Как составить график функции гипербола

Что такое гипербола? Как построить гиперболу? (Для школьников (7-11 классов)).

Математическая гипербола.

Функция заданная формулой (y=frac{k}{x}), где к неравно 0. Число k называется коэффициентом обратной пропорциональности.
Определение гиперболы.
График функции (y=frac{k}{x}) называют гиперболой. Где х является независимой переменной, а у — зависимой.

Что нужно знать, чтобы построить гиперболу?
Теперь обсудим свойства гиперболы:

1. Ветви гиперболы. Если k>o, то ветви гиперболы находятся в 1 и 3 четверти. Если k<0, то ветви гиперболы находятся во 2 и 4 четверти.
гипербола, где k>0 ветви гиперболы находятся в 1 и 3 четверти. гипербола, где k>0 ветви гиперболы находятся в 1 и 3 четверти

гипербола, где k<0 ветви гиперболы находятся во 2 и 4 четверти гипербола, где k<0 ветви гиперболы находятся во 2 и 4 четверти

2.Асимптоты гиперболы. Чтобы найти асимптоты гиперболы необходимо,иногда, уравнение гиперболы упростить. Рассмотрим на примере:
Пример №1:
$$y=frac{1}{x}$$
Знаменатель не может равняться 0, потому что на 0 делить нельзя, поэтому х не равен 0.
$$yneqcolor{red} {frac{1}{x}}+0$$
(frac{1}{x}) дробь отбрасываем, для того чтобы найти вторую асимптоту.
Остается простое число
y≠0 это вторая асимптота.
И так, асимптоты x≠0 и y≠0 в данном примере совпадают с осями координат OX и OY.
k=1, значит гипербола будет находится в первой и третьей четверти. k всегда находится в числители.
Построим примерный график гиперболы.
гипербола y=1/x

Пример №2:
$$y=frac{1}{x+2}-1$$
Находим первую асимптоту.
Знаменатель не может равняться 0, потому что на 0 делить нельзя, поэтому х+2 неравен 0.
х+2≠0
х≠-2 это первая асимптота

Находим вторую асимптоту.

$$y=color{red} {frac{1}{x+2}}-1$$

Дробь (color{red} {frac{1}{x+2}}) отбрасываем
Остается y≠ -1 это вторая асимптота.

Строим примерный график, отмечаем асимптоты (красным проведены прямые х≠-2 и y≠-1):
построим гиперболу

построить гиперболу

Пример №3:

$$begin{align*}
&y=frac{2+x}{1+x} \\
&y=frac{color{red} {1+1}+x}{1+x} \\
&y=frac{1}{1+x}+frac{1+x}{1+x}\\
&y=frac{1}{1+x}+1\\
&y=frac{1}{color{red} {1+x}}+1
end{align*}$$

Находим первую асимптоту.
Знаменатель не может равняться 0, потому что на 0 делить нельзя, поэтому 1+х неравен 0.
1+х≠0
х≠-1 это первая асимптота.

Находим вторую асимптоту.

$$y=color{red}{frac{1}{1+x}}+1$$

(color{red}{frac{1}{1+x}}) Дробь убираем.

Остается y≠1 это вторая асимптота.

Строим примерный график, отмечаем асимптоты (красным проведены прямые х≠-1 и y≠1):
построить гиперболу

построить гиперболу

3. У гиперболы есть центр симметрии относительно начала координат. Рассмотрим на примере:

$$y=frac{1}{x}$$

Возьмем точку А(1;1) с координатами, которая находится на графике у=1/х. На этом же графике лежит точка B(-1;-1). Видно, что точка А симметрична точке В относительна начала координат.
гипербола 1/х

4. Оси симметрии гиперболы. У гиперболы две оси симметрии. Рассмотрим пример:

$$y=frac{1}{x}$$

Первой осью симметрии является прямая y=x. Посмотрим точки (0,5;2) и (2;0,5) и еще точки (-0,5;-2) и (-2;-0,5). Эти точки расположены по разные стороны данной прямой, но на равных расстояниях от нее, они симметричны относительно этой прямой.

