Как составить кариотип человека

Кариотипическое исследование, т.е. изучение количества и структуры хромосом с помощью цитогенетических или молекулярных методов, обычно проводится при диагностике выкидышей, бесплодия и генетических дефектов, выявленных у детей. Обследование также полезно, например, в гематоонкологической диагностике, позволяя обнаружить причину некоторых видов рака. Для исследования кариотипа чаще всего используется кровь из периферической вены. Также может быть взят костный мозг, слюна, околоплодные воды или ворсины хориона.

Что такое исследование кариотипа, почему оно проводится только один раз в жизни и что означают аббревиатуры «t, del, inv, +» в результате анализа?

Кариотип – что это такое?

Хромосомы – это структуры, расположенные в ядре каждой соматической клетки организма, позволяющие пространственно организовать дезоксирибонуклеиновую кислоту (ДНК), т.е. генетический материал, являющийся носителем генетической информации.

Кариотип представляет собой набор хромосом, свойственных каждому организму, унаследованных от родителей в момент оплодотворения яйцеклетки. В случае человеческого тела нормальное количество хромосом составляет 46: 23 хромосомы наследуются от матери и 23 от отца.

Двадцать две пары хромосом (от 1 до 22) – аутосомы, т.е. хромосомы, отвечающие за передачу генетической информации, связанной с наследованием соматических признаков (не связанных с полом и определяющих, например, рост, цвет глаз, волос и кожи, склонность к определенным заболеваниям и т.д.). 

Двадцать третья пара хромосом – аллосомы или гетеросомы, т.е. X и Y хромосомы определяющие биологический пол – комплекс, характеризующий женский пол  — XX, мужской пол — XY.

Что такое анализ на кариотип

Исследование кариотипа (кариотипирование) направлено на оценку количества и структуры (морфологии) хромосом, находящихся в метафазной стадии цикла деления клеток.

Анализ выполняется для обнаружения анеуплодии, т.е. наличия дополнительных хромосом или отсутствия одной из хромосом, приводящих:

  • к нарушениям в количестве генетического материала в клетках;
  • структурным аберрациям, т.е. делециям, инверсиям или транслокациям (включая сбалансированные и несбалансированные транслокации), заключающимся в изменении распределения генетического материала в одной или нескольких хромосомах.

Иногда могут возникать отклонения в кариотипе, которые у обремененного ими человека приводят к нарушениям развития или возникновению определенных генетических заболеваний.

В других случаях отклонения в кариотипе не вызывают нарушений у носителя аномального кариотипа, но мешают ему иметь потомство или препятствуют родам, беременности или рождению здорового ребенка (например, сбалансированные транслокации).

Виды исследований кариотипов – классические и молекулярные

Исследования кариотипа могут быть выполнены с использованием двух типов методов:

  • классического микроскопического цитогенетического исследования, состоящего из микроскопической оценки соответствующим образом окрашенных хромосом;
  • более современных молекулярных методов (aCGH) и теста FISH (флуоресцентная гибридизация in situ).

Подготовка к обследованию

Кариотипическое исследование – это исследование, которое можно проводить у пациента один раз в жизни, так как его результат остается неизменным. При этом на обследование не влияют никакие факторы: прием пищи, физические нагрузки, прием лекарств. Подготовка к анализу не требуется.

Кариотипирование проводится с помощью образца венозной крови, взятого у пациента из локтевого сгиба. В обоснованных случаях (например, при пренатальной диагностике) кариотипное исследование может проводиться, например, с использованием околоплодных вод или материала из биопсии ворсин хориона.

В случае классического исследования кариотипа цитогенетическими методами, из взятого у пациента образца крови выделяют лимфоциты и подвергают клеточной культуре in vitro. Затем их рост и размножение ингибируются (подавляются) в тот момент, когда хромосомы лучше всего видны, то есть на стадии метафазы клеточного цикла (фазы деления клеток).

Затем хромосомы окрашивают красителями и подвергают микроскопическому анализу для оценки их количества, размера и структуры, среди прочего, путем оценки участков, видимых после окрашивания.

Как проводят исследование кариотипа классическим методом

Классическое цитогенетическое кариотипирование предполагает микроскопический анализ целых хромосом в метафазной стадии. Хромосомы обычно получают из культивируемых in vitro лимфоцитов, выделенных из периферической крови и подвергнутых воздействию ферментов и окрашиванию с использованием красителей, выбранных для метода.

Благодаря окрашиванию на микроскопическом изображении в системе, характерной для данной пары хромосом, образуются более темные и светлые полосы (Q, G, R, C, T). 

Когда в исследовании используется методика, предотвращающая полосатость, микроскопический анализ основан на классификации хромосом на одну из семи групп (A-G) по длине и расположению центромеры хромосомы (характерное сужение, разделяющее два плеча хромосомы).

Цитогенетическая оценка позволяет изучить количество и структуру всех алло- и аутосом пациента и выявить числовые и структурные аберрации.

Кариотип – молекулярный анализ (FISH) и aCGH

Более современные исследования кариотипа выполняются с использованием сравнительной гибридизации микрочипов (aCGH) и флуоресцентной гибридизации in situ (тест FISH).

  • Метод FISH. Проводится с использованием флуоресцентных («цветно-светящихся») ДНК-зондов и помощью флуоресцентной микроскопии позволяет обнаружить специфическую последовательность ДНК в тестируемом генетическом материале. Метод применяется при изучении клеточных ядер на метафазной и межфазной стадиях и в тех случаях, когда при классическом исследовании кариотипа невозможно определить место перегруппировки или точный тип аберрации (мутации), трещин или транслокации (смещения). Метод FISH позволяет оценить микроделецию и микродупликацию (микродублирование).
  • Метод aCGH. Используя ДНК пациента и эталонную (нормальную) ДНК, метод aCGH с высоким разрешением позволяет обнаруживать дополнительный генетический материал или его отсутствие. В ходе теста генетический материал и эталонная ДНК, полученные от пациента, маркируются с помощью флуоресцентных маркеров, а затем подвергаются процессу гибридизации (соединения, смешивания) с молекулярными зондами на микрочипах с последующим считыванием флуоресценции, испускаемой образцами ДНК. Изображение микрочипов анализируется с помощью методов биоинформатики. 

Преимущество молекулярного тестирования, как и в методе FISH, — возможность обнаружения микроделеций и микродупликаций, которые не могут быть обнаружены с помощью классического цитогенетического метода.

Кариотипическое исследование – показания

Наиболее распространенные показания к кариотипному обследованию у женщин и мужчин относятся:

  • Акушерские проблемы. Трудности с беременностью и вынашиванием беременности, повторные выкидыши, мертворождения;
  • Рождение ребенка с пороками развития;
  • Подготовка к экстракорпоральному оплодотворению

В случае диагностики заболеваний, не связанных с попытками продолжения рода, предпринятыми парой, показание к исследованию кариотипа – подозрение на генетическое заболевание вследствие:

  • аномального фенотипа и пороков развития;
  • интеллектуальной и психической задержки;
  • особенностей из спектра аутизма;
  • отсутствия полового созревания, включая аменорею, дефицит роста, аномальное строение половых органов;
  • семейного анамнеза, отягощенного больным потомством (врожденные дефекты или множественные выкидыши). 

Если результаты неинвазивных пренатальных тестов, выполненных у беременной пациентки, указывают на возможность хромосомных аберраций у плода, также целесообразно кариотипирование из образца околоплодных вод.

В случае анализов, выполняемых в связи с акушерскими проблемами, не каждый аномальный результат кариотипа исключает зачатие здорового потомства парой.

