Как составить каноническое уравнение гиперболы зная эксцентриситет

Гипербола: формулы, примеры решения задач

Определение гиперболы, решаем задачи вместе

Определение гиперболы. Гиперболой называется множество всех точек плоскости, таких, для которых модуль разности расстояний от двух точек, называемых фокусами, есть величина постоянная и меньшая, чем расстояние между фокусами.

Каноническое уравнение гиперболы имеет вид:

,

где a и b – длины полуосей, действительной и мнимой.

На чертеже ниже фокусы обозначены как и .

На чертеже ветви гиперболы – бордового цвета.

При a = b гипербола называется равносторонней.

Пример 1. Составить каноническое уравнение гиперболы, если его действительная полуось a = 5 и мнимая = 3.

Решение. Подставляем значения полуосей в формулу канонического уравения гиперболы и получаем:

.

Точки пересечения гиперболы с её действительной осью (т. е. с осью Ox) называются вершинами. Это точки (a, 0) (- a, 0), они обозначены и надписаны на рисунке чёрным.

Точки и , где

,

называются фокусами гиперболы (на чертеже обозначены зелёным, слева и справа от ветвей гиперболы).

называется эксцентриситетом гиперболы.

Гипербола состоит из двух ветвей, лежащих в разных полуплоскостях относительно оси ординат.

Пример 2. Составить каноническое уравнение гиперболы, если расстояние между фокусами равно 10 и действительная ось равна 8.

Если действительная полуось равна 8, то её половина, т. е. полуось a = 4 ,

Если расстояние между фокусами равно 10, то число c из координат фокусов равно 5.

То есть, для того, чтобы составить уравнение гиперболы, потребуется вычислить квадрат мнимой полуоси b.

Подставляем и вычисляем:

Получаем требуемое в условии задачи каноническое уравнение гиперболы:

.

Пример 3. Составить каноническое уравнение гиперболы, если её действительная ось равна 48 и эксцентриситет .

Решение. Как следует из условия, действительная полуось a = 24 . А эксцентриситет – это пропорция и так как a = 24 , то коэффициент пропорциональности отношения с и a равен 2. Следовательно, c = 26 . Из формулы числа c выражаем квадрат мнимой полуоси и вычисляем:

.

Результат – каноническое уравнение гиперболы:

Если – произвольная точка левой ветви гиперболы () и – расстояния до этой точки от фокусов , то формулы для расстояний – следующие:

.

Если – произвольная точка правой ветви гиперболы () и – расстояния до этой точки от фокусов , то формулы для расстояний – следующие:

.

На чертеже расстояния обозначены оранжевыми линиями.

Для каждой точки, находящейся на гиперболе, сумма расстояний от фокусов есть величина постоянная, равная 2a.

Прямые, определяемые уравнениями

,

называются директрисами гиперболы (на чертеже – прямые ярко-красного цвета).

Из трёх вышеприведённых уравнений следует, что для любой точки гиперболы

,

где – расстояние от левого фокуса до точки любой ветви гиперболы, – расстояние от правого фокуса до точки любой ветви гиперболы и и – расстояния этой точки до директрис и .

Пример 4. Дана гипербола . Составить уравнение её директрис.

Решение. Смотрим в уравнение директрис и обнаруживаем, что требуется найти эксцентриситет гиперболы, т. е. . Вычисляем:

.

Получаем уравнение директрис гиперболы:

Многие задачи на директрисы гиперболы аналогичны задачам на директрисы эллипса. В уроке “Эллипс” это пример 7.

Характерной особенностью гиперболы является наличие асимптот – прямых, к которым приближаются точки гиперболы при удалении от центра.

Асимптоты гиперболы определяются уравнениями

.

На чертеже асимптоты – прямые серого цвета, проходящие через начало координат O.

Уравнение гиперболы, отнесённой к асимптотам, имеет вид:

, где .

В том случае, когда угол между асимптотами – прямой, гипербола называется равнобочной, и если асимптоты равнобочной гиперболы выбрать за оси координат, то её уравнение запишется в виде y = k/x , то есть в виде уравения обратной пропорциональной зависимости.

Пример 5. Даны уравнения асимптот гиперболы и координаты точки , лежащей на гиперболе. Составить уравнение гиперболы.

Решение. Дробь в уравнении асимптот гиперболы – это пропорция, следовательно, нужно сначала найти коэффициент пропорциональности отношения . Для этого подставляем в формулу канонического уравнения гиперболы координаты точки M x и y и значения числителя и знаменателя из уравнения асимптоты, кроме того, умножаем каждую дробь в левой части на коэффициент пропорциональности k.

.

Теперь имеем все данные, чтобы получить каноническое уравнение гиперболы. Получаем:

Гипербола обладает оптическим свойством, которое описывается следующим образом: луч, исходящий из источника света, находящегося в одном из фокусов гиперболы, после отражения движется так, как будто он исходит из другого фокуса.

Решить задачи на гиперболу самостоятельно, а затем посмотреть решения

Пример 6. Фокусы эллипса расположены на оси Ox симметрично относительно начала координат. Составить каноническое уравнение эллипса, если:

1) b = 4 , а один из фокусов в точке (5; 0)

2) действительная ось 6, расстояние между фокусами 8

3) один из фокусов в точке (-10; 0), уравнения асимптот гиперболы

Задача 22103 .

Условие

5) Найти уравнение гиперболы, зная, что ее эксцентриситет ε = 2, фокусы гиперболы совпадают с фокусом эллипса x^2/10 + y^2 = 1.

Решение

Каноническое уравнение эллипса
(x^2/10) + y^2 = 1
a=sqrt(10)
b=1
b^2=a^2-c^2 ⇒ c^2=a^2-b^2=10-1=9
Фокусы эллипса
F_(1)(-3;0) и F_(2)=(3;0)

Фокусы гиперболы
F_(1)(-3;0) и F_(2)=(3;0)
эксцентриситет гиперболы ε=с/a ⇒
2=3/a ⇒ a=3/2
b^2=c^2-a^2=3^2-(3/2)^2=9-(9/4)=27/4

О т в е т. (x^2/(3/2)^2)-(y^2/(3sqrt(3)/2)^2)=1
или
108x^2-36y^2=243

Гипербола – определение и вычисление с примерами решения

Гипербола:

Определение: Гиперболой называется геометрическое место точек абсолютное значение разности расстояний от которых до двух выделенных точек

Получим каноническое уравнение гиперболы. Выберем декартову систему координат так, чтобы фокусы

Рис. 31. Вывод уравнения гиперболы.

