Как составить кинетическое уравнение процессов

Кинетическими
называют
уравнения, описывающие влияние
концентрации реагирующих веществ на
скорость химических реакций. Кинетические
уравнения составляют на основе закона
действующих масс (Гульдберг и Вааге,
1867): скорость
химических реакций прямо пропорциональна
произведению концентраций реагирующих
веществ, возведенных в некоторые
показатели степени.

Математическое
выражение закона действующих масс для
условной реакции:
аА +
bВ
+
cС
→ Р

записывается
следующим образом:

= k
[A]x
[B]y
[C]z,

где k — константа
скорости, являющаяся фундаментальной
кинетической характеристикой реакций.
Она зависит от температуры и природы
веществ и не зависти от их концентрации;

[A], [B], [C] — концентрации
реагирующих веществ, моль/л;

x,
y
и z
— порядок реакции по веществам.

Общий
порядок реакции (n) равен: n = x
+ y
+ z.

Порядок реакции
определяется только экспериментально.
Он является величиной формальной и
может принимать любые значения:
положительные, отрицательные, целые,
дробные, а также 0. Например,
для
радикальной реакции H2
+ Br2
→ 2 HBr кинетическое уравнение записывается
следующим образом:

= k[H2][Br2]1/2.

Только для простых
реакций порядок и молекулярность
совпадают. Так, для реакции H2
+ I2
2 HI, кинетическое уравнение имеет вид:


= k [H2][I2].

Кинетическое
описание простых реакций

1)
Реакции
нулевого порядка

(n
=
0).
К ним
относятся
фотохимические,
каталитические и ферментативные реакции
(при высокой концентрации субстрата),
то есть такие реакции, скорость которых
не зависит от концентрации реагирующих
веществ (рисунок 21).

Рисунок
21.
Кинетическая
кривая реакций нулевого порядка

Условное
уравнение реакции нулевого порядка: А
®
Р.

Кинетическое
уравнение:
=k
[A]0=
k.

Константа
скорости рассчитывается по уравнению:

Время
полуреакции

(τ½)
— это время, необходимое для уменьшения
концентрации исходного вещества в два
раза. Для реакций нулевого порядка оно
составляет:

2)
Реакции
первого порядка

(n
=
1). К ним
относятся каталитические и ферментативные
реакции (при низкой концентрации
субстрата), радиоактивный распад,
выведение лекарственных препаратов из
организма человека (рисунок 22). Условное
уравнение реакции первого порядка: А
®
Р.

Кинетическое
уравнение:

= k
[A]

Константа
скорости рассчитывается по уравнению:

Рисунок
22. — Кинетическая
кривая реакции первого порядка

В

ремя полуреакции для реакций первого
порядка составляет:

Период полураспада
некоторых радионуклидов:

8 дней

27 лет

26,6 Года

3) Реакции
второго порядка

(n
= 2). К ним относятся гидролиз белков,
жиров, углеводов и других биологически
активных соединений.

Условные
уравнения
реакции второго порядка:
2 А ®
Р
или А
+ В
®
Р

Кинетические
уравнения:

= k·[A]2
или

= k
[A]·[В]

Константа
скорости рассчитывается по уравнению:

k
=

Время
полуреакции для реакций второго порядка
составляет:

τ½
=
или τ½
=

Кинетическое
описание сложных реакций

  1. Обратимые
    реакции
    .

Условное
уравнение обратимой реакции:

Кинетическое
уравнение:


= k1[A]
– k2[B],

где
k1
и k2
– константы
скорости прямой и обратной реакции.

  1. Параллельные
    реакции.

Условное
уравнение параллельной реакции:

Кинетическое
уравнение:


=
k1
([A]0
– [B])
+ k2
([A]0
– [C])

Например,
термическое разложение калий хлората
можно представить как:

  1. Последовательные
    реакции.

Условное
уравнение последовательной реакции:

,

где
k1
— константа первой стадии процесса;

k2
— константа
второй стадии процесса.

Скорость
реакции равна скорости ее медленной
(лимитирующей) стадии. Если лимитирующей
является первая стадия процесса, то
кинетическое уравнение записывается
как

= k2
[A],
а если
медленно протекает вторая стадия,
то

= k2
[B]

Соседние файлы в предмете [НЕСОРТИРОВАННОЕ]

  • #
  • #
  • #
  • #
  • #
  • #
  • #
  • #
  • #
  • #
  • #

Химическая кинетика

Напечатано:: Гость
Дата: воскресенье, 21 мая 2023, 11:28

Описание

   Законы химической термодинамики позволяют определить направление и предел протекания возможного при данных условиях химического процесса, а также его энергетический эффект. Однако термодинамика не может ответить на вопросы о том, как осуществляется данный процесс и с какой скоростью. Эти вопросы – механизм и скорость химической реакции – и являются предметом химической кинетики.

