Как составить формулу тетрапептида

Напишите формулу тетрапептида, состоящего из четырёх заданных аминокислот. Какие связи в структуре белка могут образовывать остатки этих аминокислот? В какой среде находится изоэлектрическая точка тетрапептида

Закажите у меня новую работу, просто написав мне в чат!

Напишите формулу тетрапептида, состоящего из четырёх заданных аминокислот. Какие связи в структуре белка могут образовывать остатки этих аминокислот? В какой среде находится изоэлектрическая точка тетрапептида? Какой заряд имеет его ион в сильно щелочной среде? Изобразите состояние ионизации тетрапептида в сильно щелочной среде. Тре – арг – мет – лиз.

Остатки аргинина и лизина содержат аминогруппы, которые могут образовывать амидные связи с карбоксильными группа аминокислот в молекуле белка. Изоэлектрическая точка тетрапептида находится в щелочной среде, т.к. в состав входят аминокислоты с группами Напишите формулу тетрапептида, состоящего из четырёх заданных аминокислот. Какие связи в структуре белка могут образовывать остатки этих аминокислот? В какой среде находится изоэлектрическая точка тетрапептида

Как написать формулу трипептида

Пептиды – семейство веществ, молекулы которых построены из двух и более остатков аминокислот, соединенных в цепь пептидными (амидными) связями —С(О)NН- .

Пептиды можно рассматривать как продукты конденсации двух или более молекул аминокислот.

Число пептидов, которые могут быть построены из 20 природных аминокислот, огромно.

Две молекулы аминокислоты могут реагировать друг с другом с отщеплением молекулы воды и образованием продукта, в котором фрагменты связаны пептидной связью –СО-NH- .

Образование дипептидов

Две аминокислоты образуют дипептид:

Образование трипептидов

Молекула дипептида, подобно аминокислотам, содержит аминогруппу и карбоксильную группу и может реагировать еще с одной молекулой аминокислоты:

Полученное соединение называется трипептидом.

Процесс наращивания пептидной цепи может продолжаться неограниченно и приводит к веществам с очень высокой молекулярной массой (белкам).

Формулы пептидов обычно записываются так, что свободная аминогруппа находится слева, а свободная карбоксильная группа – справа. Основная часть пептидной цепи построена из повторяющихся участков –СН-СО-NН- и боковых групп R, R’ и т.д.

Структуру пептидов, содержащих большое число остатков аминокислот, записывают в сокращенном виде с использованием обозначений.

Например, строение молекулы вазопрессина – пептида, построенного из 9 аминокислотных остатков, можно изобразить следующим образом:

Структурная формула вазопрессина

Эту же структуру можно изобразить в сокращенном виде с использованием трехбуквенных и однобуквенных обозначений аминокислот:

В этом пептиде остатки цистеина связаны дисульфидными мостиками. Правый конец цепи содержит амидную группу –СО-NН2 вместо карбоксильной.

Номенклатура

При составлении названия дипептида сначала называют аминокислоту, у которой в образовании дипептида участвует группа –СООН. В тривиальном названии этой кислоты последняя буква «н» заменяется буквой «л». Затем прибавляют без изменений тривиальное название аминокислоты, у которой в образовании дипептида участвует группа –NH2.

Любой дипептид имеет свободные амино- и карбоксильную группы и поэтому может взаимодействовать еще с одной молекулой аминокислоты, образуя трипептид. Таким же путем получают тетрапептиды и т.д.

Биологическое значение

Многие пептиды проявляют биологическую активность. Простейший из них – трипептид глутатион, который относится к классу гормонов – веществ, регулирующих процессы жизнедеятельности. Этот гормон построен из остатков глицина, цистеина и глутаминовой кислоты.

Некоторые пептиды (окситоцин, вазопрессин, инсулин) имеют огромное биологическое значение, являются важными гормонами.

Вазапрессин и окситоцин содержат 9 аминокислотных остатков.

Вазопрессин вырабатывается гипофизом и стимулирует сокращение кровеносных сосудов, повышает кровяное давление, а окситоцин стимулирует выделение молока молочными железами.

Инсулин – биологически важный пептид, который построен из двух цепей, состоящих из 21 и 30 α-аминокислотных остатков, которые связаны между собой дисульфидными мостиками. Вырабатывается поджелудочной железой и снижает содержание сахара в крови.

Химические свойства

Основное свойство пептидов – способность к гидролизу. При гидролизе происходит полное или частичное расщепление пептидной цепи и образуются более короткие пептиды с меньшей молекулярной массой или α-аминокислоты, составляющие цепь.

Анализ продуктов полного гидролиза позволяет установить аминокислотный состав пептида. Полный гидролиз происходит при длительном нагревании пептида с концентрированной соляной кислотой.

Последовательность аминокислот в цепи может быть установлена путем частичного гидролиза пептида. Для этого необходимо последовательно, одну за другой, отщеплять аминокислоты от одного из концов цепи и устанавливать их структуру.

Гидролиз пептидов может происходить в кислой или щелочной среде, а также под действием ферментов. В кислой и щелочной средах образуются соли аминокислот.

Ферментативный гидролиз важен тем, что протекает селективно, т.е. позволяет расщеплять строго определенный участки пептидной цепи. Селективный гидролиз может протекать и под действием неорганических реагентов. Так, бромистый циан (BrCN) расщепляет полипептидную цепь только по пептидной связи, образованной карбоксильной группой метионина.

