Как составить химическое уравнение 8 класс соли

Перед изучением этого раздела рекомендую прочитать следующую статью:

Классификация неорганических веществ

Соли  это сложные вещества, которые состоят из катионов металлов и анионов кислотных остатков.

Классификация солей

Получение солей

1. Соли можно получить взаимодействием кислотных оксидов с основными. 

кислотный оксид + основный оксид = соль

Например, оксид серы (VI) реагирует с оксидом натрия с образованием сульфата натрия:

SO3  +  Na2O  →  Na2SO4

2. Взаимодействие кислот с основаниями и амфотерными гидроксидами. При этом щелочи взаимодействуют с любыми кислотами: и сильными, и слабыми. 

Щелочь + любая кислота = соль + вода

Например, гидроксид натрия реагирует с соляной кислотой:

HCl  +  NaOH → NaCl  +  H2O

При взаимодействии щелочей с избытком многоосновной кислоты образуются кислые соли.

Например, гидроксид калия взаимодействует с избытком фосфорной кислоты с образованием гидрофосфата калия или дигидрофосфата калия:

H3PO4  +  KOH  →  KH2PO4  +  H2O

H3PO4  +  2KOH  →  K2HPO4  +  2H2O

Нерастворимые основания реагируют только с растворимыми кислотами.

Нерастворимое основание + растворимая кислота = соль + вода

Например, гидроксид меди (II) реагирует с серной кислотой:

H2SO4  +  Cu(OH)2 → CuSO4  +  2H2O

Все амфотерные гидроксиды — нерастворимые. Следовательно, они ведут себя как нерастворимые основания при взаимодействии с кислотами:

Амфотерный гидроксид + растворимая кислота = соль + вода

Например, гидроксид цинка (II) реагирует с соляной кислотой:

2HCl  +  Zn(OH)2 → ZnCl2  +  2H2O

Также соли образуются при взаимодействии аммиака с кислотами (аммиак проявляет основные свойства).

Аммиак + кислота = соль

Например, аммиак реагирует с соляной кислотой:

NH3  +  HCl → NH4Cl

3. Взаимодействие кислот с основными оксидами и амфотерными оксидами. При этом растворимые кислоты  взаимодействуют с любыми основными оксидами.

Растворимая кислота + основный оксид = соль + вода

Растворимая кислота + амфотерный оксид = соль + вода

Например, соляная кислота реагирует с оксидом меди (II):

2HCl  +  CuO   →  CuCl2  +  H2O

4. Взаимодействие оснований с кислотными оксидами. Сильные основания взаимодействуют с любыми кислотными оксидами.

Щёлочь + кислотный оксид → соль + вода

Например, гидроксид натрия взаимодействует с углекислым газом с образованием карбоната натрия:

2NaOH  +  CO2  →  Na2CO3  +  H2O

При взаимодействии щелочей с избытком кислотных оксидов, которым соответствуют многоосноосновные кислоты, образуются кислые соли.

Например, при взаимодействии гидроксида натрия с избытком углекислого газа образуется гидрокарбонат натрия:

NaOH  +  CO2  →  NaHCO3

Нерастворимые основания взаимодействуют только с кислотными оксидами сильных кислот.

Например, гидроксид меди (II) взаимодействует с оксидом серы (VI), но не вступает в реакцию с углекислым газом:

Cu(OH)2  +  CO2  ≠  

Cu(OH)2  +  SO3  →  CuSO4  +  H2O  

5. Соли образуются при взаимодействии кислот с солями. Нерастворимые соли взаимодействуют только с более сильными кислотами (более сильная кислота вытесняет менее сильную кислоту из соли). Растворимые соли взаимодействуют с растворимыми кислотами, если в продуктах реакции есть осадок, газ или вода или слабый электролит.

Например: карбонат кальция CaCO3  (нерастворимая соль угольной кислоты) может реагировать с более сильной серной кислотой.

CaCO3 + H2SO4  →  CaSO4 + 2H2O + CO2

Силикат натрия (растворимая соль кремниевой кислоты) взаимодействует с соляной кислотой, т.к. в ходе реакции образуется нерастворимая кремниевая кислота:

Na2SiO3 + 2HCl  →  H2SiO3↓ + 2NaCl

6. Соли можно получить окислением оксидов, других солей, металлов и неметаллов (в щелочной среде) в водном растворе кислородом или другими окислителями.

Например, кислород  окисляет сульфит натрия до сульфата натрия:

2Na2SO3  + O2  →  2Na2SO4

7. Еще один способ получения солейвзаимодействие металлов с неметаллами. Таким способом можно получить только соли бескислородных кислот.

Например, сера взаимодействует с кальцием с образованием сульфида кальция:

Ca  + S  →  CaS

8. Соли образуются при растворении металлов в кислотахМинеральные кислоты и кислоты-окислители (азотная кислота, серная концентрированная кислота) реагируют с металлами по-разному.

Кислоты-окислители реагируют с металлами с образованием продуктов восстановления азота и серы. Водород в таких реакциях не выделяется! 

Минеральные кислоты реагируют по схеме: 

металл + кислота → соль + водород

При этом с кислотами реагируют только металлы, расположенные в ряду активности левее водорода. А образуется соль металла с минимальной степенью окисления.