Оглавление

  • 1. Скорость химической реакции
    • 1.1. Кинетическое уравнение химической реакции. Порядок реакции
    • 1.2. Реакции нулевого порядка
    • 1.3. Реакции первого порядка
    • 1.4. Реакции второго порядка
    • 1.5. Методы определения порядка реакции

1. Скорость химической реакции

    Дадим определение основному понятию химической кинетики – скорости химической реакции:

    Скорость химической реакции есть число элементарных актов химической реакции, происходящих в единицу времени в единице объема (для гомогенных реакций) или на единице поверхности (для гетерогенных реакций).

    Скорость химической реакции есть изменение концентрации реагирующих веществ в единицу времени.

    Первое определение является наиболее строгим; из него следует, что скорость химической реакции можно также выражать как изменение во времени любого параметра состояния системы, зависящего от числа частиц какого-либо реагирующего вещества, отнесенное к единице объема или поверхности – электропроводности, оптической плотности, диэлектрической проницаемости и т.д. и т.п. Однако наиболее часто в химии рассматривается зависимость концентрации реагентов от времени. В случае односторонних (необратимых) химических реакций (здесь и далее рассматриваются только односторонние реакции) очевидно, что концентрации исходных веществ во времени постоянно уменьшаются (ΔСисх < 0), а концентрации продуктов реакции увеличиваются (ΔСпрод > 0). Скорость реакции считается положительной, поэтому математически определение средней скорости реакции в интервале времени Δt записывается следующим образом:

                    (II.1)

    В различных интервалах времени средняя скорость химической реакции имеет разные значения; истинная (мгновенная) скорость реакции определяется как производная от концентрации по времени:

                     (II.2)

Графическое изображение зависимости концентрации реагентов от времени есть кинетическая кривая (рисунок 2.1). 

  

     Рис. 2.1  Кинетические кривые для исходных веществ (А) и продуктов реакции (В). 

    Истинную скорость реакции можно определить графически, проведя касательную к кинетической кривой (рис. 2.2); истинная скорость реакции в данный момент времени равна по абсолютной величине тангенсу угла наклона касательной:

 

     Рис. 2.2  Графическое определение Vист.

                  (II.3)

    Необходимо отметить, что в том случае, если стехиометрические коэффициенты в уравнении химической реакции неодинаковы, величина скорости реакции будет зависеть от того, изменение концентрации какого реагента определялось. Очевидно, что в реакции

2 + О2  →  2Н2О

концентрации водорода, кислорода и воды изменяются в различной степени:

ΔС(Н2) = ΔС(Н2О) = 2 ΔС(О2).

     Скорость химической реакции зависит от множества факторов: природы реагирующих веществ, их концентрации, температуры, природы растворителя и т.д.

      Одной из задач, стоящих перед химической кинетикой, является определение состава реакционной смеси (т.е. концентраций всех реагентов) в любой момент времени, для чего необходимо знать зависимость скорости реакции от концентраций. В общем случае, чем больше концентрации реагирующих веществ, тем больше скорость химической реакции. В основе химической кинетики лежит т. н. основной постулат химической кинетики:

      Скорость химической реакции прямо пропорциональна произведению концентраций реагирующих веществ, взятых в некоторых степенях.

      Т. е. для реакции

аА + bВ + dD + … → еЕ + …

      можно записать

(II.4)

      Коэффициент пропорциональности k есть константа скорости химической реакции. Константа скорости численно равна скорости реакции при концентрациях всех реагирующих веществ, равных 1 моль/л.

      Зависимость скорости реакции от концентраций реагирующих веществ определяется экспериментально и называется кинетическим уравнением химической реакции. Очевидно, что для того, чтобы записать кинетическое уравнение, необходимо экспериментально определить величину константы скорости и показателей степени при концентрациях реагирующих веществ. Показатель степени при концентрации каждого из реагирующих веществ в кинетическом уравнении химической реакции (в уравнении (II.4) соответственно x, y и z) есть частный порядок реакции по данному компоненту. Сумма показателей степени в кинетическом уравнении химической реакции (x + y + z) представляет собой общий порядок реакции. Следует подчеркнуть, что порядок реакции определяется только из экспериментальных данных и не связан со стехиометрическими коэффициентами при реагентах в уравнении реакции. Стехиометрическое уравнение реакции представляет собой уравнение материального баланса и никоим образом не может определять характера протекания этой реакции во времени.