Вторая ось симметрии это прямая y=-x.

оси симметрии гиперболы

5. Гипербола нечетная функция.

$$f(-x)=frac{1}{-x}=-frac{1}{x}=-f(x)$$

6. Область определения гиперболы и область значения гиперболы. Область определения смотрим по оси х. Область значения смотрим по оси у. Рассмотрим на примере:

$$y=frac{-1}{x-1}-1$$

а) Находим первую асимптоту.
Знаменатель не может равняться 0, потому что на 0 делить нельзя, поэтому x-1 неравен 0.
x-1≠0
х≠1 это первая асимптота.

Находим вторую асимптоту.

$$y=color{red} {frac{-1}{x-1}}-1$$

Дробь (color{red} {frac{-1}{x-1}}) удаляем.

Остается y≠ -1 это вторая асимптота.

б) k=-1, значит ветви гиперболы будут находится во второй и четвертой четверти.

в) Возьмем несколько дополнительных точек и отметим их на графике.
х=0 y=0
x=-1 y=-0,5
x=2 y=-2
x=3 y=-1,5

г) Область определения смотрим по оси х. Графика гиперболы не существует по асимптоте х≠1, поэтому область определения будет находится
х ∈ (-∞;1)U(1;+∞).

д) Область значения смотрим по оси y. График гиперболы не существует по асимптоте y≠ -1, поэтому область значения будет находится
y ∈ (-∞;-1)U(-1;+∞).

е) функция возрастает на промежутке x ∈ (-∞;1)U(1;+∞).
график гиперболы

построить гиперболу

7. Убывание и возрастание функции гиперболы. Если k>0, функция убывающая. Если k<0 функция возрастающая.

8. Для более точного построения взять несколько дополнительных точек. Пример смотреть в пункте №6.

Подписывайтесь на канал на YOUTUBE и смотрите видео, подготавливайтесь к экзаменам по математике и геометрии с нами.
реклама

В данной публикации мы рассмотрим, что такое гипербола, приведем формулу, с помощью которой задается ее функция, а также на практических примерах разберем алгоритм построения данного вида графика.

  • Определение и функция гиперболы

  • Алгоритм построения гиперболы

    • Пример 1

    • Пример 2

Определение и функция гиперболы

Гипербола – это график функции обратной пропорциональности, которая в общем виде задается следующей формулой:

Функция обратной пропорциональности

Здесь:

  • x – независимая переменная;
  • k ≠ 0;
  • при k > 0 гипербола расположена в I и III четвертях координатной плоскости;
  • при k < 0 график находится во II и IV четвертях.

На рисунке ниже изображен пример гиперболы.

Пример гиперболы

  • Линии графика (зеленым цветом) называются его ветвями.
  • Оси абсцисс и ординат (Ox и Oy) являются асимптотами гиперболы, т.е. ветви бесконечно к ним приближаются, но никогда их не коснутся и не пересекут.
  • Ось симметрии (синим цветом) – это прямая:
    • y = x (при k > 0)
    • y = -x (при k < 0)

Смещение асимптот

Допустим у нас есть функция, заданная формулой:

Пример функции обратной пропорциональности

В этом случае:

  • x = a – это вертикальная асимптота графика (при a ≠ 0) вместо оси Oy;
  • y = b – горизонтальная асимптота (при b ≠ 0) вместо оси Ox.

Канонический вид уравнения гиперболы (координатные оси совпадают с осями графика):

Каноническое уравнение гиперболы

Алгоритм построения гиперболы

Пример 1

Дана функция y = 4/x. Построим ее график.

Решение

Так как k > 0, следовательно, гипербола будет находиться в I и III координатных четвертях.