Например, железо растворяется в соляной кислоте с образованием хлорида железа (II):

Fe + 2HCl → FeCl2  + H2

9. Соли образуются при взаимодействии щелочей с металлами в растворе и расплаве. При этом протекает окислительно-восстановительная реакция, в растворе образуется комплексная соль и водород, в расплаве — средняя соль и водород.

! Обратите внимание! С щелочами в растворе реагируют только те металлы, у которых оксид с минимальной положительной степенью окисления металла амфотерный!

Например, железо не реагирует с раствором щёлочи, оксид железа (II) — основный. А алюминий растворяется в водном растворе щелочи, оксид алюминия — амфотерный:

2Al + 2NaOH + 6H2+O = 2Na[Al+3(OH)4] + 3H20

10. Соли образуются при взаимодействии щелочей с неметаллами. При этом протекают окислительно-восстановительные реакции. Как правило, неметаллы диспропорционируют в щелочах. Не реагируют с щелочами кислород, водород, азот, углерод и инертные газы (гелий, неон, аргон и др.):

NaOH +О2 ≠

NaOH +N2 ≠

NaOH +C ≠

Сера, хлор, бром, йод, фосфор и другие неметаллы диспропорционируют в щелочах (т.е. самоокисляются-самовосстанавливаются).

Например, хлор при взаимодействии с холодной щелочью переходит в степени окисления -1 и +1:

2NaOH + Cl20 = NaCl + NaOCl+ + H2O

Хлор при взаимодействии с горячей щелочью переходит в степени окисления -1 и +5:

6NaOH + Cl20 = 5NaCl + NaCl+5O3 + 3H2O

Кремний окисляется щелочами до степени окисления +4.

Например, в растворе:

2NaOH + Si0 + H2+O= Na2Si+4O3 + 2H20

Фтор окисляет щёлочи:

2F20 + 4NaO-2H = O20 + 4NaF + 2H2O

Более подробно про эти реакции можно прочитать в статье Окислительно-восстановительные реакции.

11. Соли образуются при взаимодействии солей с неметалами. При этом протекают окислительно-восстановительные реакции. Один из примеров таких реакций — взаимодействие галогенидов металлов с другими галогенами. При этом более активный галоген вытесняет менее активный из соли.

Например, хлор взаимодействует с бромидом калия:

2KBr + Cl2 = 2KCl + Br2 

Но не реагирует с фторидом калия:

KF +Cl2

Химические свойства солей

1. В водных растворах соли диссоциируют на катионы металлов Ме+ и анионы кислотных остатков. При этом растворимые соли диссоциируют почти полностью, а нерастворимые соли практически не диссоциируют, либо диссоциируют только частично.

Например, хлорид кальция диссоциирует почти полностью:

CaCl2  →  Ca2+  +  2Cl

Кислые и основные соли диссоциируют cтупенчато. При диссоциации кислых солей сначала разрываются ионные связи металла с кислотными остатком, затем диссоциирует кислотный остаток кислой соли на катионы водорода и анион кислотного остатка.

Например, гидрокарбонат натрия диссоциирует в две ступени:

 NaHCO3 → Na+ + HCO3

HCO3  → H+ +  CO32–

Основные соли также диссоциируют ступенчато.

Например, гидроксокарбонат меди (II) диссоциирует в две ступени:

 (CuOH)2CO3 → 2CuOH+ + CO32–

CuOH+ → Cu2+ +  OH

Двойные соли диссоциируют в одну ступень.

Например, сульфат алюминия-калия диссоциирует в одну ступень:

 KAl(SO4)2 → K+ + Al3+ + 2SO42–

Смешанные соли диссоциируют также одноступенчато.

Например, хлорид-гипохлорит кальция диссоциирует в одну ступень:

 CaCl(OCl) → Ca2+ + Cl + ClO

Комплексные соли диссоциируют на комплексный ион и ионы внешней сферы.

Например, тетрагидроксоалюминат калия распадается на ионы калия и тетрагидроксоалюминат-ион:

 K[Al(OH)4] → K+ + [Al(OH)4]

2. Соли взаимодействуют с кислотными и амфотерными оксидами. При этом менее летучие оксиды вытесняют более летучие при сплавлении

соль1 + амфотерный оксид = соль2 + кислотный оксид

соль1 + твердый кислотный оксид = соль2 + кислотный оксид

соль + основный оксид ≠ 

Например, карбонат калия взаимодействует с оксидом кремния (IV)  с образованием силиката калия и углекислого газа:

K2CO3 + SiO2 → K2SiO3 + CO2

Карбонат калия также взаимодействует с оксидом алюминия  с образованием алюмината калия и углекислого газа:

K2CO3 + Al2O3 → 2KAlO2 + CO2

3. Соли взаимодействуют с кислотами. Закономерности взаимодействия кислот с солями уже рассмотрены в данной статье в разделе «Получение солей».

4. Растворимые соли взаимодействуют с щелочами. Реакция возможна, только если образуется газ, осадок, вода или слабый электролит, поэтому с щелочами взаимодействуют, как правило, соли тяжелых металлов или соли аммония.