      В химической кинетике принято классифицировать реакции по величине общего порядка реакции. Рассмотрим зависимость концентрации реагирующих веществ от времени для необратимых (односторонних) реакций нулевого, первого и второго порядков.

1.1. Кинетическое уравнение химической реакции. Порядок реакции

     Одной из задач, стоящих перед химической кинетикой, является определение состава реакционной смеси (т.е. концентраций всех реагентов) в любой момент времени, для чего необходимо знать зависимость скорости реакции от концентраций. В общем случае, чем больше концентрации реагирующих веществ, тем больше скорость химической реакции. В основе химической кинетики лежит т. н. основной постулат химической кинетики:

     Скорость химической реакции прямо пропорциональна произведению концентраций реагирующих веществ, взятых в некоторых степенях.

     Т. е. для реакции

    аА + bВ + dD + … → еЕ + …

     можно записать

          (II.4)

     Коэффициент пропорциональности k есть константа скорости химической реакции. Константа скорости численно равна скорости реакции при концентрациях всех реагирующих веществ, равных 1 моль/л.

     Зависимость скорости реакции от концентраций реагирующих веществ определяется экспериментально и называется кинетическим уравнением химической реакции. Очевидно, что для того, чтобы записать кинетическое уравнение, необходимо экспериментально определить величину константы скорости и показателей степени при концентрациях реагирующих веществ. Показатель степени при концентрации каждого из реагирующих веществ в кинетическом уравнении химической реакции (в уравнении (II.4) соответственно x, y и z) есть частный порядок реакции по данному компоненту. Сумма показателей степени в кинетическом уравнении химической реакции (x + y + z) представляет собой общий порядок реакции. Следует подчеркнуть, что порядок реакции определяется только из экспериментальных данных и не связан со стехиометрическими коэффициентами при реагентах в уравнении реакции. Стехиометрическое уравнение реакции представляет собой уравнение материального баланса и никоим образом не может определять характера протекания этой реакции во времени.

     В химической кинетике принято классифицировать реакции по величине общего порядка реакции. Рассмотрим зависимость концентрации реагирующих веществ от времени для необратимых (односторонних) реакций нулевого, первого и второго порядков.

1.2. Реакции нулевого порядка

     Для реакций нулевого порядка кинетическое уравнение имеет следующий вид:

         (II.5)

     Скорость реакции нулевого порядка постоянна во времени и не зависит от концентраций реагирующих веществ; это характерно для многих гетерогенных (идущих на поверхности раздела фаз) реакций в том случае, когда скорость диффузии реагентов к поверхности меньше скорости их химического превращения.

1.3. Реакции первого порядка

     Рассмотрим зависимость от времени концентрации исходного вещества А для случая реакции первого порядка А → В. Реакции первого порядка характеризуются кинетическим уравнением вида (II.6). Подставим в него выражение (II.2):

          (II.6)

           (II.7)

     После интегрирования выражения (II.7) получаем:

           (II.8)

     Константу интегрирования g определим из начальных условий: в момент времени t = 0 концентрация С равна начальной концентрации Со. Отсюда следует, что g = ln Со. Получаем:

          (II.9)

    

     Рис. 2.3 Зависимость логарифма концентрации  от  времени  для реакций первого порядка.

     Т.о., логарифм концентрации для реакции первого порядка линейно зависит от времени (рис. 2.3) и константа скорости численно равна тангенсу угла наклона прямой к оси времени.

          (II.10)

     Из уравнения (II.9) легко получить выражение для константы скорости односторонней реакции первого порядка:

           (II.11)

     Еще одной кинетической характеристикой реакции является период полупревращения t1/2 – время, за которое концентрация исходного вещества уменьшается вдвое по сравнению с исходной. Выразим t1/2 для реакции первого порядка, учитывая, что С = ½Со:

          (II.12)

     Отсюда

          (II.13)

     Как видно из полученного выражения, период полупревращения реакции первого порядка не зависит от начальной концентрации исходного вещества.