Чтобы построить график, сначала нужно составить таблицу соответствия значений x и y. То есть мы берем конкретное значение x, подставляем его в формулу функции и получаем y.

x y Расчет y
0,5 8 4 / 0,5 = 8
1 4 4 / 1 = 4
2 2 4 / 2 = 2
4 1 4 / 4 = 1
8 0,5 4 / 8 = 0,5

Теперь отмечаем найденные точки на координатной плоскости и соединяем их плавной линией, которая будет стремиться к осям координат. В итоге получится ветвь гиперболы, расположенная в первой четверти.

Ветвь гиперболы

Чтобы построить ветвь в третьей четверти, вместо x в формулу подставляем -x. Так мы вычислим значения y.

x y Расчет y
-0,5 -8 4 / -0,5 = -8
-1 -4 4 / -1 = -4
-2 -2 4 / -2 = -4
-4 -1 4 / -4 = -1
-8 -0,5 4 / -8 = -0,5

Соединив полученные точки получаем следующий результат. На этом построение гиперболы завершено.

Пример гиперболы в 1 и 3 четвертях координатной плоскости

Пример 2

Рассмотренный выше пример был одним из самых простых (без смещения асимптот). Давайте усложним задачу и построим гиперболу, заданную функцией ниже:

Пример функции обратной пропорциональности

Решение

Так как k < 0, график будет располагаться во второй и четвертой четвертях.

Теперь определяемся с асимптотами, в нашем случае это x = 3 и y = 4 (см. информацию выше про их смещение).

Составим таблицу соответствия значений x и y.

x II четв. y II четв. x IV четв. y IV четв.
-1 4,5 3,5 0
1 5 4 2
2 6 5 3
2,5 8 7 3.5

Остается только нанести рассчитанные точки на координатную плоскость и соединить их плавными линиями.

Пример гиперболы во 2 и 4 четвертях координатной плоскости

  1. Определение обратной пропорциональности
  2. График обратной пропорциональности
  3. Примеры

Определение обратной пропорциональности

О прямоугольной системе координат на плоскости и графическом способе задания функций – см. §35-36 справочника для 7 класса.

Допустим, что у нас есть 1000 руб. Спрашивается, сколько тетрадей мы сможем купить, в зависимости от их цены. Составим таблицу:

Цена 1 тетради, руб.

25

50

100

125

200

250

500

Кол-во, шт.

40

20

10

8

5

4

2

Графическое представление полученных результатов:

Графическое представление полученных результатов

Результат вполне ожидаемый: чем больше цена, тем меньше то количество, которое мы можем себе позволить за определённую ограниченную сумму.

Можно привести и другие примеры, где зависимость между величинами будет аналогичной:

  • время, которое придётся потратить на дорогу между двумя городами (при заданном расстоянии), в зависимости от скорости;
  • длина фанерного листа в зависимости от ширины при заданной площади;
  • время заполнения бассейна (заданный объём) в зависимости от количества открытых труб, и т.п.

Если обобщить формулы, описывающие подобные зависимости, то получаем:

$${left{ begin{array}{c} -infty lt x lt +infty – аргумент, quad любое quad действительное quad число \ k = const neq 0-параметр, quad константа \ y = frac{k}{x} – функция end{array} right.}$$

Функция такого вида называется обратной пропорциональностью.

Если $k gt 0$, то чем больше x, тем меньше y – функция убывает.

Если $k lt 0$, то чем больше x, тем больше y – функция возрастает.

(Сравните с прямой пропорциональностью – см. §37 справочника для 7 класса)

График обратной пропорциональности

Графиком обратной пропорциональности является кривая, которую называют гиперболой.

Чтобы построить гиперболу, нужно 1) составить таблицу, в которой рассчитать значения y=k/x для некоторых значений x, 2) отметить полученные точки на координатной плоскости и 3) соединить их плавной кривой.