В таких случаях необходимо будет проконсультироваться с генетиком, который представит возможные последствия той или иной ситуации.

Тест кариотипа – нормы и основные генетические аберрации

Результат классического цитогенетического теста заключается в регистрации кариотипа, согласно которому правильный мужской кариотип составляет 46.XY, правильный женский – 46.XX.

Если в кариотипе наблюдаются морфологические аномалии, т.е. так называемые структурные аберрации (структурные мутации), для их записи используют общепринятые сокращения.

Таблица 1. Расшифровка сокращений в результатах кариотипирования

Термин Расшифровка
del делеции, т.е. потери фрагмента генетического материала, начиная с незначительной потери нескольких нуклеотидов и заканчивая отсутствием всей хромосомы;
транслокации, т.е. мутации, заключающейся в перемещении фрагмента хромосомы в другое место той же или второй хромосомы;
inv инверсии, т.е. мутации, при которой хромосома разрывается в двух местах, а свободный фрагмент перед повторным включением в хромосому поворачивается на 180°;
«+» информация о дополнительных хромосомах, присутствующих в кариотипе.

По количественным нарушениям хромосом различают:

  • моносомию – отсутствие одной из хромосом в данной паре;
  • трисомию – наличие третьей, дополнительной хромосомы. 

Аутосомные моносомы смертельны у мальчиков, но не у девочек, у которых есть моносомия, позволяющая выживать и относительно нормальное развиваться, т.е. так называемая моносомия Х-хромосомы – Синдром Тернера. 

Таблица 2. Наиболее распространенные аутосомные трисомии

Патология Нарушение
Синдром Дауна трисомия хромосомы 21
Синдром Эдвардса трисомия хромосомы 18
синдром Патау трисомия хромосомы 13

Трисомии половых хромосом, встречающиеся у мужчин, представляют собой синдром Клайнфельтера (дополнительная Х-хромосома) или синдром Джейкобса/супермужчины (экстра Y-хромосома). У женщин – синдром суперженщины (наличие третьей Х-хромосомы).

Сбалансированные структурные хромосомные изменения (транслокации, инверсии) могут быть новыми (de novo) или более ранними – наследственными. Семейные структурные изменения часто передаются без дальнейших клинических последствий.

Обследование кариотипа – цена, сроки выполнения

Генетические тесты никогда не были дешевыми так как методы исследования связаны с клеточной культурой и трудоемкой микроскопической и биоинформатической оценкой. Эта же причина и длительности ожидания результата – период выполнения исследования до нескольких недель.

Рис. 1. Изображение набора хромосом (справа) и систематизированный женский кариотип 46 XX (слева). Получено методом спектрального кариотипирования.

Кариоти́п — совокупность признаков (число, размеры, форма и т. д.) полного набора хромосом, присущая клеткам данного биологического вида (видовой кариотип), данного организма (индивидуальный кариотип) или линии (клона) клеток. Графическое изображение кариотипа, то есть, набора хромосом при расположении их по группам в зависимости от формы и величины, называют — идиограмма (кариограмма)[1]. Не путать с Идеограмма.

История термина[править | править код]

Л. Н. Делоне предложил термин «кариотип» в своей работе «Сравнительно-кариологическое исследование видов Muscari Mill. и Bellevalia Lapeyr», статья была опубликована в 1922 году в «Вестнике Тифлисского ботанического сада»[2][3]. Л. Н. Делоне определил кариотип как совокупность хромосом в наборе, определяемая их числом, величиной и формой[4]. Л. Н. Делоне предположил, что все виды рода имеют одинаковый набор хромосом («кариотип»), разные роды, по мнению Делоне, обязательно различаются кариотипически[5]. Г. А. Левитский на основании собственных исследований показал, что это не соответствует действительности, и в своей книге «Материальные основы наследственности» развил и уточнил термин «кариотип»[6][7]. В разработке термина участвовали также Сирил Дин Дарлингтон и Майкл Дж. Д. Уайт.

Определение кариотипа[править | править код]

Внешний вид хромосом существенно меняется в течение клеточного цикла: в течение интерфазы хромосомы локализованы в ядре, как правило, деспирализованы и труднодоступны для наблюдения, поэтому для определения кариотипа используются клетки в одной из стадий их деления — метафазе митоза.

Процедура определения кариотипа[править | править код]

Для процедуры определения кариотипа могут быть использованы любые популяции делящихся клеток. Для определения человеческого кариотипа используют, как правило, лимфоциты периферической крови, переход которых от стадии покоя G0 к пролиферации провоцируют добавлением митогена фитогемагглютинина. Для определения кариотипа могут быть использованы также клетки костного мозга или первичная культура фибробластов кожи. Для увеличения числа клеток на стадии метафазы к культуре клеток незадолго перед фиксацией добавляют колхицин или нокадазол[en], которые блокируют образование микротрубочек, тем самым препятствуя расхождению хроматид к полюсам деления клетки и завершению митоза.

После фиксации препараты метафазных хромосом окрашивают и фотографируют; из микрофотографий формируют так называемый систематизированный кариотип — нумерованный набор пар гомологичных хромосом, изображения хромосом при этом ориентируются вертикально короткими плечами вверх, их нумерация производится в порядке убывания размеров, пара половых хромосом помещается в конец набора (см. Рис. 1).

Исторически первые недетализованные кариотипы, позволявшие проводить классификацию по морфологии хромосом, получали окраской по Романовскому — Гимзе, однако дальнейшая детализация структуры хромосом в кариотипах стала возможной с появлением методик дифференциального окрашивания хромосом. Наиболее часто используемой методикой в медицинской генетике является метод G-дифференциального окрашивания хромосом.

Классический и спектральный кариотипы[править | править код]

Рис. 2. Пример определения транслокации по комплексу поперечных меток (полоски, классический кариотип) и по спектру участков (цвет, спектральный кариотип).

Для получения классического кариотипа используется окраска хромосом различными красителями или их смесями: в силу различий в связывании красителя с различными участками хромосом окрашивание происходит неравномерно и образуется характерная полосчатая структура (комплекс поперечных меток, англ. banding), отражающая линейную неоднородность хромосомы и специфичная для гомологичных пар хромосом и их участков (за исключением полиморфных районов, локализуются различные аллельные варианты генов). Первый метод окраски хромосом, позволяющий получить такие высокодетализированные изображения, был разработан шведским цитологом Касперссоном (Q-окрашивание)[8] Используются и другие красители, такие методики получили общее название дифференциального окрашивания хромосом:[9]

  • Q-окрашивание — окрашивание по Касперссону акрихин-ипритом с исследованием под флуоресцентным микроскопом. Чаще всего применяется для исследования Y-хромосом (быстрое определение генетического пола, выявление транслокаций между X- и Y-хромосомами или между Y-хромосомой и аутосомами, скрининг мозаицизма с участием Y-хромосом)
  • G-окрашивание — модифицированное окрашивание по Романовскому — Гимзе. Чувствительность выше, чем у Q-окрашивания, поэтому используется как стандартный метод цитогенетического анализа. Применяется при выявлении небольших аберраций и маркерных хромосом (сегментированных иначе, чем нормальные гомологичные хромосомы)
  • R-окрашивание — используется акридиновый оранжевый и подобные красители, при этом окрашиваются участки хромосом, нечувствительные к G-окрашиванию. Используется для выявления деталей гомологичных G- или Q-негативных участков сестринских хроматид или гомологичных хромосом.
  • C-окрашивание — применяется для анализа центромерных районов хромосом, содержащих конститутивный гетерохроматин и вариабельной дистальной части Y-хромосомы.
  • T-окрашивание — применяют для анализа теломерных районов хромосом.