1.4. Реакции второго порядка

     Для реакций второго порядка кинетическое уравнение имеет следующий вид:

              (II.14)

     либо     

           (II.15)

     Рассмотрим простейший случай, когда кинетическое уравнение имеет вид (II.14) или, что то же самое, в уравнении вида (II.15) концентрации исходных веществ одинаковы; уравнение (II.14) в этом случае можно переписать следующим образом:

        (II.16)

     После разделения переменных и интегрирования получаем:

             (II.17)

     Постоянную интегрирования g, как и в предыдущем случае, определим из начальных условий. Получим:

         (II.18)

     Таким образом, для реакций второго порядка, имеющих кинетическое уравнение вида (II.14),  характерна линейная зависимость обратной концентрации от времени (рис. 2.4) и константа скорости равна тангенсу угла наклона прямой к оси времени:

                           (II.19)

                   (II.20)

     Рис. 2.4 Зависимость обратной концентрации от времени для реакций второго порядка.

     Если начальные концентрации реагирующих веществ Cо,А и Cо,В различны, то константу скорости реакции находят интегрированием уравнения (II.21), в котором CА и CВ – концентрации реагирующих веществ в момент времени t от начала реакции:

         (II.21)

     В этом случае для константы скорости получаем выражение 

         (II.22)

     Порядок химической реакции есть формально-кинетическое понятие, физический смысл которого для элементарных (одностадийных) реакций заключается в следующем: порядок реакции равен числу одновременно изменяющихся концентраций. В случае элементарных реакций порядок реакции может быть равен сумме коэффициентов в стехиометрическом уравнении реакции; однако в общем случае порядок реакции определяется только из экспериментальных данных и зависит от условий проведения реакции. Рассмотрим в качестве примера элементарную реакцию гидролиза этилового эфира уксусной кислоты (этилацетата), кинетика которой изучается в лабораторном практикуме по физической химии:

СН3СООС2Н5 + Н2О → СН3СООН + С2Н5ОН

     Если проводить эту реакцию при близких концентрациях этилацетата и воды, то общий порядок реакции равен двум и кинетическое уравнение имеет следующий вид:

        (II.23)

     При проведении этой же реакции в условиях большого избытка одного из реагентов (воды или этилацетата) концентрация вещества, находящегося в избытке, практически не изменяется и может быть включена в константу скорости; кинетическое уравнение для двух возможных случаев принимает следующий вид:

     1) Избыток воды:

      (II.24)

      (II.25)

     2) Избыток этилацетата:

         (II.26)

         (II.27)

    В этих случаях мы имеем дело с так назывемой реакцией псевдопервого порядка. Проведение реакции при большом избытке одного из исходных веществ используется для определения частных порядков реакции.

1.5. Методы определения порядка реакции

     Проведение реакции в условиях, когда концентрация одного из реагентов много меньше концентрации другого (других) и скорость реакции зависит от концентрации только этого реагента, используется для определения частных порядков реакции – это т.н. метод избыточных концентраций или метод изолирования Оствальда. Порядок реакции по данному веществу определяется одним из перечисленных ниже методов.

     Графический метод  заключается в построении графика зависимости концентрации реагента от времени в различных координатах. Для различных частных порядков эти зависимости имеют следующий вид: 

Порядок реакции

Зависимость концентрации от времени

1

2

3

     Если построить графики этих зависимостей на основании опытных данных, то лишь одна из них будет являться прямой линией. Если, например, график, построенный по опытным данным, оказался прямолинейным к координатах lnC = f(t), то частный порядок реакции по данному веществу равен единице.

     Метод подбора кинетического уравнения заключается в подстановке экспериментальных данных изучения зависимости концентрации вещества от времени в кинетические уравнения различных порядков. Подставляя в приведённые в таблице уравнения значения концентрации реагента в разные моменты времени, вычисляют значения константы скорости. Частный порядок реакции по данному веществу равен порядку того кинетического уравнения, для которого величина константы скорости остаётся постоянной во времени. 

Порядок реакции

Выражение для константы скорости

1

2

3

     Метод определения времени полупревращения заключается в определении  t1/2  для нескольких начальных концентраций. Как видно из приведённых в таблице уравнений, для реакции первого порядка время полупревращения не зависит от Co, для реакции второго порядка  – обратно пропорционально Co, и для реакции третьего порядка  – обратно пропорционально квадрату начальной концентрации. 

Порядок реакции

Выражение для периода полупревращения

1

2

3

     По характеру зависимости t1/2 от Co нетрудно сделать вывод о порядке реакции по данному веществу. Данный метод, в отличие от описанных выше, применим и для определения дробных порядков.

Химическая кинетика. Скорость химических реакций

Темы кодификатора ЕГЭ: Скорость реакции. Ее зависимость от разных факторов.