Расстояние между фокусами (фокусное расстояние) равно Согласно определению, для гиперболы имеем Из треугольников по теореме Пифагора найдем соответственно.

Следовательно, согласно определению имеем

Возведем обе части равенства в квадрат, получим

Перенося квадратный корень в левую часть, а все остальное в правую часть равенства, находим Раскроем разность квадратов Подставим найденное выражение в уравнение и сократим обе части равенства на 4, тогда оно перейдет в уравнение Вновь возведем обе части равенства в квадрат Раскрывая все скобки в правой части уравнения, получим Соберем неизвестные в левой части, а все известные величины перенесем в правую часть уравнения, получим Введем обозначение для разности, стоящей в скобках Получим Разделив все члены уравнения на величину получаем каноническое уравнение гиперболы: Для знака “+” фокусы гиперболы расположены на оси Ох, вдоль которой вытянута гипербола. Для знака фокусы гиперболы расположены на оси Оу, вдоль которой вытянута гипербола.

Проанализируем полученное уравнение. Если точка М(х;у) принадлежит гиперболе, то ей принадлежат и симметричные точки и следовательно, гипербола симметрична относительно координатных осей, которые в данном случае будут называться осями симметрии гиперболы (Рис. 32). Найдем координаты точек пересечения гиперболы с координатными осями: т.е. точками пересечения гиперболы с осью абсцисс будут точки т.е. гипербола не пересекает ось ординат.

Рис. 32. Асимптоты и параметры гиперболы

Определение: Найденные точки называются вершинами гиперболы.

Докажем, что при возрастании (убывании) переменной х гипербола неограниченно приближается к прямым не пересекая эти прямые. Из уравнения гиперболы находим, что При неограниченном росте (убывании) переменной х величина следовательно, гипербола будет неограниченно приближаться к прямым

Определение: Прямые, к которым неограниченно приближается график гиперболы называются асимптотами гиперболы.

В данном конкретном случае параметр а называется действительной, а параметр b – мнимой полуосями гиперболы.

Определение: Эксцентриситетом гиперболы называется отношение фокусного расстояния к действительной полуоси гиперболы

Из определения эксцентриситета гиперболы следует, что он удовлетворяет неравенству Кроме того, эта характеристика описывает форму гиперболы. Для демонстрации этого факта рассмотрим квадрат отношения мнимой полуоси гиперболы к действительной полуоси Если эксцентриситет и гипербола становится равнобочной. Если и гипербола вырождается в два полубесконечных отрезка

Пример:

Составить каноническое уравнение гиперболы, если мнимая полуось b = 5 и гипербола проходит через точку М(4; 5).

Решение:

Для решения задачи воспользуемся каноническим уравнением гиперболы, подставив в него все известные величины:

Следовательно, каноническое уравнение гиперболы имеет вид

Пример:

Составить уравнение гиперболы, вершины которой находятся в фокусах, а фокусы – в вершинах эллипса

Решение:

Для определения координат фокусов и вершин эллипса преобразуем его уравнение к каноническому виду. Эллипс: или Следовательно, большая полуось эллипса а малая полуось Итак, вершины эллипса расположены на оси и на оси Так как то эллипс вытянут вдоль оси абсцисс Ох. Определим расположение фокусов данного эллипса Итак, Согласно условию задачи (см. Рис. 33):

Рис. 33. Параметры эллипса и гиперболы

Вычислим длину мнимой полуоси Уравнение гиперболы имеет вид:

Гипербола в высшей математике

Решая его относительно , получим две явные функции

или одну двузначную функцию

Функция имеет действительные значения только в том случае, если . При функция действительных значений не имеет. Следовательно, если , то точек с координатами, удовлетворяющими уравнению (3), не существует.

При получаем.

При каждому значению соответствуют два значения , поэтому кривая симметрична относительно оси . Так же можно убедиться в симметрии относительно оси . Поэтому в рассуждениях можно ограничиться рассмотрением только первой четверти. В этой четверти при увеличении х значение у будет также увеличиваться (рис. 36).

Кривая, все точки которой имеют координаты, удовлетворяющие уравнению (3), называется гиперболой.

Гипербола в силу симметрии имеет вид, указанный на рис. 37.

Точки пересечения гиперболы с осью называются вершинами гиперболы; на рис. 37 они обозначены буквами и .

Часть гиперболы, расположенная в первой и четвертой четвертях, называется правой ветвью, а часть гиперболы, расположенная во второй и третьей четвертях, — левой ветвью.

Рассмотрим прямую, заданную уравнением . Чтобы не смешивать ординату точки, расположенной на этой прямой, с ординатой точки, расположенной на гиперболе, будем обозначать ординату точки на прямой , а ординату точки на гиперболе через . Тогда , (рассматриваем только кусок правой ветви, расположенной в первой четверти). Найдем разность ординат точек, взятых на прямой и на гиперболе при одинаковых абсциссах:

Умножим и разделим правую часть на

Будем придавать все большие и большие значения, тогда правая часть равенства будет становиться все меньше и меньше, приближаясь к нулю. Следовательно, разность будет приближаться к нулю, а это значит, что точки, расположенные на прямой и гиперболе, будут сближаться. Таким образом, можно сказать, что рассматриваемая часть правой ветви гиперболы по мере удаления от начала координат приближается к прямой .

Вследствие симметрии видно, что часть правой ветви, расположенная в четвертой четверти, будет приближаться к прямой, определяемой уравнением . Также кусок левой ветви, расположенный во второй четверти, приближается к прямой , а кусок левой ветви, расположенный в третьей четверти, — к прямой .