Растворимая соль + щелочь  = соль2 + основание

Например, сульфат меди (II) взаимодействует с гидроксидом калия, т.к. образуется осадок гидроксида меди (II):

CuSO4 + 2KOH  →  Cu(OH)2 + K2SO4

Хлорид аммония взаимодействует с гидроксидом натрия:

(NH4)2SO4 + 2KOH  →  2NH3↑ + 2H2O + K2SO4

Кислые соли взаимодействуют с щелочами с образованием средних солей.

Кислая соль + щелочь  = средняя соль + вода

Например, гидрокарбонат калия взаимодействует с гидроксидом калия:

KHCO3 + KOH  →  K2CO3 + H2O

5. Растворимые соли взаимодействуют с солями. Реакция возможна, только если обе соли растворимые, и в результате реакции образуется осадок.

Растворимая соль1 + растворимая соль= соль3 + соль4

Растворимая соль + нерастворимая соль ≠ 

Например, сульфат меди (II) взаимодействует с хлоридом бария, т.к. образуется осадок сульфата бария:

CuSO4 + BaCl2  →  BaSO4↓+ CuCl2

Некоторые кислые соли взаимодействуют с кислыми солями более слабых кислот. При этом более сильные кислоты вытесняют более слабые:

Кислая соль1 + кислая соль= соль3 + кислота

Например, гидрокарбонат калия взаимодействует с гидросульфатом калия:

KHSO+ KHCO3 = H2O + CO2↑ + K2SO4

Некоторые кислые соли могут реагировать со своими средними солями. 

Например, фосфат калия взаимодействует с дигидрофосфатом калия с образованием гидрофосфата калия:

K3PO+ KH2PO4 = 2K2HPO4

6. Cоли взаимодействуют с металлами. Более активные металлы (расположенные левее в ряду активности металлов) вытесняют из солей менее активные. 

Например, железо вытесняет медь из раствора сульфата меди (II):

CuSO4 + Fe = FeSO4 + Cu

А вот серебро вытеснить медь не сможет:

CuSO4 + Ag ≠ 

Соль1 + металл= соль2 + металл2

Обратите внимание! Если реакция протекает в растворе, то добавляемый металл не должен реагировать с водой в растворе. Если мы добавляем в раствор соли щелочной или щелочноземельный металл, то этот металл будет реагировать  преимущественно с водой, а с солью будет реагировать незначительно.

Например, при добавлении натрия в раствор хлорида цинка натрий будет взаимодействовать с водой: 

2H2O + 2Na = 2NaOH + H2

Образующийся гидроксид натрия, конечно, будет реагировать с хлоридом цинка:

ZnCl2 + 2NaOH = 2NaCl + Zn(OH)2

Но сам-то натрий с хлоридом цинка, таким образом, взаимодействовать напрямую не будет!

ZnCl2(р-р) + Na ≠ 

А вот в расплаве эта реакция при определенных условиях уже может протекать, так как в расплаве никакой воды нет.  

ZnCl2(р-в) + 2Na = 2NaCl + Zn

И еще один нюанс. Чтобы получить расплав, соль необходимо нагреть. Но многие соли при нагревании разлагаются.  И реагировать с металлом, естественно, при этом не могут. Таким образом, реагировать с металлами в расплаве могут только те соли, которые не разлагаются при нагревании. А разлагаются при нагревании почти все нитраты, нерастворимые карбонаты и некоторые другие соли.

Например, нитрат меди (II) в расплаве не реагирует с железом, так как при нагревании нитрат меди разлагается: 

2Cu(NO3)= 2CuO + 4NO2 + O2

Образующийся оксид меди, конечно, будет реагировать с железом:

CuO + Fe = FeO + Cu

Но сам-то нитрат меди, получается, с железом реагировать напрямую не будет!

Cu(NO3)2, (расплав) + Fe ≠ 

При добавлении меди (Cu) в раствор соли менее активного металла – серебра (AgNO3) произойдет химическая реакция:

2AgNO3 + Cu = Cu(NO3)2 + 2Ag

При добавлении железа (Fe) в  раствор соли меди (CuSO4) на железном гвозде появился розовый налет металлической меди:

CuSO4  + Fe = FeSO4 + Cu

При добавлении цинка в раствор нитрата свинца (II) на цинке образуется слой металлического свинца:

Pb(NO3)2  + Zn = Pb + Zn (NO3)2

7. Некоторые соли при нагревании разлагаются

Соли, в составе которых есть сильные окислители, разлагаются с окислительно-восстановительной реакцией. К таким солям относятся:

  • Нитрат, дихромат, нитрит аммония:

NH4NO3 → N2O + 2H2O

NH4NO2 → N2 + 2H2O

(NH4)2Cr2O7  → N2 + 4H2O + Cr2O3

  • Все нитраты:

2AgNO→ 2Ag +2NO2 + O2

  • Галогениды серебра (кроме AgF):

2AgCl  → 2Ag + Cl2

Некоторые соли разлагаются без изменения степени окисления элементов. К ним относятся:

  • Карбонаты и гидрокарбонаты:

MgСO3MgO + СО2

2NaНСО3Na2СО3 + СО2 + Н2О

  • Карбонат, сульфат, сульфит, сульфид, хлорид, фосфат аммония:

NH4Cl NH3 + HCl

(NH4)2CO32NH3 + CO2 + H2O

(NH4)2SO4 NH4HSO4 + NH3

7. Соли проявляют восстановительные свойства. Как правило, восстановительные свойства проявляют либо соли, содержащие неметаллы с низшей степенью окисления, либо соли, содержащие неметаллы или металлы с промежуточной степенью окисления.