Источник статьи: http://himija-online.ru/organicheskaya-ximiya/peptidy/peptidy.html

Номенклатура пептидов

Как видно из схемы образования пептидов, полипептидная цепь имеет определенное направление, поскольку каждый из ее строительных блоков (аминокислотных звеньев, или остатков аминокислот) имеет разные концы – либо N-амино, либо С-карбоксильная группа. Аминокислотный остаток, находящийся на том конце молекулы, где имеется свободная α-аминогруппа, называется N-концевым остатком (N-конец молекулы), а остаток на противоположном конце, несущем свободную карбоксильную группу, – С-концевым (С-конец молекулы). Например, для трипептида:

N – конец → (H2N) ала – гли – три (OH) ← С-конец

Условно принято считать, что полипептидная цепь начинается с N-конца, т.е. конца, несущего α-аминогруппу. Для условной записи пептидов используют трехбуквенные сокращения сокращенные обозначения α-аминокислот (см., с.5). При изображении последовательности аминокислот в пептидной цепи начинают с N-концевого остатка. Так, в трипептиде ала – гли – три аланин несет концевую аминогруппу, а триптофан – концевую карбоксильную группу. Обратите внимание, что три – гли – ала – это уже другой трипептид!

Названия пептидов образуют из тривиальных названий аминокислотных остатков в соответствии с их последовательностью, начиная с N-концевого остатка. С-концевой остаток сохраняет свое тривиальное название. Названия аминокислотных остатков производят из названий соответствующих аминокислот путем замены их окончания на окончание «ил», характерного для названий одновалентных остатков (радикалов). Например, глицин (остаток – глицил), валин (остаток – валил), фенилаланин (остаток – фенилаланил), аспарагин (остаток – аспарагил), аспарагиновая кислота (остаток – аспарагинил) и т.д.

Название трипептида ала – гли – три будет следующим: аланил – глицил – триптофан.

Если аминокислотный остаток повторяется в цепи более одного раза подряд, то перед его названием используют соответствующую приставку: 2 раза – ди, 3 – три, 4 – тетра и т.д. Например, пентапептид лиз – (про)2 – тир – глнбудет иметь название: лизил – дипролил – тирозил – глутамин.

При наличии в пептиде в качестве С-концевого остатка глутаминовой или аспарагиновой кислоты, их называют одним словом – глутамат и аспартат соответственно. Например, название тетрапептида про – иле – асп – аспбудет следующим: пролил – изолейцил – аспарагинил – аспартат.

Источник статьи: http://studopedia.ru/5_5822_nomenklatura-peptidov.html

Лекция № 16. Аминокислоты. Пептиды

  1. Методы получения.
  2. Химические свойства.
  3. Аминокислоты, входящие в состав белков.
  4. Пептиды
  1. Методы получения.
  2. Химические свойства.
  3. Аминокислоты, входящие в состав белков.
  4. Пептиды

Аминокислоты – гетерофункциональные соединения, содержащие
карбоксильную и аминогруппы. По взаимному расположению функциональных групп
различают a -, b -, g — и т.д. аминокислоты.
Аминокислоты, содержащие аминогруппу на конце цепи, называют w -аминокислотами.

!) Аммонолиз галогензамещенных кислот.

Метод используется для синтеза a -аминокислот из доступных a -галогензамещенных кислот.

2) Метод Штеккера- Зелинского

Включает стадии образования аминонитрила при
взаимодействии альдегида с HCN и NH 3 c последующим гидролизом его в аминокислоту. В качестве
реагента применяют смесь NaCN и NH 4Cl.

Метод применим для синтеза только a -аминокислот.

3) Восстановительное аминирование
оксокислот

4) Присоединение аммиака к a , b -непредельным карбоновым кислотам.

Метод применим для синтеза b -аминокислот.

5) Из оксимов циклических кетонов
перегруппировкой Бекмана.

Метод используется для синтеза w -аминокислот.

2. Химические
свойства

Аминокислоты дают реакции, характерные для карбоксильной
и аминогрупп, и, кроме того, проявляют специфические свойства, которые
определяются наличием двух функциональных групп и их взаимным
расположением.

2.1. Кислотно-основные
свойства

Аминокислоты содержат кислотный и основный
центры и являются амфотерными соединениями. В кристаллическом состоянии они
существуют в виде внутренних солей (биполярных ионов), которые образуются в
результате внутримолекулярного переноса протона от более слабого основного
центра (СОО — ) к более сильному
основному центру (NH 2).

Ионное строение аминокислот подтверждается их
физическими свойствами. Аминокислоты – нелетучие кристаллические вещества с
высокими температурами плавления. Они нерастворимы в неполярных органических
растворителях и растворимы в воде. Их молекулы обладают большими дипольными
моментами.

Форма существования аминокислот в водных
растворах зависит от рН. В кислых растворах аминокислоты присоединяют протон и
существуют преимущественно в виде катионов. В щелочной среде биполярный ион
отдает протон и превращается в анион.

При некотором значении рН, строго определенном
для каждой аминокислоты, она существует преимущественно в виде биполярного иона.
Это значение рН называют изоэлектрической точкой ( рI ). В
изоэлектрической точке аминокислота не имеет заряда и обладает наименьшей
растворимостью в воде. Катионная форма аминокислоты содержит два кислотных
центра (COOH и NH 3 + ) и
характеризуется двумя константами диссоциации рКа1 и рКа2.
Значение рI определяется по уравнению:

2.2. Реакции по
аминогруппе

Аминокислоты содержат первичную аминогруппу и подобно первичным аминам
взаимодействуют с азотистой кислотой с выделением азота. При этом происходит
замещение аминогруппы на гидроксильную.

