и в цветной металлургии.

В небольших количествах сульфат натрия находит применение в химических лабораториях — в качестве обезвоживающего средства. Несмотря на то, что он обезвоживает органические растворители медленнее, чем сульфат магния, многие предпочитают именно это средство по двум причинам: дешевизна и легкость фильтрации.

В ещё меньших количествах ранее использовался в медицине и ветеринарии в качестве солевого слабительного средства и как компонент в средствах для промывания носа.

Водные растворы сульфата натрия используются для лечения отравления растворимыми солями бария.

Зарегистрирован в качестве пищевой добавки E514.
Регулятор кислотности, используется как буферная добавка поддерживающая pH на определённом уровне[1].

Физиологическое действие и указания по технике безопасности[править | править код]

Сульфат натрия Na2SO4 пожаро- и взрывобезопасен. По степени воздействия на организм человека натрий сернокислый относится к IV классу опасности (малоопасные вещества) согласно ГОСТ 12.1.007-76. По токсикологии NFPA 704 сульфату натрия присвоена низшая токсичность.

См. также[править | править код]

  • Глауберова соль

Примечания[править | править код]

  1. Сульфаты натрия. Дата обращения: 2 февраля 2019. Архивировано 2 февраля 2019 года.

Литература[править | править код]

  • Реми Г. Курс неорганической химии. Т.2. — М., 1966

Ссылки[править | править код]

Сульфат натрия

Средняя соль серной кислоты H2SO4 и гидроксида натрия NaOH.

Химическая формула

Na2SO4

Получение

Природные источники

Сульфат натрия встречается в виде минерала тенардита, а кристаллогидрат Na2SO4.10H2O – в виде мирабилита или глауберовой соли.

Лабораторные методы получения

Сульфат натрия получают взаимодействием серной кислоты с гидроксидом или карбонатом натрия:

H2SO4 + 2NaOH = Na2SO4 + 2H2O;

H2SO4 + Na2CO3 =Na2SO4 + H2O + CO2↑.

Получение сульфата натрия в промышленности

В промышленности сульфат натрия получали из хлорида натрия и серной кислоты:

H2SO4 + 2NaCl =Na2SO4 + 2HCl↑,

но сейчас это не имеет смысла – достаточно природных источников.

Свойства сульфата натрия

Физические свойства

Свойство Описание
Внешний вид Кристаллическое вещество белого цвета
Молярная масса 142,04 г/моль
Плотность 2,68 г/см3
Температура плавления 883°С
Cтандартная мольная энтальпия образования при 298К ΔH°298, кДж/моль −1387,9 (т)2
Стандартная мольная энтропия при 298 К S°298, Дж/(моль•К) 149,58 (т)
Стандартная мольная теплоемкость при 298 К Cp298, Дж/(моль•К) 127,3
Растворимость в воде, г/100 г при 0°С — 4,5
при 20°С — 19,2
при 32,4°С — 49,8
при 100°С — 42,3

Химические свойства

При растворении в воде сульфат натрия диссоциирует на ионы:

Na2SO4↔ 2Na++ SO42-.

Раствор имеет нейтральную реакцию.

При взаимодействии с кислотами образует кислые соли:

Na2SO4 + HСl = NaHSO4 + NaCl.

Вступает в реакции обмена с образованием нерастворимых сульфатов:

Na2SO4 + CaCl2 = 2NaCl + CaSO4↓,

Na2SO4 + SrCl2 = 2NaCl + SrSO4↓,

Na2SO4 + BaCl2 = 2NaCl + BaSO4↓.

Применение

Сульфат натрия используют как компонент шихты в производстве стекла; используется при сульфатной варке целлюлозы, при крашении хлопчато-бумажных тканей.

Применяется он также и в химической промышленности как сырье для получения силикатов Na, Na2S, H2SO4, (NH4)2SO4, соды и др.
В медицине сульфат натрия изредка применяют как слабительное.

В пищевой промышленности он известен как пищевая добавка Е514. Сульфат натрия используют в качестве регулятора кислотности.

Относится к малоопасным веществам (4 класс опасности), но при передозировке в пищевых продуктов приводит к расстройствам пищеварения.

Пример решения задачи с сульфатом натрия

Назовите 5 способов получения сульфата натрия.

Решение

H2SO4 + 2NaOH = Na2SO4 + 2H2O;

H2SO4 + Na2CO3 =Na2SO4 + H2O + CO2↑;

SO3 + Na2O = Na2SO4;

NaHSO4 + NaOH = Na2S04 + H20;

H2SO4 + 2NaHCO3 =Na2SO4 + 2H2O + 2CO2↑.