Прямая, к которой неограниченно приближается гипербола при удалении от начала координат, называется асимптотой гиперболы.

Таким образом, гипербола имеет две асимптоты, определяемые уравнениями (рис. 37).

Рекомендую подробно изучить предметы:
  • Геометрия
  • Аналитическая геометрия
  • Начертательная геометрия
Ещё лекции с примерами решения и объяснением:
  • Парабола
  • Многогранник
  • Решение задач на вычисление площадей
  • Тела вращения: цилиндр, конус, шар
  • Правильные многогранники в геометрии
  • Многогранники
  • Окружность
  • Эллипс

При копировании любых материалов с сайта evkova.org обязательна активная ссылка на сайт www.evkova.org

Сайт создан коллективом преподавателей на некоммерческой основе для дополнительного образования молодежи

Сайт пишется, поддерживается и управляется коллективом преподавателей

Whatsapp и логотип whatsapp являются товарными знаками корпорации WhatsApp LLC.

Cайт носит информационный характер и ни при каких условиях не является публичной офертой, которая определяется положениями статьи 437 Гражданского кодекса РФ. Анна Евкова не оказывает никаких услуг.

[spoiler title=”источники:”]

http://reshimvse.com/zadacha.php?id=22103

http://www.evkova.org/giperbola

[/spoiler]

Гипербола и ее каноническое уравнение

Определение.
Гиперболой называется геометрическое
место точек, разность от каждой из
которых до двух данных точек, называемых
фокусами есть величина постоянная

Возьмем
систему координат, так чтобы фокусы
лежали на оси абсцисс, а начало координат
делило отрезок F1
F2
пополам (рис. 30). Обозначим F1
F2
= 2c.
Тогда F1
(с; 0); F2
(-c;
0)

MF2
= r2,
MF1
= r1
– фокальные радиусы гиперболы.

Согласно
определения гиперболы r1
– r2
= const.

Обозначим
ее через 2а

Тогда
r2
r1
= ±2a
итак:

=>
каноническое
уравнение гиперболы

Так
как уравнение гиперболы х и у в четных
степенях, то если точка М0
0;
у0)
лежит на гиперболе, то на ней лежат также
точки М1
0;
0)
М2
(-х0;
0)
М3
(-х0;
0).

Следовательно,
гипербола симметрична относительно
обеих координатных осей.

При
у = 0 х2
= а2
х = ± а. Вершинами гиперболы будут точки
А1
(а; 0); А2
(-а; 0).

.
В силу симметрии исследование ведем в
I
четверти

1)
при

у имеет мнимое значение, следовательно,
точек гиперболы с абсциссами

не существует

2)
при х = а; у = 0 А1
(а; 0) принадлежит гиперболе

3)
при x
> a;
y
> 0. Причем при неограниченном возрастании
х ветвь гиперболы уходит в бесконечность.

Отсюда
следует, что гипербола представляет
собой кривую, состоящую из двух бесконечных
ветвей.

П 6. Асимптоты гиперболы

Рассмотрим
вместе с уравнением

уравнение прямой

Кривая
будет лежать ниже прямой (рис. 31).
Рассмотрим точкиN
(x,
Y)
и М (х, у) у которой абсциссы одинаковы,
а У – у = MN.
Рассмотрим
длину отрезка MN

Найдем

Итак,
если точка М, двигаясь по гиперболе в
первой четверти удаляется в бесконечность,
то ее расстояние от прямой

уменьшается и стремится к нулю.

В
силу симметрии таким же свойством
обладает прямая
.

Определение.
Прямые к которым при


кривая неограниченно приближается
называются асимптотами.

Итак,
уравнение асимптот гиперболы
.

Асимптоты
гиперболы располагаются по диагоналям
прямоугольника, одна сторона которого
параллельна оси ох и равна 2а, а другая
параллельна оси оу и равна 2в, а центр
лежит в начале координат (рис. 32).

П 7. Эксцентриситет и директрисы гиперболы

r2
– r1
= ± 2a
знак + относится к правой ветви
гиперболы

знак
– относится к левой ветви гиперболы

Определение.
Эксцентриситетом
гиперболы называется отношение расстояния
между фокусами этой гиперболы к расстоянию
между ее вершинами.

.
Так как c
> a,
ε
> 1

Выразим
фокальные радиусы гиперболы через
эксцентриситет:

Определение.
Назовем прямые

,
перпендикулярные фокальной оси гиперболы
и расположенными на расстоянии


от ее центра директрисами гиперболы,
соответствующие правому и левому
фокусам.

Так
как для гиперболы

следовательно, директрисы гиперболы,
располагаются между ее вершинами (рис.
33). Покажем, что отношение расстояний
любой точки гиперболы до фокуса и
соответствующей директрисы есть величина
постоянная и равная ε.

П. 8 Парабола и ее уравнение

Определение.Парабола
есть геометрическое место точек
равностоящих от данной точки, называемой
фокусом и от данной прямой называемой
директрисой.

Чтобы
составить уравнение параболы примем
за ось х прямую, проходящую через фокус
F1
перпендикулярную к директрисе и будем
считать ось х направленной от директрисы
к фокусу. За начало координат возьмем
середину О отрезка от точки F
до данной прямой, длину которого обозначим
через р (рис. 34). Величину р назовем
параметром параболы. Точка координат
фокуса
.

Пусть
М (х, у) – произвольная точка параболы.

Согласно
определению

у2
= 2рх – каноническое уравнение параболы

Для
определения вида параболы преобразуем
ее уравнение

отсюда следует
.
Следовательно, вершина параболы находится
в начале координат и осью симметрии
параболы является ох. Уравнение у2
= -2рх при положительном р сводится к
уравнению у2
= 2рх путем замены х на –х и ее график
имеет вид (рис. 35).

Уравнение
х2
= 2ру является уравнением параболы с
вершиной в точке О (0; 0) ветви которой
направлены вверх.

