построить график линейной функции:
a)
y=13x+1,x∈−6;3
; b)
y=13x+1,x∈−6;3
.
Составим таблицу значений функции:
(x) | (-6) | (3) |
(y) | (-1) | (2) |
Построим на координатной плоскости (xOy) точки ((-6;-1)) и ((3;2)) и
проведём через них прямую.
Далее выделим отрезок, соединяющий построенные точки.
Этот отрезок и есть график линейной функции
y=13x+1,x∈−6;3
.
Точки ((-6); (-1)) и ((3); (2)) на рисунке отмечены тёмными кружочками.
b) Во втором случае функция та же, только значения (x=-6) и (x=3) не рассматриваются, так как они не принадлежат интервалу ((-6;3)).
Поэтому точки ((-6); (-1)) и ((3); (2)) на рисунке отмечены светлыми кружочками.
По графику линейной функции, можно определить наибольшее и наименьшее значения линейной функции на заданном отрезке.
В случае
a)
y=13x+1,x∈−6;3
, имеем:
yнаиб
(= 2) и
yнаим
(= -1);
b)
y=13x+1,x∈−6;3
, концы отрезка не рассматриваются, поэтому наибольшего и наименьшего значений нет.
Вспомним, что такое график функции:
Графиком функции называется множество точек плоскости, абсциссы которых равны значениям аргумента $x$, а ординаты – соответствующим значениям функции $y$.
Как мы уже выяснили, график линейной функции представляет из себя прямую линию.
Построение графиков
Для его построения нет необходимости находить координаты более двух точек. То есть, чтобы построить график линейной функции, достаточно подставить в заданную формулу всего два значения $x$
Значит, нужно:
- Подставить в функцию 2 любых значения $x$ и получить соответствующие значения $y$.
- Мы получили координаты 2 точек. Отметим их на координатной плоскости.
- Проведём через эти 2 точки прямую линию.
Построим график функции $y=2x+1$
Для удобства состоим таблицу значений $x$ и $y$.
Переменная | Значение 1 | Значение 2 |
---|---|---|
$x$ | ||
$y$ |
Какие $x$ взять? Удобно брать небольшие числа, например $0$ и $1$
Переменная | Значение 1 | Значение 2 |
---|---|---|
$x$ | $color{#3D68EB}0$ | $color{#ED7858}1$ |
$y$ |
Теперь нужно посчитать $y$. Подставляем по очереди 2 значения $x$ в нашу функцию:
$x=color{#3D68EB}0$
$y=2x+1$
$y=2 cdot 0 + 1 = color{#253f8d}1$
$x=color{#ED7858}1$
$y=2x+1$
$y=2 cdot 1 + 1 = color{#eb3d3d}3$
Вписываем полученные значения в таблицу и отмечаем точки:
Переменная | Значение 1 | Значение 2 |
---|---|---|
$x$ | $color{#3D68EB}0$ | $color{#ED7858}1$ |
$y$ | $color{#253f8d}1$ | $color{#eb3d3d}3$ |
Проводим через эти точки прямую линию. График готов.
Доведите навык до совершенства с помощью тренажёра построения графиков линейной функции.
Прежде чем перейти к изучению функции «y = kx»
внимательно изучите урок
«Что такое функция в математике»
и
«Как решать задачи на функцию».
Важно!
Функцию вида «y = kx + b» называют линейной функцией.
Буквенные множители «k» и «b»
называют
числовыми коэффициентами.
Вместо «k» и «b»
могут стоять любые числа (положительные, отрицательные или дроби).
Другими словами, можно сказать, что «y = kx + b» — это семейство всевозможных функций, где вместо
«k» и «b» стоят числа.
Примеры функций типа «y = kx + b».
- y = 5x + 3
- y = −x + 1
- y = x − 2
- y = 0,5x
Давайте определим для каждой функций выше, чему равны числовые коэффициенты
«k» и
«b».
Функция | Коэффициент «k» | Коэффициент «b» | ||||
---|---|---|---|---|---|---|
y = 5x + 3 | k = 5 | b = 3 | ||||
y = −x + 1 | k = −1 | b = 1 | ||||
y =
x − 2 |
k =
|
b = −2 | ||||
y = 0,5x | k = 0,5 | b = 0 |
Обратите особое внимание на функцию «y = 0,5x»
в таблице. Часто совершают ошибку при поиске в ней числового коэффициента «b».