Например, йодид калия окисляется хлоридом меди (II):

4KI + 2Cu+2 Cl2 → 4KCl  +  2Cu+l + I20

8. Соли проявляют и окислительные свойства. Как правило, окислительные свойства проявляют соли, содержащие атомы металлов или неметаллов с высшей или промежуточной степенью окисления. Окислительные свойства некоторых солей рассмотрены в статье Окислительно-восстановительные реакции.

1. Соли являются электролитами.

В водных растворах соли диссоциируют на положительно заряженные ионы (катионы) металлов и отрицательно заряженные ионы (анионы) кислотных остатков.

Например, при растворении кристаллов хлорида натрия в воде положительно заряженные ионы натрия и отрицательно заряженные ионы хлора, из которых образована кристаллическая решётка этого вещества, переходят в раствор:

NaCl→Na++Cl−

.

При электролитической диссоциации сульфата алюминия образуются положительно заряженные ионы алюминия и отрицательно заряженные сульфат-ионы:

Al2SO43→2Al3++3SO42−

.

2. Соли могут взаимодействовать с металлами.

В ходе реакции замещения, протекающей в водном растворе, химически более активный металл вытесняет менее активный.

Например, если кусочек железа поместить в раствор сульфата меди, он покрывается красно-бурым осадком меди. Раствор постепенно меняет цвет с синего на бледно-зелёный, поскольку образуется соль железа((II)):

взаимодействие сульфата меди((II)) с железом

При взаимодействии хлорида меди((II)) с алюминием образуются хлорид алюминия и медь:

2Al+3CuCl2→2AlCl3+3Cu↓

.

3. Соли могут взаимодействовать с кислотами.

Протекает реакция обмена, в ходе которой химически более активная кислота вытесняет менее активную.

Например, при взаимодействии раствора хлорида бария с серной кислотой образуется осадок сульфата бария, а в растворе остаётся соляная кислота:

BaCl2+H2SO4→BaSO4↓+2HCl

.

При взаимодействии карбоната кальция с соляной кислотой образуются хлорид кальция и угольная кислота, которая тут же разлагается на углекислый газ и воду:

CaCO3+2HCl→CaCl2+H2O+CO2↑⏟H2CO3

.

Видеофрагмент:

Взаимодействие кислот с солями

4. Растворимые в воде соли могут взаимодействовать со щелочами.

Реакция обмена возможна в том случае, если в результате хотя бы один из продуктов является практически нерастворимым (выпадает в осадок).

Например, при взаимодействии нитрата никеля((II)) с гидроксидом натрия образуются нитрат натрия и практически нерастворимый гидроксид никеля((II)):

NiNO32+2NaOH→NiOH2↓+2NaNO3

.

Видеофрагмент:

Взаимодействие нитрата никеля((II)) с гидроксидом натрия

При взаимодействии карбоната натрия (соды) с гидроксидом кальция (гашёной известью) образуются гидроксид натрия и практически нерастворимый карбонат кальция:

Na2CO3+CaOH2→2NaOH+CaCO3↓

.

5. Растворимые в воде соли могут вступать в реакцию обмена с другими растворимыми в воде солями, если в результате образуется хотя бы одно практически нерастворимое вещество.

Например, при взаимодействии сульфида натрия с нитратом серебра образуются нитрат натрия и практически нерастворимый сульфид серебра:

Na2S+2AgNO3→2NaNO3+Ag2S↓

.

Видеофрагмент:

Взаимодействие сульфида натрия с нитратом серебра

При взаимодействии нитрата бария с сульфатом калия образуются нитрат калия и практически нерастворимый сульфат бария:

BaNO32+K2SO4→2KNO3+BaSO4↓

.

6. Некоторые соли при нагревании разлагаются.

Разложение солей может происходить:

  • без изменения степени окисления элементов;
  • с изменением степени окисления элементов (то есть, протекают окислительно-восстановительные реакции).

A. Реакции разложения солей, в которых степени окисления элементов не изменяются.

При сильном нагревании карбонат кальция (мел, известняк, мрамор) разлагается, образуя оксид кальция (жжёную известь) и углекислый газ:

CaCO3⇄t°CaO+CO2↑

.

Видеофрагмент:

Разложение мела при нагревании

Гидрокарбонат натрия (пищевая сода) при небольшом нагревании разлагается на карбонат натрия (соду), воду и углекислый газ:

2NaHCO3⇄t°Na2CO3+H2O+CO2↑

.

Видеофрагмент:

Разложение гидрокарбоната натрия

Кристаллогидраты солей при нагревании теряют воду. Например, пентагидрат сульфата меди((II)) (медный купорос), постепенно теряя воду, превращается в безводный сульфат меди((II)):

CuSO4⋅5H2O→t°CuSO4+5H2O

.