В последнее время используется методика так называемого спектрального кариотипирования (флюоресцентная гибридизация in situ, англ. Fluorescence in situ hybridization, FISH), состоящая в окрашивании хромосом набором флуоресцентных красителей, связывающихся со специфическими областями хромосом[10]. В результате такого окрашивания гомологичные пары хромосом приобретают идентичные спектральные характеристики, что не только существенно облегчает выявление таких пар, но и облегчает обнаружение межхромосомных транслокаций, то есть перемещений участков между хромосомами — транслоцированные участки имеют спектр, отличающийся от спектра остальной хромосомы.

Анализ кариотипов[править | править код]

Сравнение комплексов поперечных меток в классической кариотипии или участков со специфичными спектральными характеристиками позволяет идентифицировать как гомологичные хромосомы, так и отдельные их участки, что позволяет детально определять хромосомные аберрации — внутри- и межхромосомные перестройки, сопровождающиеся нарушением порядка фрагментов хромосом (делеции, дупликации, инверсии, транслокации). Такой анализ имеет большое значение в медицинской практике, позволяя диагностировать ряд хромосомных заболеваний, вызванных как грубыми нарушениями кариотипов (нарушение числа хромосом), так и нарушением хромосомной структуры или множественностью клеточных кариотипов в организме (мозаицизмом).

Номенклатура[править | править код]

Рис.3. Кариотип 46,XY,t(1;3)(p21;q21), del(9)(q22): показаны транслокация (перенос фрагмента) между 1-й и 3-й хромосомами, делеция (потеря участка) 9-й хромосомы. Маркировка участков хромосом дана как по комплексам поперечных меток (классическая кариотипизация, полоски) так и по спектру флуоресценции (цвет, спектральная кариотипизация).

Human karyotype with bands and sub-bands.png

Для систематизации цитогенетических описаний была разработана Международная цитогенетическая номенклатура (International System for Cytogenetic Nomenclature, ISCN), основанная на дифференциальном окрашивании хромосом и позволяющая подробно описывать отдельные хромосомы и их участки. Запись имеет следующий формат:

[номер хромосомы] [плечо] [номер участка].[номер полосы]

длинное плечо хромосомы обозначают буквой q, короткое — буквой p, хромосомные аберрации обозначаются дополнительными символами.

Таким образом, 2-я полоса 15-го участка короткого плеча 5-й хромосомы записывается как 5p15.2.

Для кариотипа используется запись в системе ISCN 1995[11], имеющая следующий формат:

[количество хромосом], [половые хромосомы], [особенности][12].

Для обозначения половых хромосом у различных видов используются различные символы (буквы), зависящие от специфики определения пола таксона (различные системы половых хромосом). Так, у большинства млекопитающих женский кариотип гомогаметен, а мужской гетерогаметен, соответственно, запись половых хромосом самки XX, самца — XY. У птиц же самки гетерогаметны, а самцы гомогаметны, то есть запись половых хромосом самки ZW, самца — ZZ.

В качестве примера можно привести следующие кариотипы:

  • нормальный (видовой) кариотип домашнего кота:
    38, XY
  • индивидуальный кариотип лошади с «лишней» X-хромосомой (трисомия по X-хромосоме):
    65, XXX
  • индивидуальный кариотип домашней свиньи с делецией (потерей участка) длинного плеча (q) 10-й хромосомы:
    38, XX, 10q-
  • индивидуальный кариотип мужчины с транслокацией 21-х участков короткого (p) и длинного плеч (q) 1-й и 3-й хромосом и делецией 22-го участка длинного плеча (q) 9-й хромосомы (приведён на Рис. 3):
    46, XY, t(1;3)(p21;q21), del(9)(q22)

Поскольку нормальные кариотипы являются видоспецифичными, то разрабатываются и поддерживаются стандартные описания кариотипов различных видов животных и растений, в первую очередь домашних и лабораторных животных и растений[13].

Аномальные кариотипы и хромосомные болезни человека[править | править код]

Нормальные кариотипы человека — 46,XX (женский) и 46,XY (мужской). Нарушения нормального кариотипа у человека возникают на ранних стадиях развития организма: в случае, если такое нарушение возникает при гаметогенезе, в котором продуцируются половые клетки родителей, кариотип зиготы, образовавшейся при их слиянии, также оказывается нарушенным. При дальнейшем делении такой зиготы все клетки эмбриона и развившегося из него организма обладают одинаковым аномальным кариотипом.

Как правило, нарушения кариотипа у человека сопровождаются множественными пороками развития; большинство таких аномалий несовместимо с жизнью и приводит к самопроизвольным абортам на ранних стадиях беременности. Доля выкидышей вследствие нарушений кариотипа в течение первого триместра беременности составляет 50-60 %. 50-60 % от этих нарушений — различные трисомии, 20-25 % — полиплоидия и 15-25 % — моносомия по X- хромосоме, однако достаточно большое число плодов (~ 0,5 %) с аномальными кариотипами донашивается до окончания беременности[14].

Нарушения кариотипа могут также возникнуть и на ранних стадиях дробления зиготы, развившийся из такой зиготы организм содержит несколько линий клеток (клеточных клонов) с различными кариотипами, такая множественность кариотипов всего организма или отдельных его органов именуется мозаицизмом.

Некоторые болезни человека, вызванные аномалиями кариотипов[15],[16]

Кариотипы Болезнь Комментарий
47,XXY; 48,XXXY; Синдром Клайнфельтера Полисомия по X-хромосоме у мужчин
45X0; 45X0/46XX; 45,X/46,XY; 46,X iso (Xq) Синдром Шерешевского — Тёрнера Моносомия по X хромосоме, в том числе и мозаицизм
47,ХХX; 48,ХХХХ; 49,ХХХХХ Полисомии по X хромосоме Наиболее часто — трисомия X
47,ХХ, 21+; 47,ХY, 21+ Синдром Дауна Трисомия по 21-й хромосоме
47,ХХ, 18+; 47,ХY, 18+ Синдром Эдвардса Трисомия по 18-й хромосоме
47,ХХ, 13+; 47,ХY, 13+ Синдром Патау Трисомия по 13-й хромосоме
46,XX, 5р- Синдром кошачьего крика Делеция короткого плеча 5-й хромосомы
46 XX или ХУ, del 15q11-q13 Синдром Прадера-Вилли Делеция в длинном плече 15-й хромосомы

Кариотип некоторых биологических видов[править | править код]

Большинство видов организмов обладает характерным и постоянным набором хромосом. Количество диплоидных хромосом разнится от организма к организму:

Количество хромосом в кариотипе некоторых приматов[17]