Скорость химической реакции показывает, как быстро происходит та или иная реакция. Взаимодействие происходит при столкновении частиц в пространстве. При этом реакция происходит не при каждом столкновении, а только когда частица обладают соответствующей энергией.

Скорость реакции – количество элементарных соударений взаимодействующих частиц, заканчивающихся химическим превращением, за единицу времени.

Определение скорости химической реакции связано с условиями ее проведения. Если реакция гомогенная – т.е. продукты и реагенты находятся в одной фазе – то скорость химической реакции определяется, как изменение концентрации вещества в единицу времени:

υ = ΔC / Δt

Если реагенты, или продукты находятся в разных фазах, и столкновение частиц происходит только на границе раздела фаз, то реакция называется гетерогенной, и скорость ее определяется изменением количества вещества в единицу времени на единицу реакционной поверхности:

υ = Δν / (S·Δt)

Факторы, влияющие на скорость химической реакции

1. Температура

Самый простой способ изменить скорость реакции – изменить температуру . Как вам, должно быть, известно из курса физики, температура – это мера средней кинетической энергии движения частиц вещества. Если мы повышаем температуру, то частицы любого вещества начинают двигаться быстрее, а следовательно, сталкиваться чаще.

Однако при повышении температуры скорость химических реакций увеличивается в основном благодаря тому, что увеличивается число эффективных соударений. При повышении температуры резко увеличивается число активных частиц, которые могут преодолеть энергетический барьер реакции. Если понижаем температуру – частицы начинают двигаться медленнее, число активных частиц уменьшается, и количество эффективных соударений в секунду уменьшается. Таким образом, при повышении температуры скорость химической реакции повышается, а при понижении температуры — уменьшается .

Обратите внимание! Это правило работает одинаково для всех химических реакций (в том числе для экзотермических и эндотермических). Скорость реакции не зависит от теплового эффекта. Скорость экзотермических реакций при повышении температуры возрастает, а при понижении температуры – уменьшается. Скорость эндотермических реакций также возрастает при повышении температуры, и уменьшается при понижении температуры.

Более того, еще в XIX веке голландский физик Вант-Гофф экспериментально установил, что скорость большинства реакций примерно одинаково изменяется (примерно в 2-4 раза) при изменении температуры на 10 о С.

Правило Вант-Гоффа звучит так: повышение температуры на 10 о С приводит к увеличению скорости химической реакции в 2-4 раза (эту величину называют температурный коэффициент скорости химической реакции γ).

Точное значение температурного коэффициента определяется для каждой реакции.

здесь v2 — скорость реакции при температуре T2,

v1 — скорость реакции при температуре T1,

γ — температурный коэффициент скорости реакции, коэффициент Вант-Гоффа.

В некоторых ситуациях повысить скорость реакции с помощью температуры не всегда удается, т.к. некоторые вещества разлагаются при повышении температуры, некоторые вещества или растворители испаряются при повышенной температуре, т.е. нарушаются условия проведения процесса.

2. Концентрация

Также изменить число эффективных соударений можно, изменив концентрацию реагирующих веществ . Понятие концентрации, как правило, используется для газов и жидкостей, т.к. в газах и жидкостях частицы быстро двигаются и активно перемешиваются. Чем больше концентрация реагирующих веществ (жидкостей, газов), тем больше число эффективных соударений, и тем выше скорость химической реакции.

На основании большого числа экспериментов в 1867 году в работах норвежских ученых П. Гульденберга и П. Вааге и, независимо от них, в 1865 году русским ученым Н.И. Бекетовым был выведен основной закон химической кинетики, устанавливающий зависимость скорости химической реакции от концентрации реагирующих веществ:

Скорость химической реакции прямо пропорциональна произведению концентраций реагирующих веществ в степенях, равных их коэффициентам в уравнении химической реакции.

Для химической реакции вида: aA + bB = cC + dD закон действующих масс записывается так:

здесь v — скорость химической реакции,

CA и CB — концентрации веществ А и В, соответственно, моль/л

k – коэффициент пропорциональности, константа скорости реакции.

Например , для реакции образования аммиака:

закон действующих масс выглядит так:

Константа скорости реакции k показывает, с какой скоростью будут реагировать вещества, если их концентрации равны 1 моль/л, или их произведение равно 1. Константа скорости химической реакции зависит от температуры и не зависит от концентрации реагирующих веществ.

В законе действующих масс не учитываются концентрации твердых веществ, т.к. они реагируют, как правило, на поверхности, и количество реагирующих частиц на единицу поверхности при этом не меняется.