х2
= -2ру – уравнение параболы с центром в
начале координат симметричная относительно
оси у, ветви которой направлены вниз
(рис. 36).

У
параболы одна ось симметрии
.

Если
х в первой степени, а у во второй, то ось
симметрии есть х.

Если
х во второй степени, а у в первой, то ось
симметрии есть ось оу.

Замечание
1.

Уравнение
директрисы параболы имеет вид

.

Замечание
2.
Так
как для параболы

,
то
ε
параболы равен 1.
ε
= 1
.

Соседние файлы в предмете [НЕСОРТИРОВАННОЕ]

  • #
  • #
  • #
  • #
  • #
  • #
  • #
  • #
  • #
  • #
  • #

Гипербола: определение, свойства, построение

Гиперболой называется геометрическое место точек плоскости, модуль разности расстояний от каждой из которых до двух заданных точек F_1 и F_2 есть величина постоянная (2a), меньшая расстояния (2c) между этими заданными точками (рис.3.40,а). Это геометрическое определение выражает фокальное свойство гиперболы.

Фокальное свойство гиперболы

Точки F_1 и F_2 называются фокусами гиперболы, расстояние 2c=F_1F_2 между ними — фокусным расстоянием, середина O отрезка F_1F_2 — центром гиперболы, число 2a — длиной действительной оси гиперболы (соответственно, a — действительной полуосью гиперболы). Отрезки F_1M и F_2M, соединяющие произвольную точку M гиперболы с ее фокусами, называются фокальными радиусами точки M. Отрезок, соединяющий две точки гиперболы, называется хордой гиперболы.

Отношение e=frac{c}{a}, где c=sqrt{a^2+b^2}, называется эксцентриситетом гиперболы. Из определения (2a<2c) следует, что e>1.

Геометрическое определение гиперболы, выражающее ее фокальное свойство, эквивалентно ее аналитическому определению — линии, задаваемой каноническим уравнением гиперболы:

frac{x^2}{a^2}-frac{y^2}{b^2}=1.

(3.50)

Действительно, введем прямоугольную систему координат (рис.3.40,б). Центр O гиперболы примем за начало системы координат; прямую, проходящую через фокусы (фокальную ось), примем за ось абсцисс (положительное направление на ней от точки F_1 к точке F_2); прямую, перпендикулярную оси абсцисс и проходящую через центр гиперболы, примем за ось ординат (направление на оси ординат выбирается так, чтобы прямоугольная система координат Oxy оказалась правой).

Гипербола и фокальное свойство гипербол

Составим уравнение гиперболы, используя геометрическое определение, выражающее фокальное свойство. В выбранной системе координат определяем координаты фокусов F_1(-c,0) и F_2(c,0). Для произвольной точки M(x,y), принадлежащей гиперболе, имеем:

left||overrightarrow{F_1M}|-|overrightarrow{F_2M}|right|=2a.

Записывая это уравнение в координатной форме, получаем:

sqrt{(x+c)^2+y^2}-sqrt{(x-c)^2+y^2}=pm2a.

Выполняя преобразования, аналогичные преобразованиям, используемым при выводе уравнения эллипса (т.е. избавляясь от иррациональности), приходим к каноническому уравнению гиперболы:

frac{x^2}{a^2}-frac{y^2}{b^2}=1,,

где b=sqrt{c^2-a^2}, т.е. выбранная система координат является канонической.

Проводя рассуждения в обратном порядке, можно показать, что все точки, координаты которых удовлетворяют уравнению (3.50), и только они, принадлежат геометрическому месту точек, называемому гиперболой. Таким образом, аналитическое определение гиперболы эквивалентно его геометрическому определению.


Директориальное свойство гиперболы

Директрисами гиперболы называются две прямые, проходящие параллельно оси ординат канонической системы координат на одинаковом расстоянии a^2!!not{phantom{|}},c от нее (рис.3.41,а). При a=0, когда гипербола вырождается в пару пересекающихся прямых, директрисы совпадают.

Гиперболу с эксцентриситетом e=1 можно определить, как геометрическое место точек плоскости, для каждой из которых отношение расстояния до заданной точки F (фокуса) к расстоянию до заданной прямой d (директрисы), не проходящей через заданную точку, постоянно и равно эксцентриситету e (директориальное свойство гиперболы). Здесь F и d — один из фокусов гиперболы и одна из ее директрис, расположенные по одну сторону от оси ординат канонической системы координат.

Директрисы гиперболы и директориальное свойство

В самом деле, например, для фокуса F_2 и директрисы d_2 (рис.3.41,а) условие frac{r_2}{rho_2}=e можно записать в координатной форме:

sqrt{(x-c)^2+y^2}=eleft(x-frac{a^2}{c}right)

Избавляясь от иррациональности и заменяя e=frac{c}{a},~c^2-a^2=b^2, приходим к каноническому уравнению гиперболы (3.50). Аналогичные рассуждения можно провести для фокуса F_1 и директрисы d_1:

frac{r_1}{rho_1}=e quad Leftrightarrow quad sqrt{(x+c)^2+y^2}= eleft(x+frac{a^2}{c} right).


Уравнение гиперболы в полярной системе координат

Уравнение правой ветви гиперболы в полярной системе координат F_2rvarphi (рис.3.41,б) имеет вид

r=frac{p}{1-ecdotcosvarphi}, где p=frac{p^2}{a}фокальный параметр гиперболы.

В самом деле, выберем в качестве полюса полярной системы координат правый фокус F_2 гиперболы, а в качестве полярной оси — луч с началом в точке F_2, принадлежащий прямой F_1F_2, но не содержащий точки F_1 (рис.3.41,б). Тогда для произвольной точки M(r,varphi), принадлежащей правой ветви гиперболы, согласно геометрическому определению (фокальному свойству) гиперболы, имеем F_1M-r=2a. Выражаем расстояние между точками M(r,varphi) и F_1(2c,pi) (см. пункт 2 замечаний 2.8):

F_1M=sqrt{(2c)^2+r^2-2cdot(2c)^2cdot rcdotcos(varphi-pi)}=sqrt{r^2+4cdot ccdot rcdotcosvarphi+4cdot c^2}.