Организм Латинское
наименование
Число
хромосом
Примечания
Лемур серый Hapalemur griseus 54—58 Мадагаскар. Лемуровые
Лемуры обыкновенные Lemur 44—60 Мадагаскар. 44, 46, 48, 52, 56, 58, 60
Лемур большой крысиный Cheirogaleus major 66 Мадагаскар. Карликовые лемуры
Лемуры мышиные Mycrocebus 66 Мадагаскар
Лори тонкие Loris 62 Ю. Индия, Цейлон. Лориевые
Лори толстые Nycticebus 50 Ю. Азия. Лориевые
Долгопят западный Tarsius bancanus 80 Суматра, Калимантан. Долгопяты
Капуцин обыкновенный
Капуцин-фавн
Cebus capucinus
Cebus apella
54 Ю. Америка. Капуцины
Игрунка обыкновенная
Игрунка желтоногая
Callithrix jacchus
Callithrix flaviceps
46 Бразилия. Обыкновенные игрунки
Макаки Macaca 42 Азия, С. Африка
Павиан чёрный Cynopithecus niger 42 о-в Сулавеси. Макаки
Мартышки Cercopithecus 54—72 Африка. 54, 58, 60, 62, 66, 68, 70, 72
Орангутаны Pongo 48 Суматра, Калимантан
Шимпанзе Pan 48 Африка
Гориллы Gorilla 48 Африка
Сиаманги Symphalangus 50 Ю. Азия
Гиббон Hylobates 44 Ю. Азия
Человек Homo sapiens 46 Убиквитарно по всей суше
Количество хромосом в кариотипе некоторых домашних животных и хозяйственных растений

Организм Латинское
наименование
Число
хромосом
Примечания
Собака Canis lupus familiaris 78 [18] 76 аутосом, 2 половые хромосомы[19][20]
Кошка Felis catus 38
Корова Bos primigenius 60
Коза домашняя Capra aegagrus hircus 60
Овца Ovis aries 54
Осёл Equus asinus 62
Лошадь Equus ferus caballus 64
Мул Mulus 63 Гибрид осла и кобылы. Стерилен.
Свиньи Suidae 38
Кролики Leporidae 44
Курица Gallus gallus domesticus 78
Индейки Meleagris 82
Кукуруза Zea mays 20 [21]
Овёс Avena sativa 42 [21] Это гексаплоид с 2n=6x=42. Также культивируют диплоиды и тетраплоиды[21].
Пшеница мягкая Triticum aestivum 42 [21] Этот вид является гексаплоидным с 2n=6x=42. Твёрдая пшеница Triticum turgidum var. durum является тетраплоидом 2n=4x=28[21].
Рожь Secale cereale 14 [21]
Рис посевной Oryza sativa 24 [21]
Ячмень обыкновенный Hordeum vulgare 14 [21]
Ананас Ananas comosus 50 [21]
Люцерна посевная Medicago sativa 32 [21] Культивируемая люцерна является тетраплоидной с 2n=4x=32, дикорастущие формы имеют 2n=16[21].
Бобовые Phaseolus sp. 22 [21] Все виды этого рода имеют одинаковое число хромосом, включая P. vulgaris, P. coccineus, P. acutifolis и P. lunatus[21].
Горох посевной Pisum sativum 14 [21]
Картофель Solanum tuberosum 48 [21] Это тетраплоид; дикие формы чаще имеют 2n=24[21].
Табак Nicotiana tabacum 48 [21] Культурный вид тетраплоидный[21].
Редис Raphanus sativus 18 [21]
Капуста огородная Brassica oleracea 18 [21] Брокколи, капуста, кольраби, брюссельская капуста и цветная капуста относятся к одному виду и имеют одинаковое число хромосом[21].
Хлопчатник Gossypium hirsutum 52 [21] 2n=4x; Культивируемый хлопчатник возник в результате аллотетраплоидизации.
Количество хромосом в кариотипе некоторых модельных организмов

Организм Латинское
наименование
Число
хромосом
Примечания
Домовая мышь Mus musculus 40
Крысы Rattus 42
Дрожжи Saccharomyces cerevisiae 32
Муха-дрозофила Drosophila melanogaster 8 [22] 6 аутосом, 2 половые
Нематода Caenorhabditis elegans 11, 12 [23] 5 пар аутосом и пара половых Х-хромосом у гермафородитов, 5 пар аутосом и одна Х-хромосома у самцов
Резуховидка Таля Arabidópsis thaliána 10

Кариотип бурозубки обыкновенной[править | править код]

Кариотип бурозубки обыкновенной составляет от 20 до 33 хромосом в зависимости от конкретной популяции[24].

Примечания[править | править код]

  1. Понятие о кариотипе и идиограмме. Денверская и Парижская классификация хромосом. Дата обращения: 29 февраля 2020. Архивировано 29 февраля 2020 года.
  2. Делоне Л. В. Сравнительно-кариологическое исследование видов Muscari Mill. и Bellevalia Lapeyr // Вестнике Тифлисского ботанического сада. — 1922. — Т. 2, № 1. — С. 1—32.
  3. Battaglia E. Nucleosome and nucleotype: a terminological criticism (англ.) // Caryologia. — 1994. — Vol. 47, no. 3—4. — P. 193—197.
  4. Делоне Н. Л. Глава IV. Пионер радиоселекции профессор Лев Николаевич Делоне // У времени в плену:
    Записки генетика. — М.: Рос. гуманист. о-во, 2010. — 224 с. — ISBN 5-87387-003-9.
  5. Родионов А. В. Григорий Андреевич Левитский и становление эволюционной цитогенетики в советской России // Материалы симпозиума «Хромосомы и эволюция». Симпозиум памяти Г. А. Левитского (1878—1942). Санкт-Петербург. — 2008. — С. 5—11.
  6. Левитский Г. А. Материальные основы наследственности. — Киев: ГИЗ Украины, 1924.
  7. Кариотип // Большая советская энциклопедия : [в 30 т.] / гл. ред. А. М. Прохоров. — 3-е изд. — М. : Советская энциклопедия, 1969—1978.
  8. Caspersson T. et al. Chemical differentiation along metaphase chromosomes. Exp. Cell Res. 49, 219—222 (1968).
  9. Р. Фок. Генетика эндокринных болезней//Эндокринология (под ред. Нормана Лавина) М., «Практика», 1999
  10. E. Schröck, S. du Manoir et al.. Multicolor Spectral Karyotyping of Human Chromosomes. Science, 26 Jul 1996; 273 (5274):494 (in Reports)
  11. ISCN (1995): An International System for Human Cytogenetic Nomenclature, Mitelman, F (ed); S. Karger, Basel, 1995
  12. ISCN Symbols and Abbreviated Terms//Coriell Institute for Medical Research Архивная копия от 15 июля 2006 на Wayback Machine
  13. Resources for Genetic and Cytogenetic Nomenclature//Council of Science Editors Архивировано 13 июня 2007 года.

  14. Jorgensen, Sally Helme; Michael Klein. Miscarriage (неопр.) // Canadian Family Physician  (англ.) (рус.. — 1988. — September (т. 34). — С. 2053—2059. — ISSN 0008-350X.
  15. Международная классификация болезней. Врожденные аномалии [пороки развития], деформации и хромосомные нарушения (Q00-Q99), Хромосомные аномалии, не классифицированные в других рубриках (Q90-Q99)
  16. Хромосомные болезни//НЕВРОНЕТ. Дата обращения: 12 июля 2006. Архивировано 12 ноября 2005 года.
  17. Соколов В.Е. Систематика млекопитающих. — М.: Высш. шк., 1973. — С. 432.
  18. Lindblad-Toh K., Wade C. M., Mikkelsen T. S., et al. Genome sequence, comparative analysis and haplotype structure of the domestic dog (англ.) // Nature : journal. — 2005. — December (vol. 438, no. 7069). — P. 803—819. — doi:10.1038/nature04338. — PMID 16341006.
  19. NCBI Dog Genome Resources. Дата обращения: 2 октября 2017. Архивировано 15 ноября 2019 года.
  20. G. P. Rédei. Genetics manual: current theory, concepts, terms (англ.). — World Scientific, 1998. — P. 1142. — ISBN 9810227809, 9789810227807.
  21. 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 Simmonds, NW (ed.). Evolution of crop plants (неопр.). — New York: Longman, 1976. — ISBN 0-582-44496-9.
  22. Drosophila Genome Project. National Center for Biotechnology Information. Дата обращения: 14 апреля 2009. Архивировано 9 апреля 2010 года.
  23. Hodgkin, J., Karyotype, ploidy and gene dosage (June 25, 2005), WormBook, ed. The C. elegans Research Community, WormBook, doi/10.1895/wormbook.1.3.1. Дата обращения: 25 июля 2016. Архивировано 18 июля 2016 года.
  24. Обыкновенная бурозубка: Хромосомный портрет на фоне ледников. Дата обращения: 11 августа 2013. Архивировано 29 августа 2013 года.