В большинстве случаев химическая реакция состоит из нескольких простых этапов, в таком случае уравнение химической реакции показывает лишь суммарное или итоговое уравнение происходящих процессов. При этом скорость химической реакции сложным образом зависит (или не зависит) от концентрации реагирующих веществ, полупродуктов или катализатора, поэтому точная форма кинетического уравнения определяется экспериментально, или на основании анализа предполагаемого механизма реакции. Как правило, скорость сложной химической реакции определяется скоростью его самого медленного этапа (лимитирующей стадии).

3. Давление

Концентрация газов напрямую зависит от давления . При повышении давления повышается концентрация газов. Математическое выражение этой зависимости (для идеального газа) — уравнение Менделеева-Клапейрона:

pV = νRT

Таким образом, если среди реагентов есть газообразное вещество, то при повышении давления скорость химической реакции увеличивается, при понижении давления — уменьшается .

Например. Как изменится скорость реакции сплавления извести с оксидом кремния:

при повышении давления?

Правильным ответом будет – никак, т.к. среди реагентов нет газов, а карбонат кальция – твердая соль, нерастворимая в воде, оксид кремния – твердое вещество. Газом будет продукт – углекислый газ. Но продукты не влияют на скорость прямой реакции.

4. Катализатор

Еще один способ увеличить скорость химической реакции – направить ее по другому пути, заменив прямое взаимодействие, например, веществ А и В серией последовательных реакций с третьим веществом К, которые требуют гораздо меньших затрат энергии (имеют более низкий активационный энергетический барьер) и протекают при данных условиях быстрее, чем прямая реакция. Это третье вещество называют катализатором .

Катализаторы – это химические вещества, участвующие в химической реакции, изменяющие ее скорость и направление, но не расходующиеся в ходе реакции (по окончании реакции не изменяющиеся ни по количеству, ни по составу). Примерный механизм работы катализатора для реакции вида А + В можно представить так:

A + K = AK

AK + B = AB + K

Процесс изменения скорости реакции при взаимодействии с катализатором называют катализом. Катализаторы широко применяют в промышленности, когда необходимо увеличить скорость реакции, либо направить ее по определенному пути.

По фазовому состоянию катализатора различают гомогенный и гетерогенный катализ.

Гомогенный катализ – это когда реагирующие вещества и катализатор находятся в одной фазе (газ, раствор). Типичные гомогенные катализаторы – кислоты и основания. органические амины и др.

Гетерогенный катализ – это когда реагирующие вещества и катализатор находятся в разных фазах. Как правило, гетерогенные катализаторы – твердые вещества. Т.к. взаимодействие в таких катализаторах идет только на поверхности вещества, важным требованием для катализаторов является большая площадь поверхности. Гетерогенные катализаторы отличает высокая пористость, которая увеличивает площадь поверхности катализатора. Так, суммарная площадь поверхности некоторых катализаторов иногда достигает 500 квадратных метров на 1 г катализатора. Большая площадь и пористость обеспечивают эффективное взаимодействие с реагентами. К гетерогенным катализаторам относятся металлы, цеолиты — кристаллические минералы группы алюмосиликатов (соединений кремния и алюминия), и другие.

Пример гетерогенного катализа – синтез аммиака:

В качестве катализатора используется пористое железо с примесями Al2O3 и K2O.

Сам катализатор не расходуется в ходе химической реакции, но на поверхности катализатора накапливаются другие вещества, связывающие активные центры катализатора и блокирующие его работу (каталитические яды). Их необходимо регулярно удалять, путем регенерации катализатора.

В биохимических реакция очень эффективными оказываются катализаторы – ферменты. Ферментативные катализаторы действуют эффективно и избирательно, с избирательностью 100%. К сожалению, ферменты очень чувствительны к повышению температуры, кислотности среды и другим факторам, поэтому есть ряд ограничений для реализации в промышленных масштабах процессов с ферментативным катализом.

Катализаторы не стоит путать с инициаторами процесса и ингибиторами.

Например , для инициирования радикальной реакции хлорирования метана необходимо облучение ультрафиолетом. Это не катализатор. Некоторые радикальные реакции инициируются пероксидными радикалами. Это также не катализаторы.

Ингибиторы – это вещества, которые замедляют химическую реакцию. Ингибиторы могут расходоваться и участвовать в химической реакции. При этом ингибиторы не являются катализаторами наоборот. Обратный катализ в принципе невозможен – реакция в любом случае будет пытаться идти по наиболее быстрому пути.