Реакция используется для количественного
определения аминокислот по объему выделившегося азота (метод Ван-Слайка).

Алкилирование и
арилирование

При взаимодействии аминокислот с избытком
алкилгалогенида происходит исчерпывающее алкилирование аминогруппы и образуются
внутренние соли.

Аминокислоты арилируются 2,4-динитрофторбензолом
(ДНФБ) в щелочной среде. Реакция протекает как нуклеофильное замещение в
активированном ароматическом кольце.

Реакция используется для установления
аминокислотной последовательности в пептидах.

Аминокислоты взаимодействуют с ангидридами и
хлорангидридами с образованием N-ацильных производных.

Реакция используется для защиты аминогруппы в
синтезе пептидов. Такая защита должна легко сниматься, а амиды, как известно,
гидролизуются в жестких условиях. При разработке методов синтеза пептидов были
найдены защитные группы, которые легко удаляются путем гидролиза или
гидрогенолиза.

трет -Бутоксикарбонильная защита
(БОК-защита).

Легкость снятия защиты обусловлена устойчивостью
бензил- и трет-бутил-катионов, которые образуются в качестве
интермедиатов.

2.3. Реакции по карбоксильной
группе

При сухой перегонке в присутствии гидроксида
бария аминокислоты декарбоксилируются с образованием аминов.

Аминокислоты взаимодействуют со спиртами в присутствии газообразного HCl как
катализатора с образованием сложных эфиров.

В отличие от самих аминокислот, их сложные эфиры
– легко летучие соединения и могут быть разделены путем перегонки или
газожидкостной хроматографии, что используется для анализа и разделения смесей
аминокислот, полученных при гидролизе белков.

Получение галогенангидридов и
ангидридов

При действии на защищенные по аминогруппе
аминокислоты галогенидов фосфора или серы образуются хлорангидриды.

Реакция используется для активации карбоксильной
группы при нуклеофильном замещении. Чаще для этой цели получают смешанные
ангидриды, которые являются более селективными ацилирующими реагентами.

Реакция используется для активации аминогруппы в
синтезе пептидов.

2.4. Специфические реакции
аминокислот

Реакции с одновременным участием карбоксильной и
аминогрупп идут, как правило, с образованием продуктов, содержащих
термодинамически устойчивые 5-ти- и 6-тичленные гетероциклы.

a -Аминокислоты
образуют прочные хелатные комплексы с ионами переходных металлов (Cu, Ni, Co, Cr
и др.).

Отношение аминокислот к
нагреванию

Превращения аминокислот при нагревании зависят от взаимного расположения
карбоксильной и аминогруппы и определяются возможностью образования
термодинамически стабильных 5-ти- 6-тичленных циклов

a -Аминокислоты
вступают в реакцию межмолекулярного самоацилирования. При этом образуются
циклические амиды – дикетопиперазины.

b -Аминокислоты при
нагревании переходят a , b -непредельные кислоты.

g — и d -Аминокислот претерпевают
внутримолекулярное ацилирование с образованием циклических амидов – лактамов .

При взаимодействии a -аминокислот с трикетоном – нингидрином происходит одновременное окислительное
дезаминирование и декарбоксилирование с образованием альдегида и окрашенного
продукта конденсации.

Реакция используется для количественного анализа
аминокислот методом фотометрии.

Природные аминокислоты отвечают общей формуле RCH(NH2 )COOH и отличаются строением радикала R. Формулы и
тривиальные названия важнейших аминокислот приведены в таблице. Для
биологического функционирования аминокислот в составе белков определяющим
является полярность радикала R. По этому признаку аминокислоты разделяют на
следующие основные группы (см. таблицу).

Таблица. Важнейшие a -аминокислоты
RCH(NH2)COOH

Формула Название Обозначение pI
Аминокислоты, содержащие
неполярный радикал R
Глицин Gly 5,97
Аланин Ala 6,0
Валин Val 5,96
Лейцин Leu 5,98
Изолейцин Ile 6,02
Фенилаланин Phe 5,48
Триптофан Trp 5,89
Пролин Pro 6,30
Метионин Met 5,74
Цистин (Cys)2 5,0
Аминокислоты, содержащие полярный
неионогенный радикал R
Серин Ser 5,68
Треонин 5,60
Гидроксипролин Hyp 5,8
Аспаргин Asn 5,41
Глутамин Gln 5,65
Аминокислоты, содержащие полярный
положительно заряженный радикал R
Лизин Lys 9,74
5-Гидроксилизин 9,15
Аргинин Arg 10,76
Гистидин His 7,59
Аминокислоты, содержащие полярный
отрицательно заряженный радикал R
Аспаргиновая
кислота
Asp 2,77
Глутаминовая
кислота
Gly 3,22
Тирозин Tyr 5,66
Цистеин Cys 5,07

Аминокислоты, содержащие неполярный радикал
R. Такие группы
располагаются внутри
молекулы белка и обуславливают гидрофобные взаимодействия.