Ссылки[править | править код]

  • Barbara J. Trask, Human Cytogenetics: 46 Chromosomes, 46 Years and Counting. Nature reviews, October 2002, vol. 3, pp. 769—778 (полный текст обзора на сайте лаборатории автора в Fred Hutchinson Cancer Research Center)

Исследование

Что такое кариотип?

Содержание

  1. Цитогенетика, что это?
  2. Как определяют хромосомный набор человека?
  3. Как образуются аномалии хромосомного набора?
  4. К каким заболеваниям могут приводить нарушения кариограммы?
  5. Для чего проводят цитогенетическое исследование?
  6. Как подготовиться к генетическому тесту?
  7. Что показывает молекулярное кариотипирование?
  8. Что делать при выявлении нарушений?

Цитогенетика, что это?

Это раздел генетики, основная задача которого состоит в том, чтобы изучать кариотип человека — число, размер, форму всех 46 хромосом, представляющих собой компактно упакованную белками-гистонами форму ядерной ДНК человека. Митохондрии (энергетические станции) содержат кольцевую молекулу ДНК, но во время кариологического исследования изучают только ядерный материал. Наличие одинакового кариотипа у всех представителей одного вида (включая разделенных географически популяции) и отличающегося у представителей разных видов является определяющим критерием вида: это создает репродуктивную изоляцию между разными видами.

Мужчины и женщины содержат одинаковые неполовые хромосомы (аутосомы): их у человека 22 пары. А последняя пара у полов различается: ХХ у женщин и ХY у мужчин. Y отличается от Х отсутствием участка и содержащихся в нем генов. Нормальный хромосомный набор человека записывают 46ХХ для женщин и 46ХY для мужчин. Он не меняется во время жизни, как и кариотипы большинства организмов на Земле.

Как определяют хромосомный набор человека?

Определить кариотип организма можно, исследовав делящиеся клетки: только во время деления палочкообразные структуры с закодированной информацией о работе всего организма становятся доступны для наблюдения. Вне процесса деления генетический материал представлен распакованной длинной молекулой ДНК, поэтому его трудно исследовать.

Обычно анализ кариотипа (цитогенетическое исследование, кариотипирование, построение кариограммы) проводят у лимфоцитов крови на стадии метафазы непрямого клеточного деления (митоза). Клетки крови обрабатывают веществом, заставляющим их перейти от стадии покоя к делению, а затем другим реагентом (колхицином) останавливают деление на стадии метафазы, когда отчетливо различимая ДНК в виде палочковидных структур располагаются в центре (метафазная пластинка). Стадия метафазы больше всего подходит для цитогенетического исследования. После специального окрашивания под микроскопом подсчитывают количество хромосом и изучают соответствие их структуры норме. Построение кариограммы является не только методом выявления нарушений числа, но позволяет обнаружить большие структурные аномалии, например, утрату, удвоение, перенос участка. Для цитогенетического обследования в зависимости от цели также используют другие клетки: костный мозг, опухоли, плаценты, абортивного материала.

Как образуются аномалии хромосомного набора?

Можно выделить два источника формирования неправильного кариотипа у животных: во время формирования половых клеток (гаметогенеза) и ранних стадий развития эмбриона.

В первом случае аномалии образуются по причине участия в оплодотворении половых клеток с нарушенным набором (это может происходить у сперматозоида или у яйцеклетки). Это может произойти при образовании гамет: сперматогенезе (образование сперматозоидов) или овогенезе (образование яйцеклетки). В ходе гаметогенеза предшественники половых клеток проходят через несколько последовательных делений. Во время разделения или обмена (кроссинговер) генетического материала могут происходить ошибки, например, нарушения расхождения хромосом, утрата, перенос участка с одной на другую. При нарушении расхождения одна клетка содержит больше генетического материала, а другая, соответственно, — меньше. При оплодотворении, в котором участвуют клетки с изменением числа или у которых произошли структурные аномалии, нормальный хромосомный набор зиготы, а потом эмбриона нарушается.

Нарушения генетического материала могут возникнуть на ранних стадиях развития зародыша. Но в таком случае не все клетки человека содержат аномалии, а лишь их часть, образовавшаяся из клетки с измененным наследственным материалом. Присутствие у одного организма клеток с различающимся хромосомным набором называется мозаицизм. Если уровень мозаицизма человека высок (больше 20% клеток с другим набором), то выявить его можно с помощью цитогенетического исследования. Для того, чтобы выявить мозаицизм необходимо исследовать генетический материал нескольких типов клеток, сравнение которых определит разницу кариограмм. Низкий уровень мозаицизма выявить кариотипированием не удастся.

К каким заболеваниям могут приводить нарушения кариограммы?

Нарушения нормального числа, размеров, формы хромосом человека могут приводить к патологиям органов самого человека, а также быть ответственными за бесплодие и привычное невынашивание беременности. В таком случае определяющий кариотип анализ позволяет установить причину заболевания, предсказать риск рождения больного ребенка.

Многие крупные нарушения генетического материала смертельны еще до рождения и приводят к самопроизвольному прерыванию беременности. В таком случае иногда проводят кариотипирование абортивного материала, определяя причину внутриутробной смерти и прогноз дальнейших беременностей.

Есть хромосомные аномалии, приводящие к рождению больного ребенка. Самыми известными из таких болезней являются трисомии. При трисомиях наблюдается присутствие лишней третьей хромосомы в паре. К трисомиям относят синдромы Дауна, Эдвардса, Патау, когда лишняя хромосома наблюдается в 21, 18, 13 парах, соответственно.

Лишняя ДНК может наблюдаться в паре половых хромосом: например, при синдроме Клайнфельтера в ядрах мужского организма не 46 хромосом, а на одну больше: обозначается 47XXY. Нарушениями генетического материала являются моносомии (исчезновение одной, например, синдром Шерешевского-Тернера), делеции (утрата участка, например, синдром кошачьего крика), дупликации (повторение участка), инверсии (поворот участка на 180 градусов), транслокации (перенос участка ДНК). Все эти аномалии хромосом человека можно выявить при сдаче биоматериала на цитогенетическое исследование.

Для чего проводят цитогенетическое исследование?

Процедура исследования кариотипа называется кариотипирование. Результат кариотипирования покажет наличие или отсутствие изменений кариотипа у ребенка или взрослого. Анализ кариотипа можно проводить даже у новорожденного. При кариотипировании исследуется общее число хромосом и структура каждой отдельно.

Анализ на кариотип супругов рекомендуют проводить во время планирования беременности при наличии родственников, у которых есть хромосомные аномалии, при наличии у супругов ребенка, у которого есть структурные аномалии хромосом человека или нарушения числа хромосом, при воздействии на организмы обоих супругов или одного радиоактивного излучения.