5. Площадь соприкосновения реагирующих веществ

Для гетерогенных реакций одним из способов увеличить число эффективных соударений является увеличение площади реакционной поверхности . Чем больше площадь поверхности контакта реагирующих фаз, тем больше скорость гетерогенной химической реакции. Порошковый цинк гораздо быстрее растворяется в кислоте, чем гранулированный цинк такой же массы.

В промышленности для увеличения площади контактирующей поверхности реагирующих веществ используют метод «кипящего слоя».

Например , при производстве серной кислоты методом «кипящего слоя» производят обжиг колчедана.

6. Природа реагирующих веществ

На скорость химических реакций при прочих равных условиях также оказывают влияние химические свойства, т.е. природа реагирующих веществ.

Менее активные вещества будут имеют более высокий активационный барьер, и вступают в реакции медленнее, чем более активные вещества.

Более активные вещества имеют более низкую энергию активации, и значительно легче и чаще вступают в химические реакции.

Более стабильные вещества — это, например, те вещества, которые окружают нас в быту, либо существуют в природе.

Например , хлорид натрия NaCl (поваренная соль), или воды H2O, или металлическое железо Fe.

Более активные вещества мы можем встретить в быту и природе сравнительно редко.

Например , оксид натрия Na2O или сам натрий Na в быту и в природе не не встречаем, т.к. они активно реагируют с водой.

При небольших значениях энергии активации (менее 40 кДж/моль) реакция проходит очень быстро и легко. Значительная часть столкновений между частицами заканчивается химическим превращением. Например, реакции ионного обмена происходят при обычных условиях очень быстро.

При высоких значениях энергии активации (более 120 кДж/моль) лишь незначительное число столкновений заканчивается химическим превращением. Скорость таких реакций пренебрежимо мала. Например, азот с кислородом практически не взаимодействует при нормальных условиях.

При средних значениях энергии активации (от 40 до 120 кДж/моль) скорость реакции будет средней. Такие реакции также идут при обычных условиях, но не очень быстро, так, что их можно наблюдать невооруженным глазом. К таким реакциям относятся взаимодействие натрия с водой, взаимодействие железа с соляной кислотой и др.

Вещества, стабильные при нормальных условиях, как правило, имеют высокие значения энергии активации.

Химическая кинетика и равновесие. Принцип Ле Шателье

” data-shape=”round” data-use-links data-color-scheme=”normal” data-direction=”horizontal” data-services=”messenger,vkontakte,facebook,odnoklassniki,telegram,twitter,viber,whatsapp,moimir,lj,blogger”>

Химическая кинетика и равновесие

  • 6.1. Понятие о скорости химических реакций
  • 6.2. Зависимость скорости реакции от концентрации реагентов
  • 6.3.Влияние температуры на скорость реакции
  • 6.4. Энергия активации
  • 6.5. Понятие о катализе и катализаторах
  • 6.6. Химическое равновесие. Принцип Ле Шателье

Кинетика — учение о скорости различных процессов, в том числе химических реакций. Критерием принципиальной осущест­вимости реакций является неравенство ∆Gp.T. 0 298 H2O (u) = – 228,59 кДж/моль, a ∆G 0 298 АlI3(к) = -313,8 кДж/моль и, следовательно, при T = 298 К и р= 1,013.10 5 Па возможны реакции, идущие по уравнениям:

Однако эти реакции при стандартных условиях идут только в присутствии катализатора (платина для первой и вода для второй). Катализатор как бы снимает кинетический «тормоз» и проявляется термодинамическая природа вещества.

6.1. Понятие о скорости химических реакций. Скоростью химической реакции называется число элементарных актов реакции, происходящих в единицу времени в единице объема (в случае гомогенных реакций) или на единице поверхности раздела фаз (в случае гетерогенной реакции). Скорость реакции обычно характеризуются изменением концентрации какого-либо из исходных или конечных продуктов реакции в единицу времени и чаще всего выражают в моль/л · с.

Различают среднюю скорость химической реакции за данный промежуток времени и истинную скорость реакции в данный момент времени. Если в момент времени концентрация вещества была C1, а для момента она стала C2, то средняя скорость реакции для интервала времени τ2 – τ1 будет равна

Знак минус пишут в том случае, если концентрация вещества во времени уменьшается (исходное вещество), а знак плюс – если концентрация увеличивается (продукт реакции). Скорость реакции всегда положительна. Истинная скорость в данный момент определяется пределом, к которому стремится выражение при ∆τ → 0, т.е. первой производной от концентрации по времени:

Измерить среднюю и истинную скорость химической реакции можно, найдя зависимость изменения концентрации реагирующих веществ в системе от времени.