При обычных условиях образовавшийся безводный сульфат меди можно превратить в кристаллогидрат:

CuSO4+5H2O→CuSO4⋅5H2O

Разрушение и образование медного купороса

Аналогичная химическая реакция протекает, когда к гемигидрату сульфата кальция (жжёному гипсу) при помешивании добавляют воду. Получившаяся кашица быстро застывает в результате образования дигидрата сульфата кальция (гипса):

CaSO4⋅0,5H2O+1,5H2O→CaSO4⋅2H2O

Застывание гипса                            

Б. Окислительно-восстановительные реакции разложения солей.

Окислительно-восстановительные процессы протекают при разложении нитратов.
Например, при термическом разложении нитрата калия образуются нитрит этого металла и кислород:

2KN+5O−23⟶t°2KN+3O2+O2↑0 

Разложение нитрата калия           

Разложение перманганата калия в лабораторных условиях можно использовать для получения кислорода. При разложении этой соли, кроме кислорода, образуются манганат калия и оксид марганца((IV)):

2KMn+7O−24⟶t°K2Mn+6O4+Mn+4O2+O2↑0

План урока:

Оксиды

Кислоты

Основания

Соли

Оксиды

В состав оксидов ВСЕГДА входит ТОЛЬКО два элемента, один из которых будет кислород. В этом классе соединений срабатывает правило, третий элемент лишний, он не запасной, его просто не должно быть. Второе правило, степень окисления кислорода равна -2. Из выше сказанного, определение оксидов будет звучать в следующем виде.

1hfhf

Оксиды в природе нас окружают повсюду, честно говоря, сложно представить нашу планету без двух веществ – это вода Н2О и песок SiO2.

Вы можете задаться вопросом, а что бывают другие бинарные соединения с кислородом, которые не будут относиться к оксидам.

Поранившись, Вы обрабатываете рану перекисью водорода Н2О2. Или для примера соединение с фтором OF2. Данные вещества вписываются в определение, так как состоят из 2 элементов и присутствует кислород. Но давайте определим степени окисления элементов.

2hfhf

Данные соединения не относятся к оксидам, так как степень окисления кислорода не равна -2.

Кислород, реагируя с простыми, а также сложными веществами образует оксиды. При составлении уравнения реакции, важно помнить, что элементу О свойственна валентность II (степень окисления -2), а также не забываем о коэффициентах. Если не помните, какую высшую валентность имеет элемент, советуем Вам воспользоваться периодической системой, где можете найти формулу высшего оксида.

3hfhf

Рассмотрим на примере следующих веществ кальций Са, мышьяк As и алюминий Al.

4hfhf

Подобно простым веществам реагируют с кислородом сложные, только в продукте будет два оксида. Помните детский стишок, а синички взяли спички, море синее зажгли, а «зажечь» можно Чёрное море, в котором содержится большое количество сероводорода H2S. Очевидцы землетрясения, которое произошло в 1927 году, утверждают, что море горело.

5hfhf

Чтобы дать название оксиду вспомним падежи, а именно родительный, который отвечает на вопросы: Кого? Чего? Если элемент имеет переменную валентность в скобках её необходимо указать.

6hfhf

Классификация оксидов строится на основе степени окисления элемента, входящего в его состав.

7hfhf

Реакции оксидов с водой определяют их характер. Но как составить уравнение реакции, а тем более определить состав веществ, строение которых Вам ещё не известно. Здесь приходит очень простое правило, необходимо учитывать, что эта реакция относиться к типу соединения, при которой степень окисления элементов не меняется.

Возьмём основный оксид, степень окисления входящего элемента +1, +2(т.е. элемент одно- или двухвалентен). Этими элементами будут металлы. Если к этим веществам прибавить воду, то образуется новый класс соединений – основания, состава Ме(ОН)n, где n равно 1, 2 или 3, что численно отвечает степени окисления металла, гидроксильная группа ОН- имеет заряд –(минус), что отвечает валентности I.При составлении уравнений не забываем о расстановке коэффициентов.

8hfhf

Аналогично реагируют с водой и кислотные оксиды, только продуктом будет кислота, состава НхЭОу. Как и в предыдущем случае, степень окисления не меняется, тип реакции – соединение. Чтобы составить продукт реакции, ставим водород на первое место, затем элемент и кислород.

9hfhf

Особо следует выделить оксиды неметаллов в степени окисления +1 или +2, их относят к несолеобразующим. Это означает, что они не реагируют с водой, и не образуют кислоты либо основания. К ним относят CO, N2O, NO.

Чтобы определить будет ли оксид реагировать с водой или нет, необходимо обратиться в таблицу растворимости. Если полученное вещество растворимо в воде, то реакция происходит.

10jgjg
 

11jgjg

Золотую середину занимают амфотерные оксиды. Им могут соответствовать как основания, так и кислоты, но с водой они не реагируют. Они образованные металлами в степени окисления +2 или +3, иногда +4. Формулы этих веществ необходимо запомнить.

12jgjg

Кислоты

Если в состав оксидов обязательно входит кислород, то следующий класс узнаваем будет по наличию атомов водорода, которые будут стоять на первом месте, а за ними следовать, словно нитка за иголкой, кислотные остатки.

13jgjg

В природе существует большое количество неорганических кислот. Но в школьном курсе химии рассматривается только их часть. В таблице 1 приведены названия кислот.