Рассматривая
функцию «y = 0,5x», неверно утверждать, что числового коэффициента
«b» в функции нет.
Числовый коэффициент «b» присутствет в функции типа «y = kx + b» всегда.
В функции «y = 0,5x»
числовый коэффициент «b» равен нулю.
Как построить график линейной функции
«y = kx + b»
Запомните!
Графиком линейной функции «y = kx + b» является прямая.
Так как графиком функции «y = kx + b»
является прямая линия, функцию называют линейной функцией.
Из геометрии вспомним аксиому (утверждение, которое не требует доказательств),
что через любые две точки можно провести прямую и притом только одну.
Исходя из аксиомы выше следует, что
чтобы построить график функции вида
«у = kx + b» нам достаточно будет найти всего
две точки.
Для примера построим график функции «y = −2x + 1».
Найдем значение функции «y» для двух произвольных значений «x».
Подставим, например, вместо «x» числа «0» и «1».
Важно!
Выбирая произвольные числовые значения вместо «x», лучше брать числа
«0» и «1».
С этими числами легко выполнять расчеты.
x | Расчет «y = −2x + 1» |
---|---|
0 | y(0) = −2 · 0 + 1 = 1 |
1 | y(1) = −2 · 1 + 1 = −2 + 1 = −1 |
Полученные значения «x» и «y» — это координаты точек графика функции.
Запишем полученные координаты точек «y = −2x + 1» в таблицу.
Точка |
Координата по оси «Оx» (абсцисса) |
Координата по оси «Оy» (ордината) |
---|---|---|
(·)A | 0 | 1 |
(·)B | 1 | −1 |
Отметим полученные точки на системе координат.
Теперь проведем прямую через отмеченные точки. Эта прямая будет
являться графиком функции «y = −2x + 1».
Как решать задачи на
линейную функцию «y = kx + b»
Рассмотрим задачу.
Построить график функции «y = 2x + 3». Найти по графику:
- значение «y» соответствующее значению «x» равному −1; 2; 3; 5;
- значение «x», если значение «y» равно
1; 4; 0; −1.
Вначале построим график функции «y = 2x + 3».
Используем правила, по которым мы строили график функции выше.
Для построения графика функции «y = 2x + 3» достаточно найти всего две точки.
Выберем два произвольных числовых значения для «x». Для удобства расчетов выберем числа
«0» и «1».
Выполним расчеты и запишем их результаты в таблицу.
Точка |
Координата по оси «Оx» |
Координата по оси «Оy» |
---|---|---|
(·)A | 0 | y(0) = 2 · 0 + 3 = 3 |
(·)B | 1 | y(1) = 2 ·1 + 3 = 5 |
Отметим полученные точки на прямоугольной системе координат.
Соединим полученные точки прямой. Проведенная прямая будет являться графиком функции
«y = 2x + 3».
Теперь работаем с построенным графиком функции «y = 2x + 3».
Требуется найти значение «y»,
соответствующее значению «x»,
которое равно −1; 2; 3; 5.
Тему
«Как получить координаты точки функции» с графика функции
мы уже подробно рассматривали в уроке
«Как решать задачи на функцию».
В этому уроке для решения задачи выше вспомним только основные моменты.
Запомните!
Чтобы найти значение «y» по известному значению «x» на графике
функции необходимо:
- провести перпендикуляр от оси «Ox»
(ось абсцисс)
из заданного числового значения «x»
до пересечения
с графиком функции; - из полученной точки пересечения перпендикуляра и графика функции провести еще один перпендикуляр к оси
«Oy»
(ось ординат); - полученное числовое значение на оси «Oy» и будет искомым значением.
По правилам выше найдем на построенном ранее графике функции «y = 2x + 3»
необходимые значения функции «y» для
«x» равным −1; 2; 3; 5.
Запишем полученные результаты в таблицу.
Заданное значение «x» | Полученное с графика значение «y» |
---|---|
−1 | 1 |
2 | 7 |
3 | 9 |
5 | 13 |
Переходим ко второму заданию задачи. Требуется найти значение «x»,
если значение «y» равно 1; 4; 0; −1.
Выполним те же действия, что и при решении предыдущего задания.
Разница будет лишь в том, что изначально мы будем проводить перпендикуляры от оси
«Oy».
Запишем полученные результаты в таблицу.