Следовательно, в координатной форме уравнение гиперболы имеет вид

sqrt{r^2+4cdot ccdot rcdotcosvarphi+4cdot c^2}-r=2a.

Уединяем радикал, возводим обе части уравнения в квадрат, делим на 4 и приводим подобные члены:

r^2+4crcdotcosvarphi+4c^2=4a^2+4ar+r^2 quad Leftrightarrow quad aleft(1-frac{c}{a}cosvarphiright)r=c^2-a^2.

Выражаем полярный радиус r и делаем замены e=frac{c}{a},~b^2=c^2-a^2,~p=frac{b^2}{a}:

r=frac{c^2-a^2}{a(1-ecosvarphi)} quad Leftrightarrow quad r=frac{b^2}{a(1-ecosvarphi)} quad Leftrightarrow quad r=frac{p}{1-ecosvarphi},

что и требовалось доказать. Заметим, что в полярных координатах уравнения гиперболы и эллипса совпадают, но описывают разные линии, поскольку отличаются эксцентриситетами (e>1 для гиперболы, 0leqslant e<1 для эллипса).


Геометрический смысл коэффициентов в уравнении гиперболы

Найдем точки пересечения гиперболы (рис.3.42,а) с осью абсцисс (вершины гиперболы). Подставляя в уравнение y=0, находим абсциссы точек пересечения: x=pm a. Следовательно, вершины имеют координаты (-a,0),,(a,0). Длина отрезка, соединяющего вершины, равна 2a. Этот отрезок называется действительной осью гиперболы, а число a — действительной полуосью гиперболы. Подставляя x=0, получаем y=pm ib. Длина отрезка оси ординат, соединяющего точки (0,-b),,(0,b), равна 2b. Этот отрезок называется мнимой осью гиперболы, а число b — мнимой полуосью гиперболы. Гипербола пересекает прямую, содержащую действительную ось, и не пересекает прямую, содержащую мнимую ось.

Замечания 3.10.

1. Прямые x=pm a,~y=pm b ограничивают на координатной плоскости основной прямоугольник, вне которого находится гипербола (рис.3.42,а).

2. Прямые y=pmfrac{b}{a},x, содержащие диагонали основного прямоугольника, называются асимптотами гиперболы (рис.3.42,а).

Для равносторонней гиперболы, описываемой уравнением frac{x^2}{a^2}-frac{y^2}{a^2}=1 (т.е. при a=b), основной прямоугольник является квадратом, диагонали которого перпендикулярны. Поэтому асимптоты равносторонней гиперболы также перпендикулярны, и их можно взять в качестве координатных осей прямоугольной системы координат Ox'y' (рис.3.42,б). В этой системе координат уравнение гиперболы имеет вид y'=frac{a^2}{2x'} (гипербола совпадает с графиком элементарной функции, выражающей обратно-пропорциональную зависимость).

Асимптоты гиперболы и равносторонняя гипербола

В самом деле, повернем каноническую систему координат на угол varphi=-frac{pi}{4} (рис.3.42,б). При этом координаты точки в старой и новой системах координат связаны равенствами

left{!begin{aligned}x&=frac{sqrt{2}}{2}cdot x'+frac{sqrt{2}}{2}cdot y',\ y&=-frac{sqrt{2}}{2}cdot x'+frac{sqrt{2}}{2}cdot y'end{aligned}right. quad Leftrightarrow quad left{!begin{aligned}x&=frac{sqrt{2}}{2}cdot(x'+y'),\ y&=frac{sqrt{2}}{2}cdot(y'-x')end{aligned}right.

Подставляя эти выражения в уравнение frac{x^2}{a^2}-frac{y^2}{a^2}=1 равносторонней гиперболы и приводя подобные члены, получаем

frac{frac{1}{2}(x'+y')^2}{a^2}-frac{frac{1}{2}(y'-x')^2}{a^2}=1 quad Leftrightarrow quad 2cdot x'cdot y'=a^2 quad Leftrightarrow quad y'=frac{a^2}{2cdot x'}.

3. Координатные оси (канонической системы координат) являются осями симметрии гиперболы (называются главными осями гиперболы), а ее центр — центром симметрии.

Действительно, если точка M(x,y) принадлежит гиперболе frac{x^2}{a^2}-frac{y^2}{b^2}=1. то и точки M'(x,y) и M''(-x,y), симметричные точке M относительно координатных осей, также принадлежат той же гиперболе.

Ось симметрии, на которой располагаются фокусы гиперболы, является фокальной осью.

4. Из уравнения гиперболы в полярных координатах r=frac{p}{1-ecosvarphi} (см. рис.3.41,б) выясняется геометрический смысл фокального параметра — это половина длины хорды гиперболы, проходящей через ее фокус перпендикулярно фокальной оси (r=p при varphi=frac{pi}{2}).

5. Эксцентриситет e характеризует форму гиперболы. Чем больше e, тем шире ветви гиперболы, а чем ближе e к единице, тем ветви гиперболы уже (рис.3.43,а).

Действительно, величина gamma угла между асимптотами гиперболы, содержащего ее ветвь, определяется отношением сторон основного прямоугольника: operatorname{tg}frac{gamma}{2}=frac{b}{2}. Учитывая, что e=frac{c}{a} и c^2=a^2+b^2, получаем

e^2=frac{c^2}{a^2}=frac{a^2+b^2}{a^2}=1+{left(frac{b}{a}right)!}^2=1+operatorname{tg}^2frac{gamma}{2}.

Чем больше e, тем больше угол gamma. Для равносторонней гиперболы (a=b) имеем e=sqrt{2} и gamma=frac{pi}{2}. Для e>sqrt{2} угол gamma тупой, а для 1<e<sqrt{2} угол gamma острый (рис.3.43,а).