После наступления беременности возможно провести пренатальное кариотипирование плода для определения нарушений числа хромосом или их структуры. Такой тест сдают на ранних сроках беременности. Обычно его рекомендуют после положительного результата скринингового исследования или при наличии риска рождения ребенка с хромосомной аномалией. Забор материала для исследования может быть инвазивным (исследуют амниотическую жидкость, ворсины хориона, ткань плаценты) и неинвазивным (исследуют кровь матери).

При кариотипировании ядерную ДНК окрашивают специальными красителями, позволяющими проводить анализ и выявлять неоднородные участки в виде полос. Сначала сравнивают специфический “рисунок” окрашивания в виде полос (бэндов) с эталонным и группируют парами. Эта методика носит название дифференциального окрашивания хромосом (бэндинг). Без специального красителя не удастся обнаружить структурные аномалии.

Как подготовиться к генетическому тесту?

Анализ крови на кариотип у взрослого или ребенку обычно включает забор крови, выращивание в лабораторных условиях культуры лимфоцитов периферической крови, остановку клеточного деления колхицином, приготовление клеточных препаратов, процедуру дифференциального окрашивания, анализ количества пар и структуры каждой под микроскопом. Кариологический анализ не требует специальной подготовки человека перед сдачей крови: кровь на кариограмму сдают также как обычный венозный анализ крови. Человеку нужно сдавать такой генетический анализ один раз в жизни, так как кариограмма не меняется.

В онкологии применяют исследование генетического материала клеток опухолей, для этого берут биопсию новообразования. Это позволяет выявить хромосомные аномалии клеток рака, что помогает определить тип опухоли, поставить точный диагноз, назначить подходящее лечение. Подготовиться к анализу биопсии опухолевой ткани поможет врач. Перед кариотипированием плода подготовка зависит от метода забора материала. Подготовительные процедуры различаются для инвазивных и неинвазивных методов. Подготовиться к инвазивному забору материала поможет врач. Сдавать анализ на кариотип плода неинвазивным методом необходимо также, как анализ периферической крови из вены.

Что показывает молекулярное кариотипирование?

Исследование кариотипа выявляет перестройки ядерной ДНК. Сдавать кариотип можно для обычного кариотипирования или молекулярного. Молекулярное кариотипирование является более точным, чем классическое. Поэтому с помощью этого метода выявляют аномалии меньшего размера и хромосомные аномалии плода раньше. Проводится оно методом хромосомного микроматричного анализа (ХМА). В этой сложной технологии происходит связывание фрагментов генетического материала человека со специальным ДНК-чипом (микроматрицей) и последующий анализ связавшихся участков. Для исследования используют не клеточную массу, а выделенную ДНК, снижая влияние качества биоматериала на результат. Молекулярное кариотипирование позволяет выявить хромосомные перестройки небольшого размера (вариации числа копий участков ДНК, CNV), не обнаруживаемые во время проведения стандартного цитогенетического исследования. Молекулярное кариотипирование применяется не только во время беременности, но также детям и взрослым. Заказать молекулярное кариотипирование вы можете на сайте Genotek.

Что делать при выявлении нарушений?

Если исследование выявило несоответствие хромосом норме по числу или строению, то необходимо пройти консультацию врача-генетика. Анализ кариотипа показывает наличие конкретного нарушения, определить клиническое значение и поставить диагноз может только врач. Если цитогенетическое исследование проводилось плоду, то генетик определит тактику ведения беременности. Результат кариотипа супругов поможет интерпретировать врач, а также определит риски рождения больного ребенка, расскажет о способах родить здорового ребенка при наличии генетических нарушений у родителей. К таким способам относятся методы вспомогательных репродуктивных технологий (ЭКО, экстракорпоральное оплодотворение; ИКСИ, инъекция сперматозоида в цитоплазму ооцита; использование донорских половых клеток, суррогатное материнство) и предимплантационная генетическая диагностика эмбрионов перед переносом их в матку.

Кариотипирование как метод диагностики хромосомных болезней

В клетках каждого человека заложена программа, исходный код, определяющий абсолютно всё. Цвет глаз, волос и кожи, рост, уровень интеллекта, даже характер и склонность к определённым заболеваниям – молекула ДНК хранит эту информацию, как жёсткий диск компьютера.

Если проводить такое сравнение, вся генетическая информация хранится в 46 папках. Каждая папка, содержащая нашу программу, называется хромосомой. Правильное считывание программы – залог точной работы системы.

Но что если переименовать, скопировать или удалить одну или более папку? В компьютере – придётся звать IT-специалиста. В человеческом организме такие изменения приводят к наследственным заболеваниям.

Человек имеет 46 хромосом, из них 1 пара отвечают за пол. Можно увидеть хромосомный набор человека под микроскопом, сфотографировать. Выстроить их попарно по размеру, форме. Определить кому, мужчине или женщине, соответствуют хромосомы.

Кариотип – хромосомный набор, принадлежащий определённому индивидууму, зафиксированный и выстроенный по размерам, форме, числу для хромосомного анализа.
Кариотип описывается следующими характеристиками:

  • число хромосом; 
  • размер; 
  • длина плеч;
  • позиция центромер; 
  • паттерны окрашивания или бандинг; 
  • дефекты (отсутствие, удвоение, инверсия, перемещение участков хромосом).

При многих наследственных заболеваниях зафиксировано изменение определённой хромосомы человека. Кариотип по этой причине обязательно входит в программу цитогенетического анализа и медицинской генетической консультации.

Нормальный кариотип человека состоит из 46 хромосом без видимых дефектов, из них 1 пара называется половыми хромосомами. Кариотип женщины имеет 2 Х хромосомы. Кариотип мужчины имеет 1 Х и 1 Y хромосому. Заболевания, сопровождающиеся патологическими изменениями кариотипа, называются хромосомными. Пример хромосомной болезни – синдром Дауна.

Кариотип при этой патологии представлен 47 хромосомами, у 21 пары обнаруживается добавочная, отвечающая за болезнь. Нормальный кариотип не исключает наличия генетических болезней, при которых изменений характеристики кариотипа не выявляется.

Определить кариотип необходимо в случае наличия любых наследственных заболеваний, бесплодии, невынашивании беременности.

Из-за возможности определить, мужской данный кариотип или женский, метод применяют в судебной медицине.

Кариотип животных отличается числом и видом хромосом. По образцам клеток возможно определить вид животного и его пол. Этот метод применяется в судебной медицине и сельском хозяйстве.
 

Как проводится анализ кариотипа человека

Кариотип человека определяют, используя культуру клеток, взятых у пациента. Определение кариотипа – достаточно сложная и долгая процедура. Определяют кариотип ин витро, т. е. в пробирке, на культуре клеток.

На первом этапе выделяют клетки, подходящие для этой процедуры. Это могут быть лимфоциты крови, клетки костного мозга или кожи. Выделенные клетки какое-то время культивируют в специальном инкубаторе, добавляя в культуру вещество, заставляющее их активно размножаться делением.

Вещество колхицин останавливает деление на этапе под названием метафаза. После добавления колхицина клетки фиксируют и окрашивают специальным красителем, активно поглощающимся хромосомами. Обычный микроскоп позволяет увидеть хромосомы в ядре клетки.

Видимый кариотип клетки несколько хаотичен. Специалист (медицинский генетик) фотографирует хромосомы и составляет карту. Процесс называется кариотипированием. Расположив хромосомы по парам, проводят анализ.

Показания к проведению анализа

Когда нужно определять кариотип? Генетика не прощает ошибок. Любое грубое нарушение нормального строения хромосом приводит к стиранию дефектного кода. Клинически это может проявляться бесплодием или выкидышами на ранних сроках беременности.