Заданное значение «y» | Полученное с графика значение «x» |
---|---|
−1 | −2 |
0 | −1,5 |
1 | −1 |
4 | 0,5 |
Как проверить, проходит ли график через точку
Рассмотрим другое задание.
Не выполняя построения графика функции
«y = 2x −
», выяснить, проходит ли график
через точки с координатами (0;
− ) и (1; −2).
Запомните!
Чтобы проверить принадлежность точки графику функции нет необходимости строить график функции.
Достаточно подставить координаты точки в формулу функции (координату по оси
«Ox» вместо
«x», а координату по оси
«Oy» вместо «y») и выполнить арифметические расчеты.
- Если получится верное равенство, значит, точка принадлежит графику функции.
- Если получится неверное равенство, значит, точка
не принадлежит графику функции.
Подставим в функцию
«y = 2x −
»
координаты точки (0;
− ).
− = 2 · 0
−
− =
−
(верно)
Это означает, что график функции «y = 2x −
» проходит через точку с координатами (0;
− ).
Проверим точку с координатами (1; −2).
Также подставим координаты
в функцию «y = 2x −
».
−2 = 2 · 1 −
−2 = 2 −
−2 = 1 −
−2 = 1 (неверно)
Это означает, что график функции «y = 2x −
» не проходит через точку с координатами (1; −2).
Как найти точки пересечения графика с осями
Рассмотрим задачу.
Найти координаты точек пересечения графика функции «y = −1,5x + 3» с осями координат.
Для начала построим график функции «y = −1,5x + 3» и на графике отметим точки пересечения
с осями.
Для построения графика функции найдем координаты двух точек
функции
«y = −1,5x + 3».
Выберем два произвольных числовых значения для «x» и рассчитаем значение
«y» по формуле
функции. Например, для x = 0 и
x = 1.
Точка |
Координата по оси «Оx» |
Координата по оси «Оy» |
---|---|---|
(·)A | 0 | y(0) = −1,5 · 0 + 3 = 3 |
(·)B | 1 | y(1) = −1,5 · 1 + 3 = 1,5 |
Отметим полученные точки на системе координат и проведем через них прямую.
Тем самым мы построим график функции «y = −1,5x + 3».
Теперь найдем координаты точек пересечения графика функции с осями по формуле функции.
Запомните!
Чтобы найти координаты точки пересечения графика функции
с осью
«Oy»
(осью ординат)
нужно:
- приравнять координату точки по оси
«Ox» к нулю
(x = 0); - подставить вместо «x» в формулу функции ноль и найти значение
«y»; - записать полученные координаты точки пересечения с осью
«Oy».
Подставим вместо «x» в формулу функции «y = −1,5x + 3» число ноль.
y(0) = −1,5 · 0 + 3 = 3
(0; 3) — координаты точки пересечения графика функции «y = −1,5x + 3»
c осью «Oy».
Запомните!
Чтобы найти координаты точки пересечения графика функции
с осью
«Ox»
(осью абсцисс)
нужно:
- приравнять координату точки по оси
«Oy» к нулю
(y = 0); - подставить вместо «y» в формулу функции ноль и найти значение
«x»; - записать полученные координаты точки пересечения с осью
«Oy».
Подставим вместо «y» в формулу функции «y = −1,5x + 3» число ноль.
0 = −1,5x + 3
1,5x = 3 | :(1,5)
x = 3 : 1,5
x = 2
(2; 0) — координаты точки пересечения графика функции «y = −1,5x + 3»
c осью «Ox».
Чтобы было проще запомнить, какую координату точки нужно приравнивать к нулю, запомните
«правило противоположности».
Важно!
Если нужно найти координаты точки пересечения графика с осью
«Ox», то приравниваем
«y» к нулю.
И наооборот. Если нужно найти координаты точки пересечениа графика с осью
«Oy»,
то приравниваем «x» к нулю.
Ваши комментарии
Важно!
Чтобы оставить комментарий, вам нужно войти на наш сайт при помощи
«ВКонтакте».
Оставить комментарий:
Вопросы
занятия:
·
показать на примере как строится график функции;
·
ввести понятие «график функции»;
·
познакомить со специальными приборами, которые вычерчивают графики
функциональных зависимостей и используются в различных сферах деятельности
человека.