Тест по теме «Сульфат натрия»

Sodium sulfate

Sodium sulfate.svg
Glaubersalz (Decahydrat).jpg
Names
IUPAC name

Sodium sulfate

Other names

Sodium sulphate
Disodium sulfate
Sulfate of sodium
Thenardite (anhydrous mineral)
Glauber’s salt (decahydrate)
Sal mirabilis (decahydrate)
Mirabilite (decahydrate mineral)

Identifiers

CAS Number

  • 7757-82-6 check
  • 7727-73-3 (decahydrate) check

3D model (JSmol)

  • Interactive image
ChEBI
  • CHEBI:32149 check
ChEMBL
  • ChEMBL233406 check
ChemSpider
  • 22844 check
ECHA InfoCard 100.028.928 Edit this at Wikidata
E number E514(i) (acidity regulators, …)

PubChem CID

  • 24436
RTECS number
  • WE1650000
UNII
  • 36KCS0R750 check
  • 0YPR65R21J (decahydrate check

CompTox Dashboard (EPA)

  • DTXSID1021291 Edit this at Wikidata

InChI

  • InChI=1S/2Na.H2O4S/c;;1-5(2,3)4/h;;(H2,1,2,3,4)/q2*+1;/p-2 check

    Key: PMZURENOXWZQFD-UHFFFAOYSA-L check

  • InChI=1S/2Na.H2O4S/c;;1-5(2,3)4/h;;(H2,1,2,3,4)/q2*+1;/p-2

  • InChI=1S/2Na.H2O4S/c;;1-5(2,3)4/h;;(H2,1,2,3,4)/q2*+1;/p-2

    Key: PMZURENOXWZQFD-UHFFFAOYSA-L

SMILES

  • [Na+].[Na+].[O-]S([O-])(=O)=O

Properties

Chemical formula

Na2SO4
Molar mass 142.04 g/mol (anhydrous)
322.20 g/mol (decahydrate)
Appearance white crystalline solid
hygroscopic
Odor odorless
Density 2.664 g/cm3 (anhydrous)
1.464 g/cm3 (decahydrate)
Melting point 884 °C (1,623 °F; 1,157 K) (anhydrous)
32.38 °C (decahydrate)
Boiling point 1,429 °C (2,604 °F; 1,702 K) (anhydrous)

Solubility in water

anhydrous:
4.76 g/100 mL (0 °C)
28.1 g/100 mL (25 °C)[1]
42.7 g/100 mL (100 °C)


heptahydrate:
19.5 g/100 mL (0 °C)
44 g/100 mL (20 °C)

Solubility insoluble in ethanol
soluble in glycerol, water, and hydrogen iodide

Magnetic susceptibility (χ)

−52.0·10−6 cm3/mol

Refractive index (nD)

1.468 (anhydrous)
1.394 (decahydrate)
Structure

Crystal structure

orthorhombic (anhydrous)[2]
monoclinic (decahydrate)
Pharmacology

ATC code

A06AD13 (WHO) A12CA02 (WHO)
Hazards
Occupational safety and health (OHS/OSH):

Main hazards

Irritant
NFPA 704 (fire diamond)

NFPA 704 four-colored diamond

1

0

0

Flash point Non-flammable
Safety data sheet (SDS) ICSC 0952
Related compounds

Other anions

Sodium selenate
Sodium tellurate

Other cations

Lithium sulfate
Potassium sulfate
Rubidium sulfate
Caesium sulfate

Related compounds

Sodium bisulfate
Sodium sulfite
Sodium persulfate
Supplementary data page
Sodium sulfate (data page)

Except where otherwise noted, data are given for materials in their standard state (at 25 °C [77 °F], 100 kPa).

check verify (what is check☒ ?)

Infobox references

Sodium sulfate (also known as sodium sulphate or sulfate of soda) is the inorganic compound with formula Na2SO4 as well as several related hydrates. All forms are white solids that are highly soluble in water. With an annual production of 6 million tonnes, the decahydrate is a major commodity chemical product. It is mainly used as a filler in the manufacture of powdered home laundry detergents and in the Kraft process of paper pulping for making highly alkaline sulfides.[3]

Forms[edit]

  • Anhydrous sodium sulfate, known as the rare mineral thenardite, used as a drying agent in organic synthesis.
  • Heptahydrate sodium sulfate, a very rare form.
  • Decahydrate sodium sulfate, known as the mineral mirabilite, widely used by chemical industry. It is also known as Glauber’s salt.