Аминокислоты, содержащие полярный
неионогенный радикал R.
Аминокислоты этого типа имеют в составе бокового радикала полярные группы, не
способные к ионизации в водной среде (спиртовый гидроксил, амидная группа).
Такие группы могут располагаться как внутри, так и на поверхности молекулы
белка. Они участвуют в образовании водородных связей с другими полярными
группами.

Аминокислоты, содержащие радикал R, способный
к ионизации в водной среде с образованием положительно или отрицательно
заряженных групп.
Такие аминокислоты содержат в боковом радикале
дополнительный основный или кислотный центр, который в водном растворе может
соответственно присоединять или отдавать протон.

В белках ионогенные группы этих аминокислот
располагаются, как правило, на поверхности молекулы и обуславливают
электростатические взаимодействия.

Все природные a -аминокислоты (кроме глицина)
являются хиральными соединениями. По конфигурации хирального центра в положении
2 аминокислоты относят D- или L-ряду.

Природные аминокислоты относятся к
L-ряду.

Большинство аминокислот содержат один хиральный
центр и имеют два стереоизомера. Аминокислоты изолейцин, треонин,
гидроксипролин, 5-гидроксилизин и цистин содержат два хиральных центра и имеют
(кроме цистина) 4 стереоизомера, из которых только один встречается в составе
белков.

Так, из 4-х стереоизомеров треонина в
природе встречается только (2S,3R)-2-амино-3-гидроксибутановая кислота.

Использование для построения белков только
одного вида стереоизомеров имеет важное значение для формирования их
пространственной структуры и обеспечения биологической активности.

a -Аминокислоты,
полученные синтетическим путем, представляют рацемические смеси, которые
необходимо разделять. Наиболее предпочтительным является ферментативный способ
разделения с помощью ферментов ацилаз, способных гидролизовать N-ацетильные
производные только L- a -аминокислот. Ферментативное расщепление проводят по
следующей схеме.

Сначала рацемическую аминокислоту ацилируют
уксусным ангидридом:

Затем рацемическую смесь ацетильных производных
подвергают ферментативной обработке. При этом гидролизуется ацетильное
производное только L-аминокислоты:

Полученная после ферментативного смесь легко
разделяется, так как свободная L-аминокислота растворяется и в кислотах, и в
щелочах, а ацилированная – только в щелочах.

3.3. Кислотно-основные
свойства.

По кислотно-основным свойствам аминокислоты
разделяют на три группы.

Нейтральные аминокислоты не содержат в
радикале R дополнительных кислотных или основных центров, способных к ионизации
в водной среде. В кислой среде они существуют в виде однозарядного катиона и
являются двухосновными кислотами по Бренстеду. Как видно на примере аланина,
изоэлектрическая точка у нейтральных аминокислот не равна 7, а лежит в интервале
5,5 – 6,3.

Основные аминокислоты содержат в
радикале R дополнительный основный центр. К ним относятся лизин, гистидин и
аргинин. В кислой среде они существуют в виде дикатиона и являются трехосновными
кислотами. Изоэлектрическая точка основных аминокислот, как видно на примере
лизина, лежит в области рН выше 7.

Кислые аминокислоты содержат в
радикале R дополнительный кислотный центр. К ним относятся аспаргиновая и
глутаминовая кислоты. В кислой среде они существуют в виде катиона и являются
трехосновными кислотами. Изоэлектрическая точка этих аминокислот лежит в области
рН много ниже 7.

Тирозин и цистеин содержат в боковых радикалах
слабые кислотные центры, способные к ионизации при высоких значениях рН.

Важное значение имеет тот факт, что при
физиологическом значении рН (

7) ни одна аминокислота не находится в
изоэлектрической точке. В организме все аминокислоты ионизированы, что
обеспечивает им хорошую растворимость в воде.

Различие в кислотно-основных свойствах
используется для разделения аминокислот методом электрофореза и ионообменной
хроматографии. При данном значении рН разные аминокислоты могут иметь разный по
величине и знаку электрический заряд. Например, при рН6 лизин имеет заряд +1 и
движется к катоду, аспаргиновая кислота имеет заряд –1 и перемещается к аноду, а
аланин находится в изоэлектрической точке и не перемещается в электрическом поле. Таким образом при рН6 они могут быть
разделены с помощью электрофореза.

Для разделения аминокислот методом ионообменной
хроматографии используют катионообменные смолы (сульфированный полистирол).
Процесс ведут в кислой среде, когда аминокислоты находятся катионной
форме.

Скорость продвижения аминокислот по
хроматографической колонке зависит от силы их электростатических и гидрофобных
взаимодействий со смолой. Наиболее прочно связываются со смолой основные
аминокислоты, имеющие наибольший положительный заряд, наименее прочно – кислые
аминокислоты. Наибольшим гидрофобным связыванием со смолой обладают аминокислоты
с неполярными боковыми радикалами, особенно ароматическими. Таким образом,
порядок элюирования аминокислот следующий. Легче других элюируются кислые
аминокислоты (Asp и Glu), следом за ними идут аминокислоты, содержащие полярные
неионогенные группы (Ser, Thr, Asn, Gln), затем из колонки вымываются
аминокислоты с неполярными боковыми радикалами (Phe, Trp, Ile и др.) и в
последнюю очередь элюируются основные аминокислоты (His, Lys, Arg).

Восстановительное аминирование – метод
синтеза a -аминокислот из a -оксокислот при участии кофермента НАД Н в качестве
восстанавливающего реагента.