Например: $y = frac{8}{x}$

График обратной пропорциональности

Свойства графика обратной пропорциональности:

  • Гипербола не пересекает осей координат, приближаясь к осям, она изгибается и «убегает» на бесконечность.
  • У гиперболы две ветки. Если $k gt 0$, ветки лежат в 1 и 3 четверти, если $k lt 0$, во 2 и 4 четверти.
  • Ветки гиперболы симметричны относительно начала координат. Поэтому достаточно рассчитать одну ветку, а вторую начертить как отображение первой.
  • Ветки гиперболы симметричны относительно биссектрис соответствующих четвертей: при $k gt 0$ – относительно биссектрисы 1 и 3 четверти, при $k gt 0$ – 2 и 4 четверти.

Примеры

Пример 1. Постройте графики следующих функций

Пример 1 a)

Пример 1 б)

Пример 2. Постройте на одном чертеже графики функций

$$ y = frac{1}{x}, y = frac{3}{x}, y = frac{-3}{x} $$

Сделайте выводы.

x

$frac{1}{x}$

$frac{3}{x}$

$- frac{3}{x}$

Пример 2

Чем больше k по абсолютной величине, тем дальше от начала координат пересечение графика с биссектрисой соответствующей четверти («изгиб» графика).

При изменении знака k на противоположный график отражается относительно осей координат.

Пример 3. Постройте на одном чертеже графики функций

$$ y = frac{x}{3}, y = frac{3}{x} $$

Решите с помощью графиков уравнение: $ frac{x}{3} = frac{3}{x}$.

При каких x выполняется неравенство $ frac{x}{3} gt frac{3}{x}$?

Пример 3

Уравнение $frac{x}{3} = frac{3}{x}$ имеет два корня: $x_{1,2} = pm3$.

Неравенство $frac{x}{3} gt frac{3}{x}$ выполняется при $ x in Bbb (-3;0) bigcup (3;+infty)$.

Обратная пропорциональность — коротко о главном

Определение:

Функция, описывающая обратную пропорциональность, – это функция вида ( displaystyle y=frac{k}{x-a}+b ), где ( kne 0), ( xne 0) и ( xne а)

По-другому эту функцию называют обратной зависимостью.

Область определения и область значений функции:

( Dleft( y right)=left( -infty ;0 right)cup left( 0;+infty right)) или, что то же самое, ( Dleft( y right)=mathbb{R}backslash left{ 0 right})

( Eleft( y right)=left( -infty ;0 right)cup left( 0;+infty right)) или ( Eleft( y right)=mathbb{R}backslash left{ 0 right}).

График обратной пропорциональности (зависимости) – гипербола.

Коэффициент ( displaystyle k)

( displaystyle k) – отвечает за «пологость» и направление графика. Чем больше этот коэффициент, тем дальше от начала координат располагается гипербола, и, следовательно, она менее круто «поворачивает» (см. рисунок).

Знак коэффициента ( displaystyle k) влияет на то, в каких четвертях расположен график:

если ( displaystyle k>0), то ветви гиперболы расположены в ( displaystyle I) и ( displaystyle III) четвертях;

если ( displaystyle k<0), то во ( displaystyle II) и ( displaystyle IV).

Коэффициент ( displaystyle a)

Если внимательно посмотреть на знаменатель, видим, что ( displaystyle a) – это такое число, которому не может равняться ( displaystyle x).

То есть ( x=a) – это вертикальная асимптота, то есть вертикаль, к которой стремится график функции

Коэффициент ( b) 

Число ( b) отвечает за смещение графика функции вверх на величину ( b), если ( b>0), и смещение вниз, если ( b<0).

Следовательно, ( y=b) – это горизонтальная асимптота.

Алгоритм построения графика функции ( displaystyle y=frac{k}{x-a}+b)

  1. Определяем коэффициенты ( displaystyle k), ( displaystyle a) и ( displaystyle b).
  2. Строим график функции ( displaystyle y=frac{k}{x}) (сначала по 3-4 точкам правую ветвь, потом симметрично рисуем левую ветвь).
  3. График должен быть сдвинут вправо на ( displaystyle a). Но проще двигать не график, а оси, так что ось ( displaystyle Oy) сдвигаем влево на ( displaystyle a).
  4. График должен быть сдвинут вверх на ( displaystyle b). Но проще двигать не график, а оси, так что ось ( displaystyle Ox) сдвигаем вниз на ( displaystyle b).
  5. Старые оси (прямые, которые служили нам осями в пункте 2) оставляем в виде пунктирных линий. Это теперь просто вертикальная и горизонтальная асимптоты.