History[edit]

The decahydrate of sodium sulfate is known as Glauber’s salt after the Dutch–German chemist and apothecary Johann Rudolf Glauber (1604–1670), who discovered it in Austrian spring water in 1625. He named it sal mirabilis (miraculous salt), because of its medicinal properties: the crystals were used as a general-purpose laxative, until more sophisticated alternatives came about in the 1900s.[4][5]

In the 18th century, Glauber’s salt began to be used as a raw material for the industrial production of soda ash (sodium carbonate), by reaction with potash (potassium carbonate). Demand for soda ash increased, and the supply of sodium sulfate had to increase in line. Therefore, in the 19th century, the large-scale Leblanc process, producing synthetic sodium sulfate as a key intermediate, became the principal method of soda-ash production.[6]

Chemical properties[edit]

Sodium sulfate is a typical electrostatically bonded ionic sulfate. The existence of free sulfate ions in solution is indicated by the easy formation of insoluble sulfates when these solutions are treated with Ba2+ or Pb2+ salts:

Na2SO4 + BaCl2 → 2 NaCl + BaSO4

Sodium sulfate is unreactive toward most oxidizing or reducing agents. At high temperatures, it can be converted to sodium sulfide by carbothermal reduction (aka thermo-chemical sulfate reduction (TSR), high temperature heating with charcoal, etc.):[7]

Na2SO4 + 2 C → Na2S + 2 CO2

This reaction was employed in the Leblanc process, a defunct industrial route to sodium carbonate.

Sodium sulfate reacts with sulfuric acid to give the acid salt sodium bisulfate:[8][9]

Na2SO4 + H2SO4 ⇌ 2 NaHSO4

Sodium sulfate displays a moderate tendency to form double salts. The only alums formed with common trivalent metals are NaAl(SO4)2 (unstable above 39 °C) and NaCr(SO4)2, in contrast to potassium sulfate and ammonium sulfate which form many stable alums.[10] Double salts with some other alkali metal sulfates are known, including Na2SO4·3K2SO4 which occurs naturally as the mineral aphthitalite. Formation of glaserite by reaction of sodium sulfate with potassium chloride has been used as the basis of a method for producing potassium sulfate, a fertiliser.[11] Other double salts include 3Na2SO4·CaSO4, 3Na2SO4·MgSO4 (vanthoffite) and NaF·Na2SO4.[12]

Physical properties[edit]

Sodium sulfate has unusual solubility characteristics in water.[13] Its solubility in water rises more than tenfold between 0 °C and 32.384 °C, where it reaches a maximum of 49.7 g/100 mL. At this point the solubility curve changes slope, and the solubility becomes almost independent of temperature. This temperature of 32.384 °C, corresponding to the release of crystal water and melting of the hydrated salt, serves as an accurate temperature reference for thermometer calibration.

Temperature dependence of Na2SO4 solubility in water

Structure[edit]

Crystals of the decahydrate consist of [Na(OH2)6]+ ions with octahedral molecular geometry. These octahedra share edges such that 8 of the 10 water molecules are bound to sodium and 2 others are interstitial, being hydrogen-bonded to sulfate. These cations are linked to the sulfate anions by hydrogen bonds. The Na–O distances are about 240 pm.[14] Crystalline sodium sulfate decahydrate is also unusual among hydrated salts in having a measurable residual entropy (entropy at absolute zero) of 6.32 J/(K·mol). This is ascribed to its ability to distribute water much more rapidly compared to most hydrates.[15]

Production[edit]

The world production of sodium sulfate, almost exclusively in the form of the decahydrate, amounts to approximately 5.5 to 6 million tonnes annually (Mt/a). In 1985, production was 4.5 Mt/a, half from natural sources, and half from chemical production. After 2000, at a stable level until 2006, natural production had increased to 4 Mt/a, and chemical production decreased to 1.5 to 2 Mt/a, with a total of 5.5 to 6 Mt/a.[16][17][18][19] For all applications, naturally produced and chemically produced sodium sulfate are practically interchangeable.

Natural sources[edit]

Two thirds of the world’s production of the decahydrate (Glauber’s salt) is from the natural mineral form mirabilite, for example as found in lake beds in southern Saskatchewan. In 1990, Mexico and Spain were the world’s main producers of natural sodium sulfate (each around 500,000 tonnes), with Russia, United States, and Canada around 350,000 tonnes each.[17] Natural resources are estimated at over 1 billion tonnes.[16][17]

Major producers of 200,000 to 1,500,000 tonnes/year in 2006 included Searles Valley Minerals (California, US), Airborne Industrial Minerals (Saskatchewan, Canada), Química del Rey (Coahuila, Mexico), Minera de Santa Marta and Criaderos Minerales Y Derivados, also known as Grupo Crimidesa (Burgos, Spain), Minera de Santa Marta (Toledo, Spain), Sulquisa (Madrid, Spain), Chengdu Sanlian Tianquan Chemical (Tianquan County, Sichuan, China), Hongze Yinzhu Chemical Group (Hongze District, Jiangsu, China), Nafine Chemical Industry Group [zh] (Shanxi, China), Sichuan Province Chuanmei Mirabilite (万胜镇 [zh], Dongpo District, Meishan, Sichuan, China), and Kuchuksulphat JSC (Altai Krai, Siberia, Russia).[16][18]