Природа редко допускает рождение больных детей. Исключением является ряд хромосомных болезней. Например, синдром Дауна, синдром Патау, синдром Клайнфельтера, синдром Тернера – Шерешевского, синдром Эдвардса, синдром кошачьего крика, синдром Прадера-Вилли и др. Описано более 700 патологий. Большинство больных не доживают до 1 года. Ведущий симптом у выживших детей – слабоумие, психические расстройства, пороки развития.

Любое наследственное заболевание является показанием к проведению анализа кариотипа. К сожалению, часто анализ делается ретроспективно, лишь подтверждая диагноз уже после рождения больного ребёнка.

Часть заболеваний не всегда приводят к рождению только больных детей. При наличии вероятности рождения больного ребёнка проводят специальную процедуру во время беременности, изучая кариотип плода. Определяют кариотип плода на клетках, полученных из плодных оболочек. В случае наличия грубых изменений беременность необходимо прервать.

Кариотип супругов определяется ещё до беременности. Врач-генетик изучит вероятность рождения больного ребёнка. Не старайтесь обмануть природу, если вам рекомендовали избегать беременности.
 

Причины аномалий хромосом

Возраст родителей старше 35 лет часто увеличивает вероятность хромосомных нарушений. Вероятно, механизм старения организма влияет на нормальное оплодотворение.

Работа с мутагенами, химикатами и вредными излучениями приводит к мутациям в половых клетках.

Инцест или кровные браки увеличивают вероятность возникновения хромосомных болезней.

Анализ можно сделать в большинстве крупных городов. Если нет возможности в своём городе определить кариотип, отправляйтесь в Москву. В столице много государственных и частных клиник, качественно проводящих этот анализ.

Кариотипирование супругов показано многим парам, в первую очередь тем, кто столкнулся с проблемой бесплодия и невынашивания беременности. Невозможность иметь детей нередко связана с генетическими нарушениями у одного или обоих партнеров (1).

Кариотипирование поможет выявить проблему и подобрать варианты ее решения.

Подробнее о процедуре рассказывают наши эксперты, врач-генетик Александр Резник и врач акушер-гинеколог, репродуктолог Ольга Фотина.

Что такое кариотипирование

Кариотипирование — исследование хромосомного набора человека. Этот анализ часто делают супружеские пары на этапе планирования беременности. Кариотипирование позволяет оценить форму, количество и структуру хромосом, и выявить нарушения, которые способны помешать зачатию и рождению здорового ребенка (1).

Хромосомы — это мельчайшие клеточные структуры, которые отвечают за хранение, воспроизводство и передачу генетической информации. Набор хромосом называют кариотипом. В норме у человека должно быть 46 хромосом, которые расположены попарно. 22 пары имеют одинаковое строение у мужчин и женщин, а 23-я пара (ХY или XX) определяет половую принадлежность человека. Кариотип здорового мужчины выглядит как 46,ХY,  женщины — 46,XX (2). Изменения в количестве и структуре хромосом говорят о генетической поломке, которая может привести к бесплодию, самопроизвольному аборту и рождению ребенка с наследственными заболеваниями. 

Хромосомы есть в любых клетках организма, но для кариотипирования супругов лучше всего подходят лейкоциты. Для анализа берут образец венозной крови. Биоматериал обрабатывают специальными реагентами, которые заставляют клетки делиться и останавливают процесс деления в определенной стадии — метафазе митоза (2). Только в этом случае можно отчетливо увидеть структуру хромосом и обнаружить изменения.

Полезная информация о кариотипировании 

Когда появился метод В середине ⅩⅩ века (3). Это одно из первых генетических исследований.
Что изучают во время исследования Количество и структуру хромосом
Кто расшифровывает результаты анализов  Лабораторный генетик 

Методы выполнения анализа на кариотип

Исследование хромосомного набора выполняют с помощью разных методов, которые отличаются друг от друга показаниями, технологией проведения, чувствительностью и объективностью. 

Цитогенетический

Базовое исследование, для которого используется венозная кровь. Из биоматериала выделяются и культивируются лейкоциты. Затем используют специальные методы фиксации и окраски хромосом и реагенты, которые сначала вызывают деление клеток, а затем останавливают его на стадии метафазы митоза (это вид деления, в результате которого получается две идентичные клетки). После этого хромосомы исследуют под микроскопом, группируют их и анализируют (2).

Молекулярно-генетический или хромосомный матричный анализ

Как правило, этот анализ выполняется для исследования абортивного материала, когда нужно выяснить, почему беременность не развивается или самопроизвольно прерывается. Помимо этого, хромосомный микроматричный анализ назначается при несиндромальной умственной отсталости, расстройствах аутистического спектра, множественных пороках развития. 

Молекулярно-генетический анализ дает более точные и объективные результаты. Стандартный кариотип в такой ситуации позволит выявить причину лишь в 2-3% случаев, а хромосомный микроматричный анализ помогает поставить диагноз в 12-20% случаев.

Спектральное кариотипирование (SKY) и флуоресцентная гибридизация (FISH)

Эти анализы назначает врач-генетик в тех случаях, когда необходимо дополнительное цитогенетическое исследование. Оба метода позволяют визуализировать (рассмотреть) все хромосомы одновременно, а для каждой хромосомы подбирается комбинация уникальных цветов — это помогает с легкостью их идентифицировать. 

Методы подходят для выявления самых незначительных аберраций — изменений в хромосомном наборе. Обычно эти исследования используются для скрининга пациентов с умственной отсталостью и некоторыми видами рака (4).

Показания для кариотипирования

Основные показания для этого исследования — это проблемы в репродуктивной сфере: бесплодие и привычное невынашивание беременности. Кроме того, кариотипирование могут рекомендовать мужчинам с нарушением сперматогенеза и женщинам при отсутствии менструаций (1). Рассмотрим самые распространенные показания.

Рождение в семье ребенка с врожденными пороками развития, хромосомной патологией 

Появление такого ребенка возможно даже у внешне здоровых родителей в том случае, если они являются носителем какой-то генетической мутации. Дефектный ген может быть у одного или обоих супругов.

Планирование или неудачные попытки ЭКО 

При планировании экстракорпорального оплодотворения требуется досконально проверить состояние здоровья будущих родителей. В числе прочих исследований мужу и жене могут рекомендовать кариотипирование, которое позволит исключить или подтвердить генетические риски. Важность анализа возрастает, если ранее у пары были неудачные попытки ЭКО.

Выкидыши и замершие беременности, рождение мертвого ребенка или его смерть в младенческом возрасте

Зародыши с генетическими дефектами часто не «приживаются» в организме женщины, что становится причиной выкидыша и замершей беременности. Мертворождение и ранняя младенческая смертность также нередко связаны с пороками развития из-за генетических аномалий.

Отсутствие менструаций

У некоторых женщин менструации отсутствуют в течение всей жизни. Это состояние называется аменореей, а его причиной могут быть «поломки» в половых хромосомах.

Что покажет кариотипирование

В заключении специалист укажет выявленные изменения или сделает запись о том, что кариотип нормальный (46,XY или 46,XX). Различные изменения в геноме обозначают с помощью цифр и букв латинского алфавита. Они могут быть количественными и структурными.

Количественные изменения возникают, когда у человека не хватает какой-то хромосомы или наоборот, есть лишние. Структурные нарушения связаны с утратой или удвоением участка хромосомы, поворотом ее фрагмента на 180˚ или его перемещением на другое место (5).