Что такое функция

Ты помнишь, что функция – это определенного рода зависимость?

Если ты еще не читал тему «Функции», настоятельно рекомендую бросить все и прочитать, ведь нельзя изучать какую-либо конкретную функцию, не понимая, что это такое – функция.

Также очень полезно перед началом этой темы освоить две более простые функции: линейную и квадратичную.

Там ты закрепишь понятие функции и научишься работать с коэффициентами и графиками.

Ну и на всякий случай немного повторим…

Функция – это правило, по которому каждому элементу одного множества (аргументу) ставится в соответствие некоторый (единственный!) элемент другого множества (множества значений функции).

То есть, если у тебя есть функция ( y=fleft( x right)), это значит что каждому допустимому значению переменной ( x) (которую называют «аргументом») соответствует одно значение переменной ( y) (называемой «функцией»).

Что значит «допустимому значению»?

Если не можешь ответить на этот вопрос, еще раз вернись к теме «Функции»!

Все дело в понятии «область определения»: для некоторых функций не все аргументы можно подставить в зависимость. Например, для функции ( y=sqrt{x}) отрицательные значения аргумента ( x) – недопустимы.

Функция, описывающая обратную зависимость

Это функция вида ( displaystyle y=frac{k}{x}), где ( kne 0).

По-другому ее называют обратной пропорциональностью: увеличение аргумента вызывает пропорциональное уменьшение функции.

Давай определим область определения. Чему может быть равен ( x)? Или, по-другому, чему он не может быть равен?

Единственное число, на которое нельзя делить – это ( 0), поэтому ( xne 0):

( Dleft( y right)=left( -infty ;0 right)cup left( 0;+infty right))

или, что то же самое,

( Dleft( y right)=mathbb{R}backslash left{ 0 right})

Такая запись означает, что ( x) может быть любым числом, кроме ( 0).

  • Знак «( mathbb{R})» обозначает множество действительных чисел, то есть всех возможных чисел.
  • Знаком «( backslash )» обозначается исключение чего-нибудь из этого множества (аналог знака «минус»).
  • Число ( 0) в фигурных скобках означает просто число ( 0).

Получается, что из всех возможных чисел мы исключаем ( 0)).

Множество значений функции, оказывается, точно такое же: ведь если ( kne 0), то на что бы мы его не делили, ( 0) не получится:

( Eleft( y right)=left( -infty ;0 right)cup left( 0;+infty right)) или ( Eleft( y right)=mathbb{R}backslash left{ 0 right}).

Также возможны некоторые вариации формулы ( y=frac{k}{x}). Например, ( y=frac{k}{x+a}) – это тоже функция, описывающая обратную зависимость.

Определи самостоятельно область определения и область значений этой функции. Должно получиться:

  • ( Dleft( y right)=left( -infty ;-a right)cup left( -a;+infty right))
  • ( Eleft( y right)=left( -infty ;0 right)cup left( 0;+infty right)).

Давай посмотрим на такую функцию: ( displaystyle y=frac{x-5}{{{x}^{2}}-25}). 

Является ли она обратной зависимостью?

На первый взгляд сложно сказать: ведь при увеличении ( x) увеличивается и знаменатель дроби, и числитель, так что непонятно, будет ли функция уменьшаться, и если да, то будет ли она уменьшаться пропорционально?

Чтобы понять это, нам необходимо преобразовать выражение таким образом, чтобы в числителе не было переменной:

( displaystyle y=frac{x-5}{{{x}^{2}}-25}=frac{x-5}{left( x-5 right)left( x+5 right)}=frac{1}{x+5},text{ }xne 5).