Anhydrous sodium sulfate occurs in arid environments as the mineral thenardite. It slowly turns to mirabilite in damp air. Sodium sulfate is also found as glauberite, a calcium sodium sulfate mineral. Both minerals are less common than mirabilite.[citation needed]

Chemical industry[edit]

About one third of the world’s sodium sulfate is produced as by-product of other processes in chemical industry. Most of this production is chemically inherent to the primary process, and only marginally economical. By effort of the industry, therefore, sodium sulfate production as by-product is declining.

The most important chemical sodium sulfate production is during hydrochloric acid production, either from sodium chloride (salt) and sulfuric acid, in the Mannheim process, or from sulfur dioxide in the Hargreaves process.[20] The resulting sodium sulfate from these processes is known as salt cake.

Mannheim:   2 NaCl + H2SO4 → 2 HCl + Na2SO4
Hargreaves: 4 NaCl + 2 SO2 + O2 + 2 H2O → 4 HCl + 2 Na2SO4

The second major production of sodium sulfate are the processes where surplus sodium hydroxide is neutralised by sulfuric acid to obtain sulfate (SO2−4) by using copper sulfate (CuSO4) (as applied on a large scale in the production of rayon by using copper(II) hydroxide). This method is also a regularly applied and convenient laboratory preparation.

2 NaOH(aq) + H2SO4(aq) → Na2SO4(aq) + 2 H2O(l) ΔH=-112.5 kJ (highly exothermic)

In the laboratory it can also be synthesized from the reaction between sodium bicarbonate and magnesium sulfate, by precipitating magnesium carbonate.

2 NaHCO3 + MgSO4 → Na2SO4 + MgCO3 + CO2 + H2O

However, as commercial sources are readily available, laboratory synthesis is not practised often.
Formerly, sodium sulfate was also a by-product of the manufacture of sodium dichromate, where sulfuric acid is added to sodium chromate solution forming sodium dichromate, or subsequently chromic acid. Alternatively, sodium sulfate is or was formed in the production of lithium carbonate, chelating agents, resorcinol, ascorbic acid, silica pigments, nitric acid, and phenol.[16]

Bulk sodium sulfate is usually purified via the decahydrate form, since the anhydrous form tends to attract iron compounds and organic compounds. The anhydrous form is easily produced from the hydrated form by gentle warming.

Major sodium sulfate by-product producers of 50–80 Mt/a in 2006 include Elementis Chromium (chromium industry, Castle Hayne, NC, US), Lenzing AG (200 Mt/a, rayon industry, Lenzing, Austria), Addiseo (formerly Rhodia, methionine industry, Les Roches-Roussillon, France), Elementis (chromium industry, Stockton-on-Tees, UK), Shikoku Chemicals (Tokushima, Japan) and Visko-R (rayon industry, Russia).[16]

Applications[edit]

Sodium sulfate used to dry an organic liquid. Here clumps form, indicating the presence of water in the organic liquid.

By further application of sodium sulfate the liquid may be brought to dryness, indicated here by the absence of clumping.

Commodity industries[edit]

With US pricing at $30 per tonne in 1970, up to $90 per tonne for salt cake quality, and $130 for better grades, sodium sulphate is a very cheap material. The largest use is as filler in powdered home laundry detergents, consuming approximately 50% of world production. This use is waning as domestic consumers are increasingly switching to compact or liquid detergents that do not include sodium sulfate.[16]

Papermaking[edit]

Another formerly major use for sodium sulfate, notably in the US and Canada, is in the Kraft process for the manufacture of wood pulp. Organics present in the “black liquor” from this process are burnt to produce heat, needed to drive the reduction of sodium sulfate to sodium sulfide. However, due to advances in the thermal efficiency of the Kraft recovery process in the early 1960s, more efficient sulfur recovery was achieved and the need for sodium sulfate makeup was drastically reduced.[21] Hence, the use of sodium sulfate in the US and Canadian pulp industry declined from 1,400,000 tonnes per year in 1970 to only approx. 150,000 tonnes in 2006.[16]

Glassmaking[edit]

The glass industry provides another significant application for sodium sulfate, as second largest application in Europe. Sodium sulfate is used as a fining agent, to help remove small air bubbles from molten glass. It fluxes the glass, and prevents scum formation of the glass melt during refining. The glass industry in Europe has been consuming from 1970 to 2006 a stable 110,000 tonnes annually.[16]