14jgjg

Валентность кислотного остатка определяется количеством атомов водорода. В зависимости от числа атомов Н выделяют одно- и многоосновные кислоты.

15jgjg

Если в состав кислоты входит кислород, то они называются кислородсодержащими, к ним относится серная кислота, угольная и другие. Получают их путём взаимодействия воды с кислотными оксидами. Бескислородные кислоты образуются при взаимодействии неметаллов с водородом.

16jgjg

Только одну кислоту невозможно получить подобным способом – это кремниевую. Отвечающий ей оксид SiO2 не растворим в воде, хотя честно говоря, мы не представляем нашу планету без песка.

Основания

Для этого класса соединений характерно отличительное свойство, их ещё называют вещества гидроксильной группы – ОН.

17jgjg

Чтобы дать название, изначально указываем класс – гидроксиды, потом добавляем чего, какого металла.

18jgjg

Классификация оснований базируется на их растворимости в воде и по числу ОН-групп.

19jgjg

Следует отметить, что гидроксильная группа, также как и кислотный остаток, это часть целого. Невозможно получить кислоты путём присоединения водорода к кислотному остатку, аналогично, чтобы получить основание нельзя писать уравнение в таком виде.

Na + OH →NaOH        или            H2 + SO4→ H2SO4

В природе не существуют отдельно руки или ноги, эта часть тела. Варианты получения кислот были описаны выше, рассмотрим, как получаются основания. Если к основному оксиду прибавить воду, то результатом этой реакции должно получиться основание. Однако не все основные оксиды реагируют с водой. Если в продукте образуется щёлочь, значит, реакция происходит, в противном случае реакция не идёт.

20jgjg

Данным способом можно получить только растворимые основания. Подтверждением этому служат реакции, которые вы можете наблюдать. На вашей кухне наверняка есть алюминиевая посуда, это могут быть кастрюли или ложки. Эта кухонная утварь покрыта прочным оксидом алюминия, который не растворяется в воде, даже при нагревании. Также весной можно наблюдать, как массово на субботниках белят деревья и бордюры. Берут белый порошок СаО и высыпают в воду, получая гашеную известь, при этом происходит выделение тепла, а это как вы помните, признак химического процесса.

Раствор щёлочи можно получить ещё одним методом, путём взаимодействия воды с активными металлами. Давайте вспомним, где они размещаются в периодической системе – I, II группа. Реакция будет относиться к типу замещения.

21jgjg

Напрашивается вопрос, а каким же образом получаются нерастворимые основания. Здесь на помощь придёт реакция обмена между щёлочью и растворимой солью.

22jgjg

Соли

С представителями веществ этого класса вы встречаетесь ежедневно на кухне, в быту, на улице, в школе, сельском хозяйстве.

23jgjg

Объединяет все эти вещества, что они содержат атомы металла и кислотный остаток. Исходя из этого, дадим определение этому классу.

24jgjg

Средние соли – это продукт полного обмена между веществами, в которых содержатся атомы металла и кислотный остаток (КО) (мы помним, что это часть чего-то, которая не имеет возможности существовать отдельно).

Выше было рассмотрено 3 класса соединений, давайте попробуем подобрать комбинации, чтобы получить соли, типом реакции обмена.

25jgjg

Чтобы составить название солей, необходимо указать название кислотного остатка, и в родительном падеже добавить название металла.

Ca(NO3)2– нитрат (чего) кальция, CuSO4– сульфат (чего) меди (II).

Наверняка многие из вас что-то коллекционировали, машинки, куклы, фантики, чтобы получить недостающую модель, вы менялись с кем-то своей. Применим этот принцип и для получения солей. К примеру, чтобы получить сульфат натрия необходимо 2 моль щёлочи и 1 моль кислоты. Допустим, что в наличии имеется только 1 моль NaOH, как будет происходить реакция? На место одного атома водорода станет натрий, а второму Н не хватило Na. Т.е в результате не полного обмена между кислотой и основанием получаются кислые соли. Название их не отличается от средних, только необходимо прибавить приставку гидро.

26jgjg

Однако бывают случаи, с точностью наоборот, не достаточно атомов водорода, чтобы связать ОН-группы. Результатом этой недостачи являются основные соли. Допустим реакция происходит между Ва(ОН)2 и HCl. Чтобы связать две гидроксильные группы, требуется два водорода, но предположим, что они в недостаче, а именно в количестве 1. Реакция пойдёт по схеме.

27jgjg

Особый интерес и некоторые затруднения вызывают комплексные соли, своим внешним, казалось,громоздким и непонятным видом, а именно квадратными скобками:K3[Fe(CN)6] или [Ag(NH3)2]Cl. Но не страшен волк, как его рисуют, гласит поговорка. Соли состоят из катионов (+) и анионов (-). Аналогично и с комплексными солями.

28jgjg

Образует комплексный ион элемент-комплексообразователь, обычно это атом металла, которого, как свита, окружают лиганды.

29jgjg
Источник

Теперь необходимо справиться с задачей дать название этому типу солей.