Расскажем подробнее, что может показать кариотипирование.

Трисомия

Это наличие лишней хромосомы. Такую обозначают значком «+». Рядом с ним указывают цифру — это «порядковый номер» хромосомы. Самая распространенная трисомия связана с синдромом Дауна и обозначается как 47,XX,+21 или 47,XY,+21 (2, 5).

Моносомия

Или отсутствие хромосомы. Например, отсутствие половой хромосомы наблюдается при синдроме Шерешевского-Тернера и обозначается как 45X (5).

Делеция 

Так называется отсутствие участка хромосомы. Это нарушение обозначают с помощью символа «del» (5).

Транслокация

Аномалия, при которой участки хромосомы меняются местами. Транслокация обозначается буквой «t», после нее в скобках указывают «порядковые номера» хромосом, чьи фрагменты заняли чужое место (5).

Дупликация

Удвоение какого-то участка хромосомы. Символ дупликации — «dup».

Инверсия

Этим термином называют поворот участка хромосомы на 180˚. Ее обозначение — «inv».

В какую фазу митоза нужно сдавать анализ на кариотип 

Анализ можно сдавать в любое время. Специалисты в лаборатории подготовят биоматериал таким образом, чтобы остановить деление клеток в метафазу митоза.

Подготовка к анализу на кариотип

Как объясняет врач-генетик Александр Резник, специальной подготовки перед анализом не требуется. Но все же нужно придерживаться некоторых несложных рекомендаций.

Не принимать антибиотики

В течение месяца перед исследованием нужно отказаться от приема антибиотиков. Дело в том, что эти лекарства могут влиять на состояние клеток крови. Отказ от препаратов нужно согласовать с лечащим врачом.

Восстановиться после болезни

Сдавать кровь на кариотипирование можно не раньше, чем через 2 недели после перенесенных инфекционных или острых воспалительных заболеваний, в том числе после гриппа, ОРВИ, коронавирусной инфекции.

Отказаться от алкоголя и никотина

Накануне исследования рекомендуется не курить и не употреблять алкоголь. Никотин и этиловый спирт могут негативно повлиять на качество биоматериала.

Не сдавать анализы натощак

Многие анализы крови сдают на голодный желудок, но кариотипирование к ним не относится. Исследование нужно проходить спустя 1-1,5 часа после еды.

Расшифровка результатов анализа на кариотип

Нормальные результаты кариотипирования супругов выглядят как 46,ХY у мужчины и 46,XX у женщины. Другой набор букв и цифр будет говорить о каких-то отклонениях в геноме. А вот объяснить, насколько серьезны эти отклонения, сможет только врач.

Рассмотрим самые распространенные хромосомные аномалии:

  • 47,XXY; 48,XXXY — такой кариотип бывает у мужчин при синдроме Клайнфельтера, который вызывает бесплодие;
  • 45X; 45X/46XX; 45,X/46,XY — эти изменения связаны с синдромом Шерешевского-Тернера. Наличие этого синдрома у плода может привести к выкидышу, преждевременным родам, рождению ребенка с пороками развития;
  • 47,ХХ,+21; 47,ХY,+21 — кариотип, характерный для синдрома Дауна;
  • 47,ХХ,+18; 47,ХY,+18 — этот кариотип говорит о синдроме Эдвардса, который становится причиной тяжелых пороков сердца и умственной отсталости у ребенка.

Хромосомных нарушений множество, поэтому перечислить все возможные варианты кариотипа нереально. За расшифровкой результата анализа надо обратиться к врачу-генетику.

Что делать, если выявлены отклонения

Совет здесь может быть только один — пойти на консультацию к врачам, генетику и репродуктологу. Специалисты расскажут, есть ли у супругов возможность зачать и родить здорового малыша естественным способом или с помощью репродуктивных технологий.

Цены на кариотипирование в 2023 году

Указаны средние цены: в том или ином регионе/городе можно найти более бюджетные и дорогие варианты. 

Москва и область 8500 рублей
Санкт-Петербург и Ленинградская область 5600 рублей
Казань  7300 рублей
Екатеринбург и Свердловская область 6000 рублей
Калининград и Калининградская область 7000 рублей
Волгоград 6600 рублей
Хабаровск 7400 рублей
Краснодар и Краснодарский край 7200 рублей
Новосибирск 7500 рублей
Нижневартовск  6500 рублей

Отзывы врачей о кариотипировании

— Кариотипирование — базовое исследование для супружеских пар, которые ответственно подходят к планированию беременности и хотят заранее узнать о возможных рисках, — отмечает врач-генетик Александр Резник.

— Кариотипирование показано при целом ряде нарушений репродуктивной функции, — отмечает врач акушер-гинеколог Ольга Фотина. — Согласно рекомендациям ESHRE, определение кариотипа необходимо парам с привычной потерей беременности после оценки рисков. Индивидуальное обследование должно быть проведено при резком снижении активно-подвижных сперматозоидов либо их полном отсутствии у мужчины. Показание к кариотипированию у женщины — отсутствие менструации в репродуктивном возрасте.

Популярные вопросы и ответы

Многие супружеские пары планируют сдать анализ на кариотип и хотели бы больше узнать об этой процедуре. На некоторые популярные вопросы отвечают наши эксперты: врач-генетик Александр Резник и врач акушер-гинеколог, репродуктолог Ольга Фотина.

Нужно ли делать кариотипирование перед процедурой ЭКО?

Александр Резник отмечает, что при планировании ЭКО желательно сделать кариотипирование. Это позволит полнее оценить риски и будет сразу понятно, в каком объеме надо исследовать эмбрионы. Если у пары обнаружили генетические отклонения, зародыши перед имплантацией нужно проверить на наличие хромосомных аномалий.

Что такое кариотипирование с абберациями и каковы его отличия?

Кариотипирование с аберрациями позволяет обнаружить непостоянные изменения в структуре и количестве хромосом. Такие изменения не являются врожденными и появляются в течение жизни человека под воздействием различных вредных факторов. 

В отличие от обычного кариотипирования при исследовании с абберациями анализируется больше клеток — 100 штук вместо 12-15. Это исследование проводится в онкогематологии и в тех случаях, когда человек подвергался воздействию радиации или других мутагенных факторов.

Сколько времени ждать результатов кариотипирования?

В среднем надо ориентироваться на месяц. Исследование обычно занимает от 21 до 30 дней.

Источники

  1. Генетический фактор невынашивания беременности. Актуальность проблемы. Доброхотова Ю. Э. // Журнал «Лечащий врач» от 15.04.2022. URL: https://www.lvrach.ru/2036/partners/15438277
  2. Лекция «Цитогенетические методы: кариотипирование, FISH». Кибанов М. URL: https://genschool.ru/wa-data/public/site/1.8_Cytogenetics_FISH_KibanovMV.pdf
  3. Cytogenetics: Past, Present And Future. Thirumulu Ponnuraj Kannan and Bin Alwi Zilfalil // The Malaysian Journal of Medical Sciences. 2009. URL: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3336168/
  4. Spectral karyotyping. Eduardo Calonje, Suzanne Peterson, Jerold Chun // Sciencedirect. 2007. URL: https://www.sciencedirect.com/topics/biochemistry-genetics-and-molecular-biology/spectral-karyotyping
  5. Малый практикум по цитогенетике: изучение кариотипа человека. Трофимова И. Л. Учебно-методическое пособие. 2018 год. URL: https://www.mcrm.ru/upload/iblock/bb0/Malyi_-praktikum-po-tsitogenetike.pdf

Добавить комментарий