Textiles[edit]

Sodium sulfate is important in the manufacture of textiles, particularly in Japan, where this is the largest application. Sodium sulfate is added to increase the ionic strength of the solution and so helps in “levelling”, i.e. reducing negative electrical charges on textile fibres, so that dyes can penetrate evenly (see the theory of the diffuse double layer (DDL) elaborated by Gouy and Chapman). Unlike the alternative sodium chloride, it does not corrode the stainless steel vessels used in dyeing. This application in Japan and US consumed in 2006 approximately 100,000 tonnes.[16]

Food industry[edit]

Sodium sulfate is used as a diluent for food colours.[22] It is known as E number additive E514.

Heat storage[edit]

The high heat-storage capacity in the phase change from solid to liquid, and the advantageous phase change temperature of 32 °C (90 °F) makes this material especially appropriate for storing low-grade solar heat for later release in space heating applications. In some applications the material is incorporated into thermal tiles that are placed in an attic space, while in other applications, the salt is incorporated into cells surrounded by solar–heated water. The phase change allows a substantial reduction in the mass of the material required for effective heat storage (the heat of fusion of sodium sulfate decahydrate is 82 kJ/mol or 252 kJ/kg[23]), with the further advantage of a consistency of temperature as long as sufficient material in the appropriate phase is available.

For cooling applications, a mixture with common sodium chloride salt (NaCl) lowers the melting point to 18 °C (64 °F). The heat of fusion of NaCl·Na2SO4·10H2O, is actually increased slightly to 286 kJ/kg.[24]

Small-scale applications[edit]

In the laboratory, anhydrous sodium sulfate is widely used as an inert drying agent, for removing traces of water from organic solutions.[25] It is more efficient, but slower-acting, than the similar agent magnesium sulfate. It is only effective below about 30 °C, but it can be used with a variety of materials since it is chemically fairly inert. Sodium sulfate is added to the solution until the crystals no longer clump together; the two video clips (see above) demonstrate how the crystals clump when still wet, but some crystals flow freely once a sample is dry.

Glauber’s salt, the decahydrate, is used as a laxative. It is effective for the removal of certain drugs, such as paracetamol (acetaminophen) from the body; thus it can be used after an overdose.[26][27]

In 1953, sodium sulfate was proposed for heat storage in passive solar heating systems. This takes advantage of its unusual solubility properties, and the high heat of crystallisation (78.2 kJ/mol).[28]

Other uses for sodium sulfate include de-frosting windows, starch manufacture, as an additive in carpet fresheners, and as an additive to cattle feed.

At least one company, Thermaltake, makes a laptop computer chill mat (iXoft Notebook Cooler) using sodium sulfate decahydrate inside a quilted plastic pad. The material slowly turns to liquid and recirculates, equalizing laptop temperature and acting as an insulation.[29]

Safety[edit]

Although sodium sulfate is generally regarded as non-toxic,[22] it should be handled with care. The dust can cause temporary asthma or eye irritation; this risk can be prevented by using eye protection and a paper mask. Transport is not limited, and no Risk Phrase or Safety Phrase applies.[30]

References[edit]