Материал
урока
Давайте
возьмём функцию, которая задана формулой:
Составим
таблицу значений этой функции с шагом 1.
Затем
изобразим систему координат. Вспомним, что горизонтально расположенную ось
называют осью абсцисс. А вертикально расположенную ось – осью ординат.
Каждую
из найденных пар значений х и у
изобразим точкой в координатной плоскости.
Соединим
эти точки плавной линией и получим график нашей функции:
Следует
отметить, что чем больше точек, принадлежащих графику мы
отметим на координатной плоскости, тем более точно будет построен график
функции.
Таким
образом, сформулируем определение.
Определение.
Графиком
функции называется множество всех точек плоскости, абсциссы
которых принадлежат области определения, а ординаты равны соответствующим
значениям функции.
Давайте
построим график ещё одной функции, заданной формулой:
Составим
таблицу значений данной функции с шагом 1.
Изображаем
систему координат. И отмечаем в координатной плоскости все точки, координаты
которых записаны в нашей таблице.
Соединяем
отмеченные точки линией. И получаем график заданной функции для заданных
значений аргумента.
График
функции является наглядным представлением зависимости между величинами.
Например,
на следующем графике показано, как изменяется температура воздуха в течение
суток.
Для
получения такой информации на практике используют специальный прибор, который
называется термографом.
Перо
вычерчивает на ленте, которая намотана на барабан, непрерывную линию, выражающую
зависимость между временем и температурой воздуха.
Существуют
и другие приборы, которые вычерчивают графики функциональных зависимостей.
Одним
из таких является кардиограф.
Он
позволяет получить графическое описание работы сердца.
А
ещё есть такой прибор, как сейсмограф.
Он
используется для обнаружения и
регистрации колебаний почвы, которые, например, могут быть вызваны
землетрясением
А
теперь решим задачу.
Пример.
И
ещё задача.
Пример.
В геометрии есть аксиома: через любые две точки можно провести прямую и притом только одну. Исходя из этой аксиомы следует: чтобы построить график функции вида у = kx + b, достаточно найти всего две точки. А для этого нужно определить два значения х, подставить их в уравнение функции и вычислить соответствующие значения y.
Например, чтобы построить график функции y = 1/3x + 2, можно взять х = 0 и х = 3, тогда ординаты этих точек будут равны у = 2 и у = 3. Получим точки А (0; 2) и В (3; 3). Соединим их и получим такой график:
если k 0, то график функции y = kx + b получается из y = kx со сдвигом на b единиц вверх вдоль оси OY;
0″ src=”https://user84060.clients-cdnnow.ru/uploads/5fc1049363f94987951092.png” style=”height: 600px;”>
0 и b > 0″ src=”https://user84060.clients-cdnnow.ru/uploads/5fc104b2640e6151326286.png” style=”height: 600px;”>
В задачах 7 класса можно встретить график уравнения х = а. Он представляет собой прямую линию, которая параллельна оси ОY все точки которой имеют абсциссу х = а.
Важно понимать, что уравнение х = а не является функцией, так как различным значениям аргумента соответствует одно и то же значение функции, что не соответствует определению функции.
Например, график уравнения х = 3:
Условие параллельности двух прямых:
График функции y = k1x + b1 параллелен графику функции y = k2x + b2, если k1 = k2.
Условие перпендикулярности двух прямых:
График функции y = k1x + b1 перпендикулярен графику функции y = k2x + b2, если k1k2 = −1 или k1 = −1/k2.
Точки пересечения графика функции y = kx + b с осями координат:
С осью ОY. Абсцисса любой точки, которая принадлежит оси ОY равна нулю. Поэтому, чтобы найти точку пересечения с осью ОY, нужно в уравнение функции вместо х подставить ноль. Тогда получим y = b.
Координаты точки пересечения с осью OY: (0; b).
С осью ОХ. Ордината любой точки, которая принадлежит оси ОХ равна нулю. Поэтому, чтобы найти точку пересечения с осью ОХ, нужно в уравнение функции вместо y подставить ноль. И получим 0 = kx + b. Значит x = −b/k.
Координаты точки пересечения с осью OX: (−b/k; 0).
Решение задач на линейную функцию
Чтобы решать задачи и строить графики линейных функций, нужно рассуждать и использовать свойства и правила выше. Давайте потренируемся!
Пример 1. Построить график функции y = kx + b, если известно, что он проходит через точку А (-3; 2) и параллелен прямой y = -4x.