Трасаминирование основной
путь биосинтеза аминокислот. При трансаминировании происходит взаимообмен двух
функциональных групп – аминной и карбонильной между аминокислотой и кетокилотой.
При этом нужная для организма аминокислота 1 синтезируется из аминокислоты 2,
имеющейся в клетках в избыточном коичестве. Реакция осуществляется при участии
ферментов трансаминаз и кофермента пиридоксальфосфата.

Содержащий альдегидную группу пиридоксальфосфат
служит переносчиком аминогруппы в виде основания Шиффа.

Аминокислоты декарбоксилируются под действием
ферментов декарбоксилаз при участи кофермента пиридоксальфосфата. При этом
образуются биогенные амины.

Биогенные амины обладают ярко выраженной
биологической активностью. Важнейшими из них являются — коламин (предшественник
в синтезе холина и нейромедиатора ацетилхолина), гистамин (обеспечивает
аллергические реакции организма), g -аминомасляная кислота (нейромедиатор), адреналин
(гормон надпочечников, нейромедиатор)

Неокислительное дезаминирование происходит путем
отщепления аммиака под действием ферментов с образованием a , b -непредельных кислот.

Окислительное дезаминирование происходит
при участии ферментов оксидаз и кофермента НАД + , который выступает в качестве окислителя. В результате
выделяется аммиак и образуется соответствующая кетокислота.

С помощью реакций дезаминирования снижается
избыток аминокислот в организме.

Петиды – это полиамиды, построенные из a -аминокислот. По числу аминокислотных остатков в
молекуле пептида различают дипептиды, трипептиды, тетрапептиды и т.д.
Пептиды, содержащие до 10 аминокислотных остатков, называют олигопептидами, более 10 аминокислотных остатков – полипептидами.
Природные полипептиды, включающие более 100 аминокислотных остатков, называют белками .

Формально пептиды можно рассматривать как продукты поликонденсации
аминокислот.

Аминокислотные остатки в пептиде связаны
амидными (пептидными) связями. Один конец цепи, на котором находится
аминокислота со свободной аминогруппой, называют N-концом. Другой конец,
на котором находится аминокислота со свободной карбоксильной группой, называют С-концом. Пептиды принято записывать и называть, начиная с
N-конца.

Название пептида строят на основе тривиальных
названий, входящих в его состав аминокислотных остатков, которые перечисляют,
начиная с N-конца. При этом в названиях всех аминокислот за исключением
С-концевой суффикс “ин” заменяют на суффикс “ил”. Для сокращенного обозначения
пептидов используют трехбуквенные обозначения входящих в его состав
аминокислот.

Пептид характеризуется аминокислотным
составом
и аминокислотной последовательностью.

Аминокислотный состав пептида может быть
установлен путем полного гидролиза пептида (расщепления до аминокислот) с
последующим качественным и количественным анализом образовавшихся аминокислот
методом ионобменной хроматографии или ГЖХ-анализом сложных эфиров аминокислот.
Полный гидролиз пептидов проводят в кислой среде при кипячении их с 6н.
HCl.

Одному и тому же аминокислотному составу
отвечает несколько пептидов. Так, из 2-х разных аминокислот может быть построено
2 дипептида, из трех разных аминокислот – 6 трипептидов, из n разных аминокислот
n! пептидов одинакового состава. Например, составу Gly:Ala:Val=1:1:1 отвечают
следующие 6 трипептидов.

Gly-Ala-Val Gly- Val-Ala Val-Gly-Ala Val-Ala-Gly Ala-Gly-Val
Ala-Val-Glu

Таким образом, для полной характеристики пептида
необходимо знать его аминокислотный состав и аминокислотную
последовательность.

4.2. Определение аминокислотной
последовательности

Для определения аминокислотной
последовательности используют комбинацию двух методов: определение концевых
аминокислот и частичный гидролиз .

Определение N-концевых
аминокислот.

Метод Сегнера . Пептид обрабатывают 2,4-динитрофтробензолом (ДНФБ), а
затем полностью гидролизуют. Из гидролизата выделяют и идентифицируют
ДНФ-производное N-концевой аминокислоты.

Метод Эдмана состоит во
взаимодействии N-концевой аминокислоты с фенилизотиоцианатом в щелочной среде.
При дальнейшей обработке слабой кислотой без нагревания происходит отщепление от
цепи “меченой” концевой аминокислоты в виде фенилгидантоинового (ФТГ)
производного.

Преимущество этого метода состоит в том, что при
отщеплении N-концевой аминокислоты пептид не разрушается и операцию по
отщеплению можно повторять. Метод Эдмана используют в автоматическом приборе –
секвенаторе, с помощью которого можно осуществить 40 – 50 стадий отщепления,
идентифицируя полученные на каждой стадии ФТГ-производные методом газожидкостной
хроматографии.

Частичный гидролиз полипептидов

При частичном гидролизе пептиды расщепляются с
образованием более коротких цепей. Частичный гидролиз проводят с помощью
ферментов, которые гидролизуют пептидные связи избирательно, например, только с
N-конца (аминопептидазы) или только с С-конца (карбоксипептидазы).
Существуют ферменты, расщепляющие пептидные связи только между определенными
аминокислотами. Меняя условия гидролиза, можно разбить пептид на различные
фрагменты, которые перекрываются по составляющим их аминокислотным остаткам.
Анализ продуктов частичного гидролиза позволяет воссоздать структуру исходного
пептида. Рассмотрим простейший пример установления структуры трипептида.
Частичный гидролиз по двум разным направлениям трипептида неизвестного строения
дает продукты представленные на схеме.