  1. ^ National Center for Biotechnology Information. PubChem Compound Summary for CID 24436, Sodium sulfate. https://pubchem.ncbi.nlm.nih.gov/compound/Sodium-sulfate. Accessed Nov. 2, 2020.
  2. ^ Zachariasen WH, Ziegler GE (1932). “The crystal structure of anhydrous sodium sulfate Na2SO4”. Zeitschrift für Kristallographie, Kristallgeometrie, Kristallphysik, Kristallchemie. Wiesbaden: Akademische Verlagsgesellschaft. 81 (1–6): 92–101. doi:10.1524/zkri.1932.81.1.92. S2CID 102107891.
  3. ^ Helmold Plessen (2000). “Sodium Sulfates”. Ullmann’s Encyclopedia of Industrial Chemistry. Weinheim: Wiley-VCH. doi:10.1002/14356007.a24_355. ISBN 978-3527306732.
  4. ^ Szydlo, Zbigniew (1994). Water which does not wet hands: The Alchemy of Michael Sendivogius. London–Warsaw: Polish Academy of Sciences.
  5. ^ Westfall, Richard S. (1995). “Glauber, Johann Rudolf”. The Galileo Project. Archived from the original on 2011-11-18.
  6. ^ Aftalion, Fred (1991). A History of the International Chemical Industry. Philadelphia: University of Pennsylvania Press. pp. 11–16. ISBN 978-0-8122-1297-6.
  7. ^ Handbook of Chemistry and Physics (71st ed.). Ann Arbor, Michigan: CRC Press. 1990. ISBN 9780849304712.
  8. ^ The Merck Index (7th ed.). Rahway, New Jersey, US: Merck & Co. 1960.
  9. ^ Nechamkin, Howard (1968). The Chemistry of the Elements. New York: McGraw-Hill.
  10. ^ Lipson, Henry; Beevers, C. A. (1935). “The Crystal Structure of the Alums”. Proceedings of the Royal Society A. 148 (865): 664–80. Bibcode:1935RSPSA.148..664L. doi:10.1098/rspa.1935.0040.
  11. ^ Garrett, Donald E. (2001). Sodium sulfate: handbook of deposits, processing, properties, and use. San Diego: Academic Press. ISBN 978-0-12-276151-5.
  12. ^ Mellor, Joseph William (1961). Mellor’s Comprehensive Treatise on Inorganic and Theoretical Chemistry. Vol. II (new impression ed.). London: Longmans. pp. 656–673. ISBN 978-0-582-46277-9.
  13. ^ Linke, W. F.; A. Seidell (1965). Solubilities of Inorganic and Metal Organic Compounds (4th ed.). Van Nostrand. ISBN 978-0-8412-0097-5.
  14. ^ Helena W. Ruben, David H. Templeton, Robert D. Rosenstein, Ivar Olovsson, “Crystal Structure and Entropy of Sodium Sulfate Decahydrate”, J. Am. Chem. Soc. 1961, volume 83, pp. 820–824. doi:10.1021/ja01465a019.
  15. ^ Brodale, G.; W. F. Giauque (1958). “The Heat of Hydration of Sodium Sulfate. Low Temperature Heat Capacity and Entropy of Sodium Sulfate Decahydrate”. Journal of the American Chemical Society. 80 (9): 2042–2044. doi:10.1021/ja01542a003.
  16. ^ a b c d e f g h i Suresh, Bala; Kazuteru Yokose (May 2006). Sodium sulfate. CEH Marketing Research Report. Zurich: Chemical Economic Handbook SRI Consulting. pp. 771.1000A–771.1002J. Archived from the original on 2007-03-14.
  17. ^ a b c “Statistical compendium Sodium sulfate”. Reston, Virginia: US Geological Survey, Minerals Information. 1997. Archived from the original on 2007-03-07. Retrieved 2007-04-22.
  18. ^ a b The economics of sodium sulphate (Eighth ed.). London: Roskill Information Services. 1999.
  19. ^ The sodium sulphate business. London: Chem Systems International. November 1984.
  20. ^ Butts, D. (1997). Kirk-Othmer Encyclopedia of Chemical Technology. Vol. v22 (4th ed.). pp. 403–411.
  21. ^ Smook, Gary (2002). Handbook for Pulp and Paper Technologists. p. 143. Archived from the original on 2016-08-07.
  22. ^ a b “Sodium sulfate (WHO Food Additives Series 44)”. World Health Organization. 2000. Archived from the original on 2007-09-04. Retrieved 2007-06-06.
  23. ^ “Phase-Change Materials for Low-Temperature Solar Thermal Applications” (PDF). Archived (PDF) from the original on 2015-09-24. Retrieved 2014-06-19.
  24. ^ “Phase-Change Materials for Low-Temperature Solar Thermal Applications” (PDF). p. 8. Archived (PDF) from the original on 2015-09-24. Retrieved 2014-06-19.
  25. ^ Vogel, Arthur I.; B.V. Smith; N.M. Waldron (1980). Vogel’s Elementary Practical Organic Chemistry 1 Preparations (3rd ed.). London: Longman Scientific & Technical.
  26. ^ Cocchetto, D.M.; G. Levy (1981). “Absorption of orally administered sodium sulfate in humans”. J Pharm Sci. 70 (3): 331–3. doi:10.1002/jps.2600700330. PMID 7264905.
  27. ^ Prescott, L. F.; Critchley, J. A. J. H. (1979). “The Treatment of Acetaminophen Poisoning”. Annual Review of Pharmacology and Toxicology. 23: 87–101. doi:10.1146/annurev.pa.23.040183.000511. PMID 6347057.
  28. ^ Telkes, Maria (1953). Improvements in or relating to a device and a composition of matter for the storage of heat. British Patent No. GB694553.
  29. ^ “IXoft Specification”. Thermaltake Technology Co., Ltd. Archived from the original on 2016-03-12. Retrieved 2015-08-15.
  30. ^ “MSDS Sodium Sulfate Anhydrous”. James T Baker. 2006. Archived from the original on 2003-06-19. Retrieved 2007-04-21.{{cite web}}: CS1 maint: unfit URL (link)

External links[edit]

  • Calculators: surface tensions, and densities, molarities, and molalities of aqueous sodium sulfate

Сульфат натрия, характеристика, свойства и получение, химические реакции.