Действительно, мы получили обратную зависимость, но с оговоркой: ( xne 5).

Почему так? А потому, что выражение ( left( x-5 right)) было в исходном выражении в знаменателе, поэтому если мы возьмём значение ( x=5) и подставим его в исходную функцию (а ведь именно её нам нужно исследовать), то что мы получим?

Ноль, делённый на ноль. Но ведь на ноль нельзя делить ничего, даже другой ноль. Поэтому ( x) никак не может быть равен ( 5).

Но почему тогда мы также не пишем ( xne -5)? Оно ведь тоже в знаменателе!

А всё потому, что оно как было в знаменателе, так там и осталось, следовательно мы и так видим, что такое значение икса невозможно.

А поэтому — зачем лишний раз писать? Да-да, математики — народ ленивый, без надобности напрягаться не станут:)

Решения

Пример 1

( displaystyle y=1-frac{3}{x+2})

Пример 2

Здесь нужно вспомнить, как квадратный трехчлен раскладывается на множители (это подробно описано в теме «Разложение на множители»).

Напомню, что для этого надо найти корни соответствующего квадратного уравнения: ( displaystyle {{x}^{2}}+4{x}-5=0).

Я найду их устно с помощью теоремы Виета: ( displaystyle {{x}_{1}}=-5), ( displaystyle {{x}_{2}}=1). Как это делается? Ты можешь научиться этому, прочитав тему «Квадратные уравнения».

Итак, получаем: ( displaystyle {{x}^{2}}+4{x}-5=left( x+5 right)left( x-1 right)), следовательно:

( displaystyle y=frac{x+5}{left( x+5 right)left( x-1 right)}=frac{1}{x-1},text{ }xne -5)

Пример 3

Ты уже попробовал решить сам? В чем загвоздка?

Наверняка в том, что в числителе у нас ( displaystyle 2x), а в знаменателе – просто ( displaystyle x).

Это не беда. Нам нужно будет сократить на ( displaystyle left( x+2 right)), поэтому в числителе следует вынести ( displaystyle 2) за скобки (чтобы в скобках ( displaystyle x) получился уже без коэффициента):

( displaystyle y=frac{2{x}-3}{x+1}=frac{2left( x-frac{3}{2} right)}{x+1}=2cdot frac{x-1,5}{x+1}=2cdot frac{x+1-1-1,5}{x+1}=…) дальше сам.

Ответ: ( displaystyle y=2-frac{5}{x+1}).

График обратной пропорциональности

Как всегда, начнем с самого простого случая: ( displaystyle y=frac{1}{x}).

Составим таблицу.

Таблица обратной пропорциональности (зависимости)

( displaystyle mathbf{x}) ( displaystyle -3) ( displaystyle -2) ( displaystyle -1) ( displaystyle -0,5) ( displaystyle 0,5) ( displaystyle 1) ( displaystyle 2) ( displaystyle 3) ( displaystyle 4)
( displaystyle mathbf{y}) ( displaystyle -frac{1}{3}) ( displaystyle -frac{1}{2}) ( displaystyle -1) ( displaystyle -2) ( displaystyle 2) ( displaystyle ;1) ( displaystyle frac{1}{2}) ( displaystyle frac{1}{3}) ( displaystyle frac{1}{4})

Нарисуем точки на координатной плоскости:

Теперь их надо плавно соединить, но как?

Видно, что точки в правой и левой частях образуют будто бы несвязанные друг с другом кривые линии. Так оно и есть.

Это график гиперболы и выглядит он так:

Этот график называется «гипербола» (есть что-то похожее на «параболу» в этом названии, правда?). Как и у параболы, у гиперболы две ветки, только они не связаны друг с другом.

Каждая из них стремится своими концами приблизиться к осям ( displaystyle Ox) и ( displaystyle Oy), но никогда их не достигает. Если посмотреть на эту же гиперболу издалека, получится такая картина:

Оно и понятно: так как ( displaystyle xne 0), график не может пересекать ось ( displaystyle Oy). Но и ( displaystyle yne 0), так что график никогда не коснется и оси ( displaystyle Ox).