Единственный трипептид, структура которого не
противоречит продуктам частичного гидролиза – Gly-Ala-Phe.

Установление аминокислотной последовательности
пептидов, содержащих несколько десятков аминокислотных остатков, – более сложная
задача, которая требует комбинации различных методов.

Синтез пептида с заданной аминокислотной
последовательностью – чрезвычайно сложная задача. В простейшем случае синтеза
дипептида из 2-х разных аминокислот возможно образование 4-х разных
продуктов.

В настоящее время разработана стратегия синтеза
пептидов, основанная на использовании методов активации и защиты функциональных групп на соответствующих этапах синтеза. Процесс синтеза
дипептида включает следующие стадии:

    1. защита аминогруппы N-концевой
      аминокислоты;
    2. активация карбоксильной группы N-концевой
      аминокислоты;
    3. конденсация модифицированных
      аминокислот
    4. снятие защитных групп

Таким образом, последовательно присоединяя
аминокислоты, шаг за шагом наращивают цепь полипептида. Такой синтез очень
длителен, трудоемок и дает низкий выход конечного продукта. Основные потери
связаны с необходимостью выделения и очистки продуктов на каждой стадии.

Этих недостатков лишен используемый в настоящее
время твердофазный синтез пептидов. На первой стадии защищенная по
аминогруппе С-концевая аминокислота закрепляется на твердом полимерном носителе
(полистироле, модифицированном введением групп –CH 2 Cl). После снятия защиты проводят ацилирование
аминогруппы закрепленной на носителе аминокислоты другой аминокислотой, которая
содержит активированную карбоксильную и защищенную аминогруппу. После снятия
защиты проводят следующую стадию ацилирования. Отмывание продукта от примесей
проводят прямо на носителе и лишь после окончания синтеза полипептид снимают с
носителя действием бромистоводородной кислоты. Твердофазный синтез
автоматизирован и проводится с помощью приборов – автоматических
синтезаторов.

;

Методом твердофазного синтеза получено большое
количество пептидов, содержащих 50 и более аминокислотных остатков, в том числе
инсулин (51 аминокислотный остаток) и рибонуклеаза (124 аминокислотных
остатка).

Источник статьи: http://studentik.net/lekcii/lekcii_xmia/3085-lekcija-15-aminokisloty-peptidy.html

Пептиды – семейство веществ, молекулы которых построены из двух и более остатков аминокислот, соединенных в цепь пептидными (амидными) связями –С(О)NН- .

Пептиды можно рассматривать как продукты конденсации двух или более молекул аминокислот.

Число пептидов, которые могут быть построены из 20 природных аминокислот, огромно.

Две молекулы аминокислоты могут реагировать друг с другом с отщеплением молекулы воды и образованием продукта, в котором фрагменты связаны пептидной связью –СО-NH- .

Образование дипептидов

Две аминокислоты образуют дипептид:

Например:

Или

Образование трипептидов

Молекула дипептида, подобно аминокислотам, содержит аминогруппу и карбоксильную группу и может реагировать еще с одной молекулой аминокислоты:

Полученное соединение называется трипептидом.

Процесс наращивания пептидной цепи может продолжаться неограниченно и приводит к веществам с очень высокой молекулярной массой (белкам).

Формулы пептидов обычно записываются так, что свободная аминогруппа находится слева, а свободная карбоксильная группа – справа. Основная часть пептидной цепи построена из повторяющихся участков –СН-СО-NН- и боковых групп R, R’ и т.д.

Структуру пептидов, содержащих большое число остатков аминокислот, записывают в сокращенном виде с использованием обозначений.

Например, строение молекулы вазопрессина – пептида, построенного из 9 аминокислотных остатков, можно изобразить следующим образом:

Структурная формула вазопрессина

Эту же структуру можно изобразить в сокращенном виде с использованием трехбуквенных и однобуквенных обозначений аминокислот:

В этом пептиде остатки цистеина связаны дисульфидными мостиками. Правый конец цепи содержит амидную группу –СО-NН2 вместо карбоксильной.

Номенклатура

При составлении названия дипептида сначала называют аминокислоту, у которой в образовании дипептида участвует группа –СООН. В тривиальном названии этой кислоты последняя буква «н» заменяется буквой «л». Затем прибавляют без изменений тривиальное название аминокислоты, у которой в образовании дипептида участвует группа –NH2.

Любой дипептид имеет свободные амино- и карбоксильную группы и поэтому может взаимодействовать еще с одной молекулой аминокислоты, образуя трипептид. Таким же путем получают тетрапептиды и т.д.

Биологическое значение

Многие пептиды проявляют биологическую активность. Простейший из них – трипептид глутатион, который относится к классу гормонов – веществ, регулирующих процессы жизнедеятельности. Этот гормон построен из остатков глицина, цистеина и глутаминовой кислоты.

Некоторые пептиды (окситоцин, вазопрессин, инсулин) имеют огромное биологическое значение, являются важными гормонами.

Вазапрессин и окситоцин содержат 9 аминокислотных остатков.

Вазопрессин вырабатывается гипофизом и стимулирует сокращение кровеносных сосудов, повышает кровяное давление, а окситоцин стимулирует выделение молока молочными железами.