Сульфат натрия – неорганическое вещество, имеет химическую формулу Na2SO4.

Краткая характеристика сульфата натрия

Физические свойства сульфата натрия

Получение сульфата натрия

Химические свойства сульфата натрия

Химические реакции сульфата натрия

Применение и использование сульфата натрия

Краткая характеристика сульфата натрия:

Сульфат натрия – неорганическое вещество белого цвета.

Химическая формула сульфата натрия Na2SO4.

Сульфат натрия  – неорганическое химическое соединение, соль серной кислоты и натрия.

Хорошо растворяется в воде. Растворим также в глицерине, метаноле, этаноле. Не растворим в ацетоне.

Гигроскопичен.

Безводный Na2SO4 устойчив выше температуры 32,384 °C, ниже этой температуры в присутствии воды образуется кристаллогидрат Na2SO4·10H2O.

Сульфат натрия существует в трех модификациях (α, β и γ). α-модификация сульфата натрия имеет ромбическую сингонию. β-модификация сульфата натрия также имеет ромбическую сингонию. γ-модификация имеет гексагональную сингонию. α-модификация переходит в β-модификацию при температуре 185 Со, β-модификация переходит γ-модификацию при 241 Со.

Сульфат натрия не токсичен, пожаро- и взрывобезопасен. Пылевоздушная смесь сульфата натрия не взрывоопасна.

В земной коре сульфат натрия находится в свободном чистом состоянии, в форме кристаллогидратов, а также в составе двойных солей.

Сульфат натрия в чистом состоянии широко распространён в природе в виде минерала тенардит.

Сульфат натрия образует с водой кристаллогидраты. Их формула Na2SO4·nH2O,  где n может быть 1, 7 или 10. Кристаллогидрат Na2SO4·10H2O известен как минерал мирабилит (глауберова соль). Данный десятиводный кристаллогидрат сульфата натрия впервые обнаружен химиком И. Р. Глаубером в составе минеральных вод.

Двойные соли сульфат натрия образует с сульфатами ряда металлов, к которым, к примеру, относятся природные минералы астраханит Na2SO4·MgSO4·4H2O и глауберит  Na2SO4·CaSO4.

В пищевой промышленности используется 2 типа сульфата натрия:

– добавка Е514(i) – сульфат натрия (Sodium sulphate) с химической формулой Na2SO4;

– добавка Е514(ii) – гидросульфат натрия (Sodium hydrogen sulphate) с химической формулой NaHSO4.

Физические свойства сульфата натрия:

Наименование параметра: Значение:
Химическая формула Na2SO4
Синонимы и названия иностранном языке sodium sulfate (англ.)

натрий сернокислый (рус.)

тенардит (рус.)

Тип вещества неорганическое
Внешний вид бесцветные ромбические кристаллы
Цвет бесцветный, белый
Вкус соленый
Запах без запаха
Агрегатное состояние (при 20 °C и атмосферном давлении 1 атм.) твердое вещество
Плотность (состояние вещества – твердое вещество, при 20 °C), кг/м3 2680
Плотность (состояние вещества – твердое вещество, при 20 °C), г/см3 2,68
Температура кипения, °C 1429
Температура плавления, °C 884
Гигроскопичность гигроскопичен
Молярная масса, г/моль 142,04
Растворимость в воде (25 oС), г/100 г 27,9

Получение сульфата натрия:

Промышленный способ получения сульфата натрия заключается в разработке его месторождений в природе.

В лаборатории сульфат натрия получается в результате следующих химических реакция:

  1. 1. взаимодействия сульфата магния и карбоната натрия:

MgSO4 + Na2CO3 → Na2SO4 + MgCO3.

  1. 2. взаимодействия оксида натрия и оксида серы:

Na2O + SO3 → Na2SO4.

  1. 3. взаимодействия сульфита натрия и пероксида водорода:

Na2SO3 + H2O2 → Na2SO4 + H2O.

  1. 4. взаимодействия гидросульфата натрия и гидроксида натрия:

NaHSO4 + NaOH → Na2SO4 + H2O.

  1. 5. взаимодействия сульфата лития и карбоната натрия:

Li2SO4 + Na2CO3 → Li2CO3 + Na2SO4.

  1. 6. взаимодействия оксида серы и гидроксида натрия:

SO3 + 2NaOH → Na2SO4 + H2O.

  1. 7. и иных реакций.