Ну что же, теперь посмотрим на что влияют коэффициенты.

На что влияют коэффициенты

Рассмотрим такие функции:

( displaystyle y=frac{1}{x};text{ }y=frac{2}{x};text{ }y=frac{4}{x};text{ }y=-frac{1}{x};text{ }y=-frac{3}{x}):

Ух ты, какая красота!

Все графики построены разными цветами, чтобы легче было их друг от друга отличать.

Итак, на что обратим внимание в первую очередь?

Например, на то, что если у функции перед дробью стоит минус, то график переворачивается, то есть симметрично отображается относительно оси ( displaystyle Ox).

Второе: чем больше число в знаменателе, тем дальше график «убегает» от начала координат.

А что, если функция выглядит сложнее, например, ( displaystyle y=frac{1}{x-1}+2)?

В этом случае гипербола будет точно такой же, как обычная ( displaystyle y=frac{1}{x}), только она немного сместится. Давай думать, куда?

Чему теперь не может быть равен ( x)? Правильно, ( xne 1). Значит, график никогда не достигнет прямой ( x=1).

А чему не может быть равен ( y)? Теперь ( yne 2). Значит, теперь график будет стремиться к прямой ( y=2), но никогда ее не пересечет.

Итак, теперь прямые ( x=1) и ( y=2) выполняют ту же роль, которую выполняют координатные оси для функции ( displaystyle y=frac{1}{x}).

Такие прямые называются асимптотами (линии, к которым график стремится, но не достигает их):

Более подробно о том, как строятся такие графики, мы выучим чуть позже.

А теперь попробуй решить несколько примеров для закрепления.

Обратная пропорциональность в жизни

Где же нам встречается такая функция на практике? Примеров множество. Самый распространенный – это движение: чем больше скорость, с которой мы движемся, тем меньшее время нам потребуется, чтобы преодолеть одно и то же расстояние.

И правда, вспомним формулу скорости: ( displaystyle v=frac{S}{t}), где ( v) – скорость, ( t) – время в пути, ( S) – расстояние (путь).

Отсюда можно выразить время: ( displaystyle t=frac{S}{v})

Пример:

Человек едет на работу со средней скоростью ( 40) км/ч, и доезжает за ( 1) час. Сколько минут он потратит на эту же дорогу, если будет ехать со скоростью ( 60) км/ч?

Решение:

Вообще, такие задачи ты уже решал в 5 и 6 классе. Ты составлял пропорцию:

( displaystyle 60) км/ч – ( 60) мин.

( displaystyle 60) км/ч – ( x) мин.

Далее ты определял, что это обратная пропорциональность, так как чем больше скорость, тем меньше время. Значит, чтобы решить эту пропорцию, нужно поделить числа «крест-накрест»:

( displaystyle frac{40}{x}=frac{60}{60}text{ }Rightarrow text{ }x=40)(мин).

То есть понятие обратной пропорциональности тебе уже точно знакомо. Вот и вспомнили. А теперь то же самое, только по-взрослому: через функцию.

Функция (то есть зависимость) времени в минутах от скорости:

( displaystyle tleft( v right)=frac{S}{v}).

Известно, что ( tleft( 40 right)=60), тогда:

( frac{S}{40}=60text{ }Rightarrow text{ }S=40cdot 60=2400).

Нужно найти ( tleft( 60 right)):

( displaystyle tleft( 60 right)=frac{2400}{60}=40) (мин).

Теперь придумай сам несколько примеров из жизни, в которых присутствует обратная пропорциональность.

Придумал? Молодец, если да. Удачи!

Принципы построения графика обратной пропорциональности (гиперболы)

Теперь давай научимся строить простейшую гиперболу – ( displaystyle y=frac{k}{x}).