В уравнении функции y = kx + b два неизвестных параметра: k и b. Поэтому в тексте задачи нужно найти два условия, которые характеризуют график функции.
Из того, что график функции y = kx + b параллелен прямой y = -4x, следует, что k = -4. То есть уравнение функции имеет вид y = -4x + b.
Осталось найти b. Известно, что график функции y = -4x + b проходит через точку А (-3; 2). Подставим координаты точки в уравнение функции и мы получим верное равенство:
Таким образом, нам надо построить график функции y = -4x – 10
Мы уже знаем точку А (-3; 2), возьмем точку B (0; -10).
Поставим эти точки в координатной плоскости и соединим прямой:
Пример 2. Написать уравнение прямой, которая проходит через точки A (1; 1); B (2; 4).
Если прямая проходит через точки с заданными координатами, значит координаты точек удовлетворяют уравнению прямой y = kx + b.
Следовательно, если координаты точек подставить в уравнение прямой, то получим верное равенство.
Подставим координаты каждой точки в уравнение y = kx + b и получим систему линейных уравнений.
Вычтем из второго уравнения системы первое, и получим k = 3.
Подставим значение k в первое уравнение системы, и получим b = -2.
Ответ: уравнение прямой y = 3x – 2.
Графическое решение уравнений
Этот видеоурок доступен по абонементу
У вас уже есть абонемент? Войти
На этом видеоуроке к изучению предлагается тема «Функция y=x 2 . Графическое решение уравнений». В ходе этого занятия учащиеся смогут познакомиться с новым способом решения уравнений – графическим, который основан на знании свойств графиков функций. Учитель покажет, как можно решить графическим способом функцию y=x 2 .
Учим алгебра 7 класс. Как решать уравнения алгебра 7 класс, примеры, дроби, функции, степени, модули
В 7 классе ученикам предстоит научиться решать уравнения, дроби, строить функции, разбираться в модулях. Для этого следует познакомиться с основными понятиями в темах, рассмотреть алгоритм решения и пошагово учиться находить ответы. Главное правило — начать с простых примеров, постепенно переходя на более сложные. Большинство задач можно решать несколькими методами (это касается и примеров), следует выбрать самый простой и удобный для себя.
Как решать уравнения алгебра 7 класс
Начнем с решения линейных уравнений (на рисунке показано, по какому принципу они устроены). Чтобы найти ответ в таких уравнениях, нужно совершать действия: раскрытие скобок, поиск подобных слагаемых, умножение/деление частей на одно и тоже число, перенос слагаемых из одной части уравнения в другую. Всё зависит от конкретного примера.
Рассмотрим несколько примеров пошагового решения линейных уравнений.
Пример 1.
6x + 24 = 0
Поскольку части уравнения (левая и правая) равны, то можно отнять из каждой одинаковое число. Равенство не изменится, а пример станет значительно проще. В представленном уравнении отняли 24 и слева, и справа. В левой части 24 сократилось, а в правой (0 — 24) получилось -24 (не забываем ставить знак минуса).
Получилось: 6x = -24. Теперь можем сократить 6 и -24 на число 6 (или рассуждаем так: чтобы найти множитель, нужно произведение разделить на другой множитель). В ответе будет -4. Не забудьте в самом конце подставить полученное число вместо х. Совпал ответ — значит, все правильно.
Можно рассуждать проще: чтобы упростить уравнение, нужно из левой части отправить в правую число 24, поменяв его знак. Равенство сохранится (на рисунке ниже).
Пример 2.
9 + 16x = 41 + 14x
Это уравнение более сложное. Здесь важно запомнить несколько моментов:
- числа без х переносятся в левую часть, а с х — в правую;
- при переносе знаки меняют.
Пример 3.
7(10 — 4x) + 5x = 12 — 3(5x + 2)
- Раскрыть скобки, выполнив умножение: 7 умножаем на каждое число в скобках (в правой части -3 на каждое). При выполнении действия не забывайте сохранять знаки.
- Записываем уравнение, получившееся после раскрытия скобок. Ещё раз сверяем знаки.
- Числа с х отправляются в левую часть, без х — в правую. Знаки чисел, которые переходят в другую часть, меняем.
- Подсчитываем результат с обеих сторон.