Химические свойства сульфата натрия. Химические реакции сульфата натрия:

Химические свойства сульфата натрия аналогичны свойствам сульфатов других металлов. Сульфат натрия неактивен по отношению к большинству окислителей или восстановителей. Поэтому для него характерны следующие химические реакции:

1. реакция сульфата натрия и углерода:

Na2SO4 + 2C → Na2S + 2CO2 (t = 950-1000 °C),

Na2SO4 + 4C → Na2S + 4CO (t =  800-1000 °C).

В результате реакции образуются в первом случае – сульфид натрия и оксид углерода (IV), во втором – сульфид натрия и оксид углерода (II).

2. реакция сульфата натрия и водорода:

2Na2SO4 + 4H2 → 2Na2S + 4H2O (t =  550-600 °C, kat = Fe2O3).

В результате реакции образуются сульфид натрия и вода.

3. реакция взаимодействия сульфата натрия и оксида кремния:

SiO2 + Na2SO4 → Na2SiO3 + SO3 (t°).

В результате реакции образуется силикат натрия и оксид серы.

4. реакция взаимодействия сульфата натрия и оксида серы:

Na2SO4 + SO3 → Na2S2O7.

В результате реакции образуется дисульфат натрия.

5. реакция взаимодействия сульфата натрия и оксида бора:

B2O3 + Na2SO4 → 2NaBO2 + SO3 (t°).

В результате реакции образуются метаборат натрия и оксид серы.

6. реакция взаимодействия сульфата натрия и гидроксида бария:

Na2SO4 + Ba(OH)2 → BaSO4 + 2NaOH.

В результате реакции образуются сульфат бария и гидроксид натрия.

7. реакция взаимодействия сульфата натрия и карбоната бария:

BaCO3 + Na2SO4 ⇄ BaSO4 + Na2CO3.

В результате реакции образуются сульфат бария и карбонат натрия.

8. реакция взаимодействия сульфата натрия и хлорида бария:

BaCl2 + Na2SO4 → BaSO4 + 2NaCl.

В результате реакции образуются сульфат бария и хлорид натрия.

9. реакция взаимодействия сульфата натрия и нитрата серебра:

2AgNO3 + Na2SO4 → Ag2SO4 + 2NaNO3.

В результате реакции образуются сульфат серебра и нитрат натрия.

10. реакция взаимодействия сульфата натрия и нитрата свинца:

Pb(NO3)2 + Na2SO4 → PbSO4 + 2NaNO3.

В результате реакции образуются сульфат свинца и нитрат натрия.

11. реакция взаимодействия сульфата натрия и сульфата бериллия:

Na2SO4 + BeSO4 → Na2[Be(SO4)2].

В результате реакции образуется дисульфатобериллат натрия.

12. реакция взаимодействия сульфата натрия и хромата калия:

K2CrO4 + Na2SO4 → Na2CrO4 + K2SO4.

В результате реакции образуются хромат  натрия и сульфат калия. В ходе реакции используются насыщенные растворы хромата калия и сульфата натрия.

13. реакция взаимодействия сульфата натрия, углерода и карбоната натрия:

Na2SO4 + C + CaCO3 → CaS + Na2CO3 + 2CO2 (t°).

В результате реакции образуются сульфид кальция, карбонат натрия и оксид углерода (IV). Данная реакция представляет собой метод добычи соды.

Применение и использование сульфата натрия:

Сульфат натрия используется во множестве отраслей промышленности и для бытовых нужд:

– в медицине и ветеринарии как лекарственное средство (как слабительное);

– в пищевой промышленности в качестве пищевой добавки 514 как регулятор кислотности;

– при производстве синтетических моющих средств, стиральных порошков;

– в стекольном производстве для изготовления стекла;

– в целлюлозно-бумажной промышленности при получении целлюлозы сульфатным методом;

– в текстильной и кожевенной промышленности;

– в цветной металлургии;

– в химических лабораториях в качестве обезвоживающего средства;

– для аккумуляции тепла.

Примечание: © Фото //www.pexels.com, //pixabay.com

сульфат натрия реагирует кислота 1 2 3 4 5 вода
уравнение реакций соединения масса взаимодействие сульфата натрия 
реакции

Коэффициент востребованности
5 177

Сульфат натрия … как записать формулу?

Найдите правильный ответ на вопрос ✅ «Сульфат натрия … как записать формулу? …» по предмету 📘 Химия, а если вы сомневаетесь в правильности ответов или ответ отсутствует, то попробуйте воспользоваться умным поиском на сайте и найти ответы на похожие вопросы.

Смотреть другие ответы

Главная » Химия » Сульфат натрия … как записать формулу?

Добавить комментарий