Инсулин – биологически важный пептид, который построен из двух цепей, состоящих из 21 и 30 α-аминокислотных остатков, которые связаны между собой дисульфидными мостиками. Вырабатывается поджелудочной железой и снижает содержание сахара в крови.

Химические свойства

Основное свойство пептидов – способность к гидролизу. При гидролизе происходит полное или частичное расщепление пептидной цепи и образуются более короткие пептиды с меньшей молекулярной массой или α-аминокислоты, составляющие цепь.

Анализ продуктов полного гидролиза позволяет установить аминокислотный состав пептида. Полный гидролиз происходит при длительном нагревании пептида с концентрированной соляной кислотой.

Последовательность аминокислот в цепи может быть установлена путем частичного гидролиза пептида. Для этого необходимо последовательно, одну за другой, отщеплять аминокислоты от одного из концов цепи и устанавливать их структуру.

Гидролиз пептидов может происходить в кислой или щелочной среде, а также под действием ферментов. В кислой и щелочной средах образуются соли аминокислот.

Ферментативный гидролиз важен тем, что протекает селективно, т.е. позволяет расщеплять строго определенный участки пептидной цепи. Селективный гидролиз может протекать и под действием неорганических реагентов. Так, бромистый циан (BrCN) расщепляет полипептидную цепь только по пептидной связи, образованной карбоксильной группой метионина.

Аминокислоты

Строение белков

Практическое занятие

«Составление
полипептидных цепей из аминокислот»

Цель: научиться
составлять уравнения реакций поликонденсации пептидной  связи.

Планируемый результат обучения:

обучающийся должен уметь:

– называть:
изученные вещества по тривиальной или международной номенклатуре;

– определять: принадлежность веществ к разным классам органических соединений;

характеризовать:
строение изученных органических соединений;

объяснять: зависимость свойств
веществ от их состава и строения, природу химической связи;

проводить: самостоятельный
поиск химической информации с использованием различных источников
(научно-популярных изданий, компьютерных баз данных, ресурсов Интернета);
использовать компьютерные технологии для обработки и передачи химической
информации и ее представления в различных формах.

Обучающийся должен знать/понимать:

– важнейшие химические понятия: вещество, углеродный скелет, функциональная группа, изомерия;      

– основные теории химии: химической связи, строения органических соединений;

важнейшие вещества и материалы: аминокислоты,
белки.

Оборудование и материалы: таблицы и схемы по тематике.

Теоретическая
часть

Белки
(протеины, полипептиды) – высокомолекулярные органические вещества,
состоящие из соединённых в цепочку пептидной связью α-аминокислот.

 В
живых организмах аминокислотный состав белков определяется генетическим кодом,
при синтезе в большинстве случаев используется 20 стандартных аминокислот.
Множество их комбинаций дают большое разнообразие свойств молекул белков. Кроме
того, аминокислоты в составе белка часто подвергаются посттрансляционным
модификациям, которые могут возникать и до того, как белок начинает выполнять
свою функцию, и во время его «работы» в клетке. Часто в живых организмах
несколько молекул белков образуют сложные комплексы, например,
фотосинтетический комплекс.

В пептидах остатки
аминокислот соединены пептидными звеньями.

По числу аминокислотных остатков различают
олигопептиды (ди-, три-, тетрапептиды и т.д.) и  полипептиды, содержащие более
10 аминокислотных остатков. В состав олигопептидов могут входить остатки
аминокислот, не встречающиеся в белках, например β-аминокислот, а также
фрагменты неаминокислотной природы. К пептидам относятся  многие природные
биологически активные вещества, в том числе гормоны, регуляторы иммунитета,
антибиотики, токсины. Природные полипептиды с молекулярной массой более 6000
называю белками.

Молекула пептида представляет собой
линейную или разветвленную цепь с аминогруппой                     (-
NH2) на одном и карбоксильной
группой
(- СООН) на другом конце цепи. Встречаются пептиды с
замкнутой цепью-циклопептиды.

Аминокислотный остаток пептида, несущий
свободную аминогруппу, называют
N-концевым, а несущий свободную карбоксильную группу-С-концевым. Название
пептида образуется из названий входящих в его состав аминокислотных остатков,
перечисляемых последовательно, начиная с
N-концевого. При
этом используют тривиальные названия аминокислот, в которых окончание «-ин»
заменяется на «-ил». Название С-концевого остатка совпадает с названием
соответствующей аминокислоты.

Все аминокислотные остатки, входящие
в полипептид, нумеруются, начиная с
N-конца.

Длина связи С-N
(0,132 нм) в пептидном фрагменте меньше, чем длина одинарной связи С-
N (0,147 нм). Это говорит об увеличении кратности связи за счет
сопряжения с карбонильной группой. Результатом является затрудненность
свободного вращения вокруг нее.

Упрощенно синтез полипептидов можно представить как последовательное
взаимодействие соответствующих аминокислот. Так, из глицина, аланина и цестеина
образуется трипептид глицил-алнил-цистеин:

Практическая часть

Задание 1. Первый
олигопептид был получен из мясного фарша и поэтому назван карнозином (от
латинского
carnis-мясо).
Дипептид карнозин представляет собой
β-аланил-гистидин. Его химическую формулу в 1900 г. Определили профессор
Московского университета В.С. Гулевич и его ученик С. Амираджиби. Напишите ее.