30jgjg

Попробуем дать название K3[Fe(CN)6]. Существует главный принцип, чтение происходит справа налево. Смотрим, количество лигандов, а их роль выполняют циано-группы CN, равно 6 – приставка гекса. В комплексообразователем будут ионы железа. Значит, вещество будет иметь название гексацианоферрат(III) (чего) калия.

31jgjg

Образование комплексных солей происходит путём взаимодействия, к примеру, амфотерных оснований с растворами щелочей. Амфотерность проявляется способностью оснований реагировать как с кислотами, так и щелочами. Так возьмём гидроксид алюминия или цинка и подействуем на них кислотой и щёлочью.

32jgjg

В природе встречаются соли, где на один кислотный остаток приходится два разных металла. Примером таких соединений служат алюминиевые квасцы, формула которых имеет вид KAl(SO4)2. Это пример двойных солей.

33jgjg

Из всего вышесказанного можно составить обобщающую схему, в которой указаны все классы неорганических соединений.

34jgjg

 

Химические свойства солей


Химические свойства солей

4.6

Средняя оценка: 4.6

Всего получено оценок: 1028.

4.6

Средняя оценка: 4.6

Всего получено оценок: 1028.

Сложные неорганические соединения, образованные металлами и кислотными остатками, называются солями. Химические свойства солей позволяют получать различные соединения.

Виды

Общая формула солей –

МnAcm,

где М – металл, Ac – кислотный остаток, n и m – количество атомов металла и кислотного остатка соответственно.
По составу и образованию соли делятся на шесть видов:

  • средние (нормальные) – образуются путём полного замещения водорода в кислоте атомами металла или гидроксильной группы в основании кислотными остатками (Na3PO4 образован из H3PO4, CuSO4 – из Cu(OH)2, AlCl3 – из HCl);
  • кислые – образуются при неполном замещении водорода в кислотах атомами металла (NaHSO4 образован при присоединении Na к H2SO4, Na2HPO4 – из H3PO4);
  • основные – образуются при неполном замещении гидроксильных групп кислотными остатками (CaOHCl образован из Ca(OH)2, FeOHCl2 – из Fe(OH)3);
  • двойные – состоят из двух металлов и одного кислотного остатка (КNaSO4);
  • смешанные – состоят из одного металла и нескольких кислотных остатков (CaClBr);
  • комплексные – состоят из комплексного аниона или катиона ([Cu(NH3)4]SO4).

Разные соли

Рис. 1. Разные соли.

Наиболее активными являются кислые соли, включающие водород. Химические свойства кислых солей сходны со свойствами кислот. Они взаимодействуют с металлами, их оксидами и гидроксидами, другими солями, щелочами.

Физические свойства

Соли – это кристаллические вещества разных цветов.
Основные физические свойства солей:

  • ионная кристаллическая решётка;
  • высокие температуры плавления;
  • в твёрдом состоянии плохо проводят электричество;
  • по растворимости выделяют растворимые, малорастворимые и нерастворимые соли.

Ионная кристаллическая решётка

Рис. 2. Ионная кристаллическая решётка.

Некоторые соли имеют ковалентное или промежуточное, образованное ионными и ковалентными связями, строение.

Получение

Соли образуются из кислот и оснований. Реакции кислоты с различными веществами:

  • с активными металлами –

    2HCl + Zn → ZnCl2 + H2;

  • с основными оксидами –

    2HCl + CaO → CaCl2 + H2O;

  • со щелочами –

    HCl + NaOH → NaCl + H2O;

  • с солями (выделяется газ или выпадает осадок) –

    3 + 2HCl → CaCl2 + H2O + CO2↑./div>

Основания могут взаимодействовать:

  • с неметаллами –

    6KOH + 3S → K2SO3 + 2K2S + 3H2O;

  • с кислотными оксидами –

    2NaOH + CO2 → Na2CO3 + H2O;

  • с солями (выпадение осадка, высвобождение газа) –

    2KOH + FeCl2 → Fe(OH)2 + 2KCl.

Существую также другие способы получения:

  • взаимодействие двух солей –

    CuCl2 + Na2S → 2NaCl + CuS↓;

  • реакция металлов и неметаллов –

    Fe + S → FeS

  • соединение кислотных и основных оксидов –

    SO3 + Na2O → Na2SO4;

  • взаимодействие солей с металлами –

    Fe + CuSO4 → FeSO4 + Cu.

Химические свойства

Растворимые соли являются электролитами и подвержены реакции диссоциации. При взаимодействии с водой они распадаются, т.е. диссоциируют на положительно и отрицательно заряженные ионы – катионы и анионы соответственно. Катионами являются ионы металлов, анионами – кислотные остатки. Примеры ионных уравнений:

  • NaCl → Na+ + Cl;
  • Al2(SO4)3 → 2Al3+ + 3SO42−;
  • CaClBr → Ca2+ + Cl + Br.

Помимо катионов металлов в солях могут присутствовать катионы аммония (NH4+) и фосфония (PH4+).

Другие реакции описаны в таблице химических свойств солей.