- Делим -64 на -8 и получаем ответ. Не забываем, что минус на минус при делении и умножении дают плюс.
В рассмотренных уравнениях корень точно определён. Так получается не всегда.
Пример 4.
Обратите внимание, в ответе получилось 0x = 0. Это значит, что x может быть любым числом, потому что при умножение хоть какого числа на 0 получится 0.
В этом примере корней нет, так как любое число, которое умножают на 0, будет равно 0 (21 никак не получится).
Как решать систему уравнений алгебра 7 класс
Системой называют несколько уравнений, в которых нужно найти такие значения неизвестных, чтобы равенство сохранилось. Разберемся на примерах, как выглядят системы и какие методы их решения существуют.
метод подстановки
Из самого названия следует, что алгоритм требует что-то подставлять. Ниже представлена система, где нужно найти значения x и y.
Суть метода подстановки: переменную в одном из уравнений выражают через другую переменную. Затем подставляют полученное выражение в другое уравнение.
Смотрим на систему. Видим, что удобнее будет выразить x во втором уравнении (так как он один). Выражаем путем переноса за знак «равно» 12y. Получилось: x = 11 — 12y (не забываем менять знак при переносе числа).
В первое уравнение вместо «x» записываем получившееся выражение. Меняем только x, остальное сохраняется в прежнем виде.
Далее преобразуем уравнение, в которое поместили выражение. Раскрываем скобки (перемножаем 5 на каждое значение). y оставляем в левой части, числа переносим в правую, знаки меняем. Таким образом нашли значение y (y = 1).
Теперь подставляем полученную единицу во второе уравнение (x = 11 — 12y).
Убедиться в правильном решение можно так: подставьте полученные значения в систему. Если равенства сохранятся, значит, решено верно.
метод сложения
Чтобы решить систему методом сложения, нужно из двух уравнений сделать одно. Просто складываем первое и второе. Здесь «y» просто сократились, и получилось простое уравнение. Как только нашли значение «х», нужно подставить его в любой пример (здесь поставили во второе уравнение). В ответе пишется так: (4; 3) — первым всегда пишется х, затем у.
графический метод
У нас есть система, где y = 5x и y = -2x + 7. Рассмотрим алгоритм решения системы уравнений:
- Подбираем 2 числа для х. Мы взяли 0 и 1, подставляем в первое уравнение: y = 5 * 0 = 0; у = 5 * 1 = 5. Значит первая прямая имеет координаты: (0; 0) и (1; 5).
- Для второго уравнения подбираем значения х. Взяли 3 и 2, подставляем и находим у: -2 * 3 + 7 = 1; -2 * 2 + 7 = 3. Значит прямая имеет координаты (3; 1) и (2; 3).
- Отмечаем на графике соответствующие прямые, подписываем их название.
- на месте пересечения получившихся прямых ставим точку — это будет решение.
- Точка имеет координаты (1; 5).
На заметку! Старайтесь подбирать такие значения х, чтобы у был небольшим. Так отмечать будет проще.
Выбирайте самый удобный способ решения. Третий метод — графический, считают самым неточным.
Как решать дроби 7 класс
Дроби можно разделить на 2 основных вида:
Они различаются в способе написания (смотрите рисунок ниже). В свою очередь и те, и другие делятся еще на несколько видов.
Для начала рассмотрим решение примеров с десятичными дробями.
Особое внимание при решении стоит уделить запятым. При сложении и вычитании запятые стоят строго друг под другом, при умножении это не имеет значения.
Примеры решения обыкновенных дробей.
- при сложении и вычитании нужно привести дроби к общему знаменателю, найти дополнительные множители. Так, для чисел 6 и 4 общим знаменателем стало число 24. Дополнительные множители считали так: 24 : 6 = 4 (для первой дроби) и 24 : 4 = 6 (для второй). Потом умножили доп. множители на числители и полученные числа сложили. Если в ответе получилась неправильная дробь, то выделяем целую часть, при необходимости сокращаем дроби.
- при умножении пишем дроби под одной чертой, сокращаем.
- при делении нужно вторую дробь перевернуть, поставить знак умножения и сократить дроби.
Если пример состоит из простой и десятичной дроби, то следует привести их к одному виду (к которому проще или удобнее считать).
Примеры 7 класс как решать
Теперь закрепим решение дробей на примерах.