Достаточно помнить, как она выглядит, и тогда нам хватит всего трех-четырех точек.

Например, построим гиперболу ( displaystyle y=frac{3}{x}).

Составим таблицу из ( 4) точек, которые принадлежат одной ветке (например, правой):

( x) ( frac{1}{2}) ( displaystyle 1) ( displaystyle 3) ( displaystyle 6)
( y) ( displaystyle 6) ( displaystyle 3) ( displaystyle 1) ( frac{1}{2})

Отмечаем точки на рисунке:

Проводим через них плавную линию, которая краями приближается к осям:

Это одна ветвь гиперболы

Проверить правильность построения этой кривой можно так: она должна быть симметрична относительно биссектрисы угла между осями координат:

Отлично, осталось вспомнить, что собой представляет вторая ветвь?

Это точно такая же кривая, расположенная симметрично относительно начала координат. То есть как будто оси теперь направлены не снизу вверх и слева направо, а наоборот: сверху вниз и справа налево, и мы рисуем ту же самую ветвь гиперболы.

Вот:

Еще один полезный факт.

Посмотри на красные точки на графике. Видно, что их абсцисса совпадает с ординатой. Так вот, эти абсцисса с ординатой равны ( sqrt{k}) для правой ветви гиперболы, и ( -sqrt{k}) для левой.

Для функций, у которых ( k) – точный квадрат (например, ( 1), ( 4) или ( displaystyle frac{1}{4})), эту точку, относительно которой ветвь гиперболы симметрична, будет очень легко поставить.

В этом случае достаточно даже трех точек, чтобы построить график.

Например, построим график функции ( displaystyle y=frac{4}{x})

Как и в прошлый раз, начнем с правой ветви.

Точка симметрии: ( displaystyle x=y=2). Выберем еще одну точку, например, ( displaystyle x=1), ( displaystyle y=4). У третьей точки координаты будут наоборот: ( displaystyle x=4), ( displaystyle y=1).

Рисуем:

И теперь симметрично отображаем эту ветвь в третью координатную четверть:

Теперь выясним, что будет, если ( displaystyle k<0)?

Очень просто: если есть график функции с таким же по величине, но положительным ( displaystyle k), то нужно просто отразить его относительно оси ( displaystyle Ox)

То есть правая ветвь теперь будет ниже оси ( displaystyle Ox) (в ( displaystyle IV) четверти), а левая – выше (в ( displaystyle III) четверти).

Принцип построения же останется прежним:

Ну что же, осталось объединить все то, что мы уже выяснили в один алгоритм:

Свойства гиперболы

1) Область определения и область значений

По аналитическому заданию функции видно, что х ≠-a, поскольку знаменатель дроби не может ровняться нулю. Таким образом получим:

D(f)=(-∞;-а) U (-a;+∞)

Область значений

Е(f)=(-∞;+∞)

2) Нули функции

Если b=0, то график функции не пересекает ось ОХ;

Если b≠0, то гипербола имеет одну точку пересечения с ОХ:*

x=-(k+ab)/b

3) Промежутки знакопостоянства

Рассмотрим только 2 простых случая, остальные случаи вы можете рассмотреть аналитически самостоятельно по алгоритму из раздела Свойства функций -> Знакопостоянство

Случай 1: a=0, b=0, k>0

f(x)>0, при x ∈ (0; +∞)

f(x)<0, при x ∈ (-∞;0)

Случай 1: a=0, b=0, k<0

f(x)<0, при x ∈ (0; +∞)

f(x)>0, при x ∈ (-∞;0)

4) Промежутки монотонности

Аналогично с промежутками знакопостоянства рассмотрим только 2 случая

Случай 1: a=0, b=0, k>0

Функция убывает при

x ∈ (-∞;0) U (0; +∞)

Функция возрастает при

x ∈ (-∞;0) U (0; +∞)

5) Четность и нечетность

Функция является нечетной при a=0, b=0, то есть если имеет вид y=k/x

Добавить комментарий