Реакция

Особенности

Уравнение

С металлами

Более активный металл вытесняет менее активный

CuSO4 + Fe → Cu↓ + FeSO4

С кислотами

Свойственно солям, образованным более слабыми кислотами. Образуются новые соли

– Na2CO3 + 2HCl → 2NaCl + CO2 + H2O;

– FeOHCl + HCl → FeCl2 + H2O;

– Na2SO4 + H2SO4 → 2NaHSO4

Со щелочами

Взаимодействуют соли, образованные нерастворимыми основаниями

CuSO4 + 2NaOH → Cu(OH)2↓ + Na2SO4

С солями

Взаимодействуют растворимые соли. Образуется осадок

AgNO3 + NaCl → AgCl↓ + NaNO3

Выделение осадка при взаимодействии с основаниями

Рис. 3. Выделение осадка при взаимодействии с основаниями.

Некоторые соли в зависимости от вида разлагаются при нагревании на оксид металла и простые вещества. Например, СаСO3 → СаO + СО2, 2AgCl → Ag + Cl2.

Заключение

Что мы узнали?

Из урока 8 класса химии узнали об особенностях и видах солей. Сложные неорганические соединения состоят из металлов и кислотных остатков. Могут включать водород (кислые соли), два металла или два кислотных остатка. Это твёрдые кристаллические вещества, которые образуются в результате реакций кислот или щелочей с металлами. Реагируют с основаниями, кислотами, металлами, другими солями.

Тест по теме

Доска почёта

Доска почёта

Чтобы попасть сюда – пройдите тест.

  • Алексей Вишняков

    10/10

  • Наталья Шалагина

    10/10

  • Ирина Салимзянова

    8/10

  • Сергей Ефремов

    8/10

  • Максим Варламов

    9/10

Оценка доклада

4.6

Средняя оценка: 4.6

Всего получено оценок: 1028.


А какая ваша оценка?

Химические свойства солей

26-Май-2013 | комментариев 6 | Лолита Окольнова

Задание А 11 ЕГЭ по химии —

Характерные химические свойства солей: средних, кислых, оснoвных, комплексных

А11 ЕГЭ по химии

Темы, которые нужно знать:

  • Классификация неорганических соединений
  • Гидролиз солей
  • Электролитическая диссоциация

Сначала давайте рассмотрим классификацию солей:

средние, кислые и основные

Сначала рассмотрим общие химические свойства солей, затем разберем особенности кислых и основных.

1. Взаимодействие с металлами: реакция будет идти, если металл стоит в ряду напряжений левее катиона соли:

Na + AgCl = NaCl + Ag↓

2. Взаимодействие с основаниями: идет в том случае, если выделяется осадок, газ или малодиссоциирующее вещество:

Na2SO4 + Ba(OH)2 = BaSO4 ↓+ 2NaOH

3. Взаимодействие с кислотами: то же условие — выделение осадка, газа или малодиссоциирующего вещества:

CuS + 2HCl = CuCl2 + H2S↑

4. Cоли могут взаимодействовать между собой на тех же условиях: осадок, газ, малодиссоциирующее вещество:

СaCl2 + Na2CO3 = CaCO3 + 2NaCl

В химические свойства солей также входит диссоциация.

Диссоциация солей

В воде соли полностью (теоретически) или частично диссоциируют на ионы.

  1. Диссоциация средних солей:  XA → X+ + A
    Na2SO4 → 2Na+ + SO42-
  2. Диссоциация кислых солей:  ХHA → X+ + HA — первая ступень, вторая ступень: HA = H + + A 2-
    NaHSO4 → Na+ + HSO4HSO4 = SO42- + H +
  3. Диссоциация основных солей:  Х(OH)A → X(OH)+ + A — первая ступень, вторая ступень:  X(OH)+ = X 2+ + OH
    MgOHCl →  MgOH++Cl
    MgOH+ → Mg 2+ + OH

Получение кислой соли из средней: средняя соль + соответствующая кислота: Na2CO3 + H2CO3 = 2NaHCO3

Получение основной соли из средней:  средняя соль + соответствующее основание: CuCl2 + Cu(OH)2 = 2Cu(OH)Cl

Получение средней соли из основной: основная соль + соответствующая кислота: Cu(OH)Cl + HCl = CuCl2 + H2O

Получение средней соли из кислой: кислая соль + соответствуящее основание: NaHCO3 + NaOH = Na2CO3 + H2O

Химические свойства солей — гидролиз

Гидролиз средних солей  мы уже рассматривали раньше (см. лекцию)

 Химические свойства двойных солей

У двойных солей есть небольшая особенность — в реакцию всегда вступают оба катиона:

KCr(SO4)2 + 3KOH = Cr(OH)3 + 2K2SO4

Кстати, давайте разберем наш вопрос: с чем будет реагировать карбонат бария BaCO3

1) H2SO4 + NaOH — осадообразуется только с сульфат-ионом;

2) NaCl и CuSO4 — осадообразуется только с сульфат-ионом;

3) HCl и СH3COOH  —         BaCO3 + 2HCl = H2CO3 (= CO2 ↑+ H3 O)+ BaCl2

2CH3 COOH + BaCO3 = (CH3 COO)2 Ba + CO2 ↑+ H3 O

в обоих реакциях — выделение газа;

4)  NaHCO3 и HNO3 — газ выделется только при взаимодействии с кислотой

Ответ: 3) HCl и СH3COOH

[TESTME 44]

Обсуждение: “Химические свойства солей”

(Правила комментирования)

Добавить комментарий