Решение примера, представленного ниже:
- Видим, что присутствует как обыкновенная дробь, так и десятичные. Нужно привести к одному виду. Так как десятичных больше, и превратить 1/4 в этот вид проще, то делим 1 на 4, а целую часть сохраняем. Вышло 5,25.
- Далее умножаем — 3 на каждое число в скобках, внимательно следим за знаками.
- Остается от 10,4 отнять 9,3. В итоге вышло 1,1.
Но можно было решить проще. Первое действие всегда в скобках. Поэтому от 5,25 отнимаем 2,15. Получится 3,1. Умножаем ее на 3 — вышло 9,3. И отнимаем: 10,4 — 9,3 = 1,1. Этот способ даже проще, потому что не нужно следить за знаками при раскрытии скобок.
Чтобы верно решить следующий пример, нужно:
- точно проставить порядок действий (умножение и деление делаем в первую очередь, затем складываем);
- Умножить десятичные дроби столбиком, не забыть поставить запятую;
- деление здесь простое: переставили запятую на один знак вправо, поделили, получили -2.
- сложили числа.
Как решать задачи алгебра 7 класс
Задачи решаются путем составления уравнений.
Другие примеры задач с подробными решениями в видео-материалах.
Как решать функции алгебра 7 клас с
Функцией принято считать зависимость y от x. При этом x является переменной (или аргументом), а у — это значение функции (зависимая переменная).
- y(x) = 8x
- y(x) = −3x — 62
- y(x) = x−1 + 18
Чтобы найти значение у, которое бы соответствовало определенному значению х, нужно просто это значение х подставить в функцию.
Как решать степени алгебра 7 класс
Если требуется взять какое-либо число несколько раз, то проще записать его в степени. Например, нужно двойку взять три раза, т. е.: 2 * 2 * 2. Получается длинная запись. Поэтому придумали писать так: 2³ (читается: два в третьей степени).
Чтобы число возвести в степень (она указывается справа от числа вверху), нужно его умножать на самого себя столько раз, какая цифра указана. Рассмотрим подробнее на примерах.
Не всегда получается возвести число в степень «в уме». Иногда посчитать сложно. Например, возвести 6 в 5 степень, быстро получится не у каждого. Чтобы всякий раз не считать столбиком, лучше выучить основные степени. Они представлены в таблице.
При возведении любого числа в степень 1, получится это же число. Если возводить число в нулевую степень, в ответе будет 1.
Рассмотрим несколько примеров со степенями.
Отдельное внимание обращаем на возведение в степень отрицательного числа. Если такое число возводить в четную степень (2; 4; 6 и т.д.), то получится положительный ответ, если в нечетную, то ответ со знаком минус.
Алгебра модули как решать
Модулем числа называют это же число, только без знака минус. Например: | − 9 | = 9. При этом если число изначально неотрицательное, то оно остается прежним.
Перейдем к простым примерам.
Логично предположить, что под модулем будет число 4. Также подойдет число -4, ведь из-под модуля все равно выйдет положительное. Так, корнями уравнения будут: x = 4 и x = − 4.
Из-под модуля не может выйти отрицательное число. Поэтому, если видим что-то похожее: Ι-8 + хΙ = -8, значит, корней не будет, так как уравнение заведомо нерешаемо.
Другие примеры описаны в видео.
Об Авторе
Смотрите также
Сочинение рассуждение на тему патриотизм, патриотизм сочинение ЕГЭ: ложный и истинный патриотизм, народный патриотизм роман Война и мир, примеры сочинений
Урок патриотизма в школе. Тема урока патриотизм: урок литературы патриотизм, патриотическое воспитание на уроках истории, урок мужества патриотизм. Дети герои Великой Отечественной войны Валя Котик, Валерий Волков, Марат Казей, Надя Богданова, Люся Герасименко, Вашкевич Лида, Валя Зенкина, Костя Кравчук, Вася Коробко, Витя Хоменко, Саша Ковалёв: краткая биография
Современный сценарий выпускного в школе: сценарий выпускного современный прикольный веселый, красивые платья на выпускной 11 класс, современные песни текст на выпускной
2 комментария
Спасибо большое очень помогли.
Огромное спасибо!А то учитель неможет нормально тему объяснить
[spoiler title=”источники:”]
http://interneturok.ru/lesson/algebra/7-klass/funkciya-yx2/graficheskoe-reshenie-uravneniy
[/spoiler]