Эксцентриситет гиперболы и сопряжённая гипербола

6. Две гиперболы, определяемые в одной и той же системе координат уравнениями frac{x^2}{a^2}-frac{y^2}{b^2}=1 и -frac{x^2}{a^2}+frac{y^2}{b^2}=1 называются сопряженными друг с другом. Сопряженные гиперболы имеют одни и те же асимптоты (рис.3.43,б). Уравнение сопряженной гиперболы -frac{x^2}{a^2}+frac{y^2}{b^2}=1 приводится к каноническому при помощи переименования координатных осей (3.38).

7. Уравнение frac{(x-x_0)^2}{a^2}-frac{(y-y_0)^2}{b^2}=1 определяет гиперболу с центром в точке O'(x_0,y_0), оси которой параллельны координатным осям (рис.3.43,в). Это уравнение сводится к каноническому при помощи параллельного переноса (3.36). Уравнение -frac{(x-x_0)^2}{a^2}+frac{(y-y_0)^2}{b^2}=1 определяет сопряженную гиперболу с центром в точке O'(x_0,y_0).


Параметрическое уравнение гиперболы

Параметрическое уравнение гиперболы в канонической системе координат имеет вид

begin{cases}x=acdotoperatorname{ch}t,\y=bcdotoperatorname{sh}t,end{cases}tinmathbb{R},

где operatorname{ch}t=frac{e^t+e^{-t}}{2} — гиперболический косинус, a operatorname{sh}t=frac{e^t-e^{-t}}{2} гиперболический синус.

Действительно, подставляя выражения координат в уравнение (3.50), приходим к основному гиперболическому тождеству operatorname{ch}^2t-operatorname{sh}^2t=1.


Построение гиперболы в канонической системе координат

Пример 3.21. Изобразить гиперболу frac{x^2}{2^2}-frac{y^2}{3^2}=1 в канонической системе координат Oxy. Найти полуоси, фокусное расстояние, эксцентриситет, фокальный параметр, уравнения асимптот и директрис.

Решение. Сравнивая заданное уравнение с каноническим, определяем полуоси: a=2 — действительная полуось, b=3 — мнимая полуось гиперболы. Строим основной прямоугольник со сторонами 2a=4,~2b=6 с центром в начале координат (рис.3.44). Проводим асимптоты, продлевая диагонали основного прямоугольника. Строим гиперболу, учитывая ее симметричность относительно координатных осей. При необходимости определяем координаты некоторых точек гиперболы. Например, подставляя x=4 в уравнение гиперболы, получаем

frac{4^2}{2^2}-frac{y^2}{3^2}=1 quad Leftrightarrow quad y^2=27 quad Leftrightarrow quad y=pm3sqrt{3}.

Следовательно, точки с координатами (4;3sqrt{3}) и (4;-3sqrt{3}) принадлежат гиперболе. Вычисляем фокусное расстояние

2cdot c=2cdotsqrt{a^2+b^2}=2cdotsqrt{2^2+3^2}=2sqrt{13}

эксцентриситет e=frac{c}{a}=frac{sqrt{13}}{2}; фокальныи параметр p=frac{b^2}{a}=frac{3^2}{2}=4,!5. Составляем уравнения асимптот y=pmfrac{b}{a},x, то есть y=pmfrac{3}{2},x, и уравнения директрис: x=pmfrac{a^2}{c}=frac{4}{sqrt{13}}.

Математический форум (помощь с решением задач, обсуждение вопросов по математике).

Кнопка "Поделиться"

Если заметили ошибку, опечатку или есть предложения, напишите в комментариях.

3. Аналитическая геометрия на плоскости

3.6 Гипербола

 

Каноническое уравнение гиперболы
begin{equation}
frac{x^2}{a^2}-frac{y^2}{b^2}=1, (22)
label{hyp1}
end{equation}

соответствующий рисунок 6.

 

Рис 6: Гипербола и ее директрисы.

 

Это уравнение, напомним, выполняется в специальной системе координат, которая называется канонической. Числа $a, , b$ называются вещественной и мнимой полуосями гиперболы. Точки $(pm a, , 0)$ называются вершинами гиперболы.

Выпишем элементарные свойства гиперболы.

1. Из уравнения следует, что $|x| geq a$.

2. Так как переменные $x,y$ входят в уравнение гиперболы только в квадратах, то из того, что $(x,y)$ лежат на гиперболе следует, что точки $(pm x, , pm y)$ также лежат на гиперболе при любом выборе знаков. Это означает, что гипербола симметрична при отражении относительной осей координат и имеет центр симметрии, точку $O$.

3. Гипербола состоит из двух ветвей, содержит точки, сколь угодно далекие от начала координат.

4. Решая уравнение (22) относительно переменной $y$, получаем:
[
y=pm b sqrt{frac{x^2}{a^2}-1}.
]
Когда $|x| rightarrow infty$, ветви гиперболы приближаются к прямым $y=pm bx/a$. Эти прямые называются асимптотами гиперболы, она лежит между ними.

Положим для гиперболы $c=sqrt{a^2+b^2}$, эксцентриситет $varepsilon = c/a$. Эксцентриситет описывает вытянутость гиперболы. Точки $(pm c, , 0)$ называются фокусами гиперболы. Как следует из определений, $c>a$, так что для гиперболы $varepsilon >1$. Отрезки, соединяющие точку $M$ гиперболы с ее фокусами, называются фокальными радиусами точки $M$.

Уравнение гиперболы очень похоже на уравнение эллипса, отличие – в знаке одного из членов уравнения. Поэтому и описание гиперболы в определенном смысле параллельно описанию эллипса. Доказательство теорем по существу повторяет доказательство аналогичных результатов для эллипса.

Теорема. Для того, чтобы точка лежала на гиперболе, необходимо и достаточно, чтобы модуль разности ее фокальных радиусов равнялась $2a$,
begin{equation}
|r_1-r_2|=2a. (23)
label{hyper2}
end{equation}
 

Доказательство.

Теорема. Для того, чтобы точка лежала на гиперболе, необходимо и достаточно, чтобы отношение расстояния от этой точки до фокуса к расстоянию до соответствующей директрисы было равно эксцентриситету гиперболы,
begin{equation}
r_2/d_2=varepsilon. (24)
label{hyp3}
end{equation}
 

Доказательство.