Задание 2. Составьте
уравнения реакций, отражающие схему синтеза аланил-серил-фенил-аланил-глицина.

Задание 3.
Напишите формулы и названия веществ, образующихся при гидролизе соединения

Задание 4. Составьте
уравнения реакций, отражающие схему синтеза из 11 аминокислотных остатков.

Критерии оценки
практического занятия

Оценка «5»: все 4 задания
выполнены верно.

Оценка «4»: выполнено 4
задания с незначительными ошибками.

Оценка «3»: выполнено 3
задания верно.

Оценка «2»: выполнено
меньше 3-х заданий верно.

Оценка «1»: не приступил
к практической части занятия.

В пептидном
гидролизате обнаружено четыре аминокислоты
в молярном соотношении: гли:ала:фен:сер
= 2:1:1:3. Молярная масса этого пептида
равна 1438 г/моль. Определите аминокислотный
состав данного пептида.

Решение.

Рассчитаем суммарную
массу двух моль глицина, одного моль
аланина, одного моль фенилаланина и 3
моль серина:

m
= 2M(глицина)
+ 1M(аланина)
+ 1M(фенилаланина)
+
+ 2M(серина)
= 275
+ 89 + 165 + 1053
= 719 г.

Измеренная молярная
масса пептида составляет 1438 г/моль,
следовательно, число всех аминокислот
в пептиде должно быть в два раза больше
и тогда состав пептида будет следующим:
4 молекулы глицина, 2 молекулы аланина,
2 молекулы фенилаланина и 6 молекул
серина.

В данном случае
можно лишь установить количественный
состав пептида, но нет возможности
установить, в каком порядке эти
аминокислоты связаны в пептид.

Задача№16

Как
известно, атом галогена прочно привязан
к бензольному кольцу, и поэтому
ароматические галогениды не склонны
реагировать с нуклеофилами. Объясните,
почему 2,4-динитро-фторбензол легко
реагирует со свободной аминогруппойN-концевой
аминокислоты пептида и не реагирует с
атомом азота пептидной группы  NН  С = О,
хотя атом азота этой амидной группы
тоже

содержит неподеленную
пару электронов.

Решение.

Наличие сильно
электроноакцепторных нитрогрупп в
орто- и пара-положениях бензольного
кольца и атома фтора, имеющего наибольшую
электроотрицательность из всех известных
элементов, резко уменьшают электронную
плотность у атома углерода бензольного
кольца, связанного со фтором, делая тем
самым молекулу более восприимчивой к
атаке нуклеофилом. В качестве нуклеофила
выступает атом азота аминогруппы,
содержащий неподеленную пару электронов.
Атом азота амидной группы в этой реакции
в роли нуклеофила не может конкурировать
со свободной аминогруппой, так как в
результате сопряжения неподеленной
пары электронов атома азота с двойной
связью карбонильной группы, амиды
становятся значительно более слабыми
нуклеофилами, чем амины.

сопряжение пары
электронов азота с двойной связью С = О

Задача № 17

Напишите формулу
тетрапептид фен-цис-три-глу. С помощью
каких цветных реакций можно доказать
наличие в этом пептиде бен-зольного
кольца, пептидной связи, серусодержащей
аминокислоты и триптофана?

Решение.

Ароматическое
кольцо в пептиде можно обнаружить
реакцией с концентрированной азотной
кислотой (ксантопротеиновая реакция).

Для качественного
и количественного определения триптофана
можно использовать реакцию Эрлиха 
в среде серной кислоты появляется
красно-фиолетовое окрашивание.

Наличие пептидной
связи доказывается с помощью биуретовой
реакции.

Для обнаружения
цистеина используют реакцию с ацетатом
свинца в щелочной среде.

Задача №18

Укажите направления
движения (движутся к катоду или к аноду,
не перемещаются в электрическом поле)
в процессе электрофореза при рН = 1,9;
3; 6,5 и 13 следующих пептидов:

а) лиз-гли-ала-гли;

б) лиз-гли-ала-глу.

Решение.

Изоэлектрическая
точка этого пептида находится в щелочной
среде, так как число аминогрупп превышает
число карбоксильных групп.

В сильнокислой
среде при рН = 1,9 и при рН = 3
за счет протони-рования аминогрупп
образуются катионы R  NH3+
и пептид
будет перемещаться к катоду. При рН = 6,5
(среда почти нейтральная) пептид будет
перемещаться к катоду, так как его
изоэлектрическая точка находится в
щелочной среде. В сильнощелочной среде
при рН = 13 образуется карбоксилат-ион
и пептид будет перемещаться к аноду.

Изоэлектрическая
точка этого пептида находится в среде
близкой к нейтральной, так как число
аминогрупп этого пептида равно числу
карбоксильных групп. Поэтому в сильнокислой
среде (при рН = 1,9 и рН = 3)
диссоциация карбоксильных групп
подавлена, а аминогруппы будут
протонированы и пептид будет перемещаться
к катоду. При рН = 6,5 (среда близкая
к нейтральной) пептид в электрическом
поле перемещаться не будет, так как он
практически находится в изоэлектрическом
состоянии. В сильнощелочной среде (при
рН = 13) будут преобладать анионы
(карбоксилат-ионы), и пептид начнет
перемещаться к аноду.

Соседние файлы в папке Амины, аминокислоты

  • #
  • #

Добавить комментарий