Решение типовых задач.

Задачи.

 

515 Составить уравнение гиперболы,
фокусы которой расположены на оси абсцисс
симметрично относительно начала координат, зная,
кроме того, что:

515.1
ее оси 2a=10 и 2b=8;
515.2
расстояние между
фокусами 2c=10 и ось 2b=8;

515.3
расстояние между
фокусами 2c=6 и эксцентриситет e=3/2;

515.4
ось 2a=16 и
эксцентриситет e=5/4;

515.5
уравнения асимптот и расстояние между фокусами 2c=20;
515.6
расстояние между
директрисами равно 228/13 и расстояние между
фокусами 2c=26;

515.7
расстояние между
директрисами равно 32/5 и ось 2b=6;

515.8
расстояние между
директрисами равно 8/3 и эксцентриситет e=3/2;

515.9
уравнения асимптот и расстояние между директрисами
равно 64/5;
516 Составить
уравнение гиперболы, фокусы которого
расположены на оси ординат симметрично
относительно начала координат, зная, кроме того,
что:
516.1 ее полуоси a=6, b=18
(буквой а мы обозначаем полуось гиперболы,
расположенной на оси абсцисс);
516.2 расстояние между
фокусами 2с=10 и эксцентриситет e=5/3;

516.3
уравнения асимптот и расстояние между вершинами равно
48;
516.4 расстояние между
директрисами равно 50/7 и эксценриситет e=7/5;
516.5 уравнения асимптот и расстояние между директрисами
равно 32/5.
517 Определить полуоси
а и b каждой из следующих гипербол:
517.1 ; 517.2 ; 517.3 ; 517.4 ; 517.5  ; 517.6 ; 517.7 . 518 Дана гипербола . Найти: полуоси а и b, фокусы,
эксцентриситет, уравнения асимптот, уравнения
директрис.
519 Дана гипербола . Найти: полуоси а и b, фокусы,
эксцентриситет, уравнения асимптот, уравнения
директрис.
520 Вычислить площадь
треугольника, образованного асимптотами
гиперболы
и прямой . 521 Установить, какие
линии определяются следующими уравнениями.
Изобразить эти линии на чертеже.
521.1  ; 521.2 ; 521.3  ; 521.4 . 522 Дана точка M1(10; ) на гиперболе . Составить
уравнения прямых, на которых лежат фокальные
радиусы точки М
1.
523 Убедившись, что
точка М
1(-5; 9/4) лежит
на гиперболе
, определить фокальные радиусы точки
М
1.
524 Эксцентриситет
гиперболы e=2, фокальный радиус ее точки М,
проведенный из некоторого фокуса, равен 16.
Вычислить расстояние от точки М до односторонней
с этим фокусом директрисы.
525 Эксцентриситет
гиперболы e=3, расстояние от точки М гиперболы до
директрисы e=3, расстояние от точки М гиперболы до
директрисы равно 4. Вычислить расстояние от точки
М до фокуса, одностороннего с этой директрисой.
526 Эксцентриситет
гиперболы e=2, центр ее лежит в начале координат,
один из фокусов F(12; 0). Вычислить расстояние от
точки М
1 гиперболы
с абсциссой, равной 13, до директрисы,
соответствующей заданному фокусу.
527 Эксцентриситет
гиперболы e=3/2, центр ее лежит в начале координат,
одна из директрис дана уравнением x=-8. Вычислить
расстояние от точки М
1 гиперболы с абсциссой, равной 10, до
фокуса, соответствующего заданной директрисе.
528 Определить точки
гиперболы
, расстояние от которых до
правого фокуса равно 4,5.
529 Определить точки
гиперболы
, расстояние которых до
левого фокуса равно 7.
530 Через левый фокус
гиперболы
проведен перпендикуляр к
ее оси, содержащей вершины. Определить
расстояние от фокусов до точек пересечения этого
перпендикуляра с гиперболой.
531 Пользуясь одним
циркулем, построить фокусы гиперболы
(считая,
что оси координат изображены и масштабная
единица задана).
532 Составить
уравнение гиперболы, фокусы которой лежат на оси
абсцисс симметрично относительно начала
координат, если даны:
532.1 точки M1(6;
-1), M2(-8; ) гиперболы;
532.2 точка М1(-5;
3) гиперболы и эксцентриситет e=;
532.3 точка М1(9/2;
-1) гиперболы с уравнения асимптот
;
532.4 точка М1(-3;
5/2) гиперболы и уравнения
директрис
;
532.5 уравнения асимптот и уравнения директрис .
533
Определить
эксцентриситет равносторонней гиперболы.
534 Определить
эксцентриситет гиперболы, если отрезок между ее
вершинами виден из фокусов сопряженной
гиперболы под углом 60
0. 535 Фокусы гиперболы
совпадают с фокусами эллипса
. Составить
уравнение гиперболы, если ее эксцентриситет e=2.
536 Составить
уравнение гиперболы, фокусы которой лежат в
вершинах эллипса
, а директрисы
проходят через фокусы этого эллипса.
537 Доказать, что
расстояние от фокуса гиперболы
до ее
асимптоты равно b.
538 Доказать, что
произведение расстояний от любой точки
гиперболы
до двух ее асимптот есть
величина постоянная, равная
.
539 Доказать, что
площадь параллелограмма, ограниченного
асимптотами гиперболы
и
прямыми, проведенными через любую ее точку
параллельно асимптотами, есть величина
постоянная, равная ab/2.
540 Составить
уравнение гиперболы, если известны ее полуоси a и
b, центр C(x
0; y0) и фокусы расположены на прямой: 540.1 параллельной оси Ox; 540.2 параллельной оси Oy. 541 Установить, что
каждое из следующих уравнений определяет
гиперболу, и найти координаты ее центра С,
полуоси, эксцентриситет, уравнения асимптот и
уравнения директрис:
541.1  ; 541.2 ; 541.3 . 542 Установить, какие
линии определяются следующими уравнениями.
Изобразить эти линии на чертеже.

542.1
;
542.2
; 542.3 ; 542.4 . 543 Составить
уравнение гиперболы, зная, что:
543.1 расстояние между ее
вершинами равно 24 и фокусы суть F
1(-10;
2), F2(16; 2);
543.2 фокусы суть F1(3; 4), F2(-3; -4) и
расстояние между директрисами равно 3,6;
543.3 угол между
асимптотами равен 90
0 и фокусы суть F1(4; -4), F2(-2;
2).
544 Составить
уравнение гиперболы, если известны ее
эксцентриситет e=5/4, фокус F(5; 0) и уравнение
соответствующей директрисы
. 545 Составить
уравнение гиперболы, если известны ее
эксцентриситет e=13/12, фокус F(0; 13) и уравнение
соответствующей директирсы
. 546 Точка А(-3; -5) лежит
на гиперболе, фокус которой F(-2; -3), а
соответствующая директриса дана уравнением
. Составить уравнение этой гиперболы. 547 Составить
уравнение гиперболы, если известны ее
эксцентриситет e=
, фокус F(2; -3) и
уравнение соответствующей директрисы
.
548 Точка М1(1;
-2) лежит на гиперболе, фокус
которой F(-2; 2), а соответстующая директриса дана
уравнением
. Составить уравнение этой гиперболы.
549 Дано уравнение
равносторонней гиперболы
. Найти
ее уравнение в новой системе, приняв за оси
координат ее асимптоты.
550 Установив, что
каждое из следующих уравнений определяет
гиперболу, найти для каждой из них центр, полуоси,
уравнения асимптот и построить их на чертеже:
550.1 ; 550.2  ; 550.3 . 551 Найти точку
пересечения прямой
и гиперболы . 552 Найти точки
пересечения прямой
и гиперболы . 553 Найти точки
пересечения прямой
и гиперболы . 554 В следующих случаях
определить, как расположена прямая относительно
гиперболы: пересекает ли, касается или проходит
вне ее:
554.1  , ; 554.2 , ; 554.3 , . 555 Определить, при
каких значениях m прямая
: 555.1 пересекает
гиперболу
: 555.2 касается ее; 555.3 проходит вне этой
гиперболы.
556 Вывести условие,
при котором прямая
касается гиперболы . 557 Составить
уравнение касательной к гиперболе
в ее
точке M
1(x1; y1).
558 Доказать, что
касательные к гипербле, проведенные в концах
одного и того же диаметра, параллельны.
559 Составить
уравнения касательных к гиперболе
, перпендикулярных
к прямой
.
560 Составить
уравнения касательных к гиперболе
, параллельных
прямой
.
561 Провести
касательные к гиперболе
параллельно
прямой
и вычислить расстояние d между ними.
562 На гиперболе найти точку М1, ближайшую к прямой , и
вычислить расстояние d от точки М
1 до этой прямой.
563 Составить
уравнение касательной к гиперболе
, проведенных
из точки А(-1; -7).
564 Из точки С(1; -10)
проведены касательные к гиперболе
. Составить
уравнение хорды, соединяющей точки касания.
565 Из точки Р(1; -5)
проведены касательные к гиперболе
. Вычислить
расстояние d от точки Р до хорды гиперболы,
соединяющей точки касания.
566 Гипербола проходит
через точку А(
; 3) и касается прямой . Составить
уравнение этой гиперболы при условии, что ее оси
совпадают с осями координат.
567 Составить
уравнение гиперболы, касающейся прямых
, , при
условии, что ее оси совпадают с осями координат.
568 Убедившись, что
точки пересечения эллипса
и
гиперболы
являются вершинами прямоугольника,
составить уравнения его сторон.
569 Даны гиперболы и какая-нибудь ее касательная, Р –
точка пересечения касательной с осью Ох, Q –
проекция точки касания на ту же ось. Доказать, что
.
570 Доказать, что
фокусы гиперболы расположены по разные стороны
от любой ее касательной.
571 Доказать, что
произведение расстояний от фокусов до любой
касательной к гиперболе
есть
величина постоянная, равная b
2.
572 Прямая касается
гиперболы, фокусы которой находятся в точках F
1(-3;
0), F2(3; 0). Составить
уравнение этой гиперболы.
573 Составить
уравнение гиперболы, фокусы которой расположены
на оси абсцисс симметрично относительно начала
координат, если известны уравнение касательной к
гиперболе
и расстояние между ее
вершинами 2а=8.
574 Доказать, что
прямая, касающаяся гиперболы в некоторой точке М,
составляет равные углы с фокальными радиусами F
1M, F2M и проходит
внутри угла F
1MF2.
575 Из правого фокусы
гиперболы
под углом (<<) к
оси Ох направлен луч света. Известно, что
. Дойдя
до гиперболы, луч от нее отразился. Составить
уравнение прямой, на которой лежит отраженный
луч.
576 Доказать, что
эллипс и гипербола, имеющие общие фокусы,
пересекаются под прямым углом.
577 Коэффициент
равномерного сжатия плоскости к оси Ох равен 4/3.
Определить уравнение линии, в котороую при этом
сжатии преобразуется гипербола
. 578 Коэффициент
равномерного сжатия плоскости к оси Оу равен 4/5.
Определить уравнение линии, в которую при этом
сжатии преобразуется гипербола
. 579 Найти уравнение
линии, в которую преобразуется гипербола
при двух последовательных
равноменых сжатиях плоскости к координатным
осям, если коэффициенты равномерного сжатия
плоскости к осям Ох и Оу соответствуют 2/3 и 5/3.
580 Определить
коэффициент q равномерного сжатия плоскости к
оси Ох, при котором гипербола
преобразуется
в гиперболу
.
581 Определить
коэффициент q равномерного сжатия плоскости к
оси Оу, при котором гипербола
преобразуется
в гиперболу
.
582 Определить
коэффициенты q
1, q2 двух последовательных равномерных
сжатий плоскости к осям Ох и Оу, при которых
гипербола
преобразуется в гиперболу .

Добавить комментарий