Об изменении концентрации веществ в системе можно судить или непосредственно, или определяя какое-либо свойство реакционной системы. Это может быть вес осадка, образующегося в ходе реакции, объем реакционной системы, давление, цвет, электропроводность и т.п.

Скорость химических реакций зависит от многих факторов, основные из которых — концентрация (давление) реагентов, температура и действие катализатора. Эти же факторы определяют и достижение равно­весия в реагирующей системе.

6.2. Зависимость скорости реакции от концентрации реагентов. Чтобы атом и молекулы смогли вступить в реакцию, необходимо их столкновение друг с другом, так как силы химического взаимодействия действуют только на очень малом расстоянии. Чем больше молекул реагирующих веществ в единице объема, т.е. чем больше их концентрация, тем чаще будут происходить столкновения и тем быстрее будут идти химические реакции. Поэтому увеличение концентрации реагирующих веществ ускоряет ход химической реакции. На основе обширного экспериментального материала сформулирован основной закон химической кинетики, устанавливающий зависимость скорости реакций от концентрации реагирующих веществ: скорость химической реакции пропорциональна произведению концентраций реагирующих веществ.

Для реакции, протекающей по уравнению А + В = С + Д, этот закон выразится уравнением:

где: СА и СВ – молярные концентрации вещества А и В;

k – коэффициент пропорциональности, называемой константой скорости реакции.

Основной закон химической кинетики часто называют законом действующих масс. Из уравнения (1) нетрудно установить физический смысл константы скорости k; она численно равна скорости реакции, когда концентрации каждого из реагирующих веществ составляют 1моль/л или когда их произведение равно единице.

Следует иметь в виду, что понятие скорости реакции относится к данной реакции, а не к отдельным реагирующим веществам. Очевидно, что для каждой реакции при постоянной температуре ее константа скорости будет величиной постоянной, и, следовательно, зная k , можно сравнивать скорости химического взаимодействия различных веществ: чем больше k , тем быстрее реагируют данные вещества. Константа скорости реакции зависит от природы реагирующих веществ, температуры, присутствия катализатора, но не зависит от концентрации вещества.

Уравнение (1), связывающее скорость реакции с концентрацией реагирующих веществ, называется кинетическим уравнением реакции. Для реакции, записанной в общем виде , кинетическим уравнением будет

где: m и n – коэффициенты в уравнении реакции.

Уравнение (2) является общим алгебраическим выражением закона действующих масс: скорость химической реакции прямо пропорциональна произведению концентраций реагирующих веществ, взятых в степенях, равных стехиометрическим коэффициентам соответствующих веществ в уравнении реакции.

Основной закон химической кинетики не учитывает концентрации реагирующих веществ в твердом состоянии, ибо их концентрации постоянны и они реагируют лишь на поверхности, которая остается неизменной. Так, например, для реакции горения угля кинетическое уравнение реакции имеет вид:

где: k – константа скорости;

СС – концентрация твердого вещества;

S – площадь поверхности.

Это величины постоянные. Обозначим произведение постоянных величин через k 1 , получим т.е. скорость реакции пропорциональна только концентрации кислорода.

6.3.Влияние температуры на скорость реакции. Зависимость скорости реакции от температуры определяется правилом Вант-Гоффа, согласно которому при повышении температуры на каждые 10 градусов скорость большинства реакций увеличивается в 2-4 раза.

Математически эта зависимость выражается соотношением

где: – скорости реакции соответственно при началом (t1) и конечной (t2) температурах;

γ – температурный коэффициент скорости реакции, который показывает, во сколько раз увеличится скорость реакции с повышением температуры реагирующих веществ на 10 градусов.

Дадим иную формулировку уравнения (1). Примем скорость реакции при начальной температуре (например, при 300 ° С) за 1 и будем выражать с помощью уравнения (1) скорость реакции , определяя ее для разных температур (с интервалом в 10 ° ). Тогда получим:

Из этого легко вывести следующее правило: при повышении температуры в арифметической прогрессии скорость реакции возрастает в геометрической прогрессии.

Температура влияет на скорость реакции, увеличивая константу скорости. Отношение, показывающее, во сколько раз увеличилась константа скорости при увеличении температуры на 10 ° , называется температурным коэффициентом скорости реакции, т.е.

Зависимость скорости реакции от температуры более точно выражается уравнением Аррениуса

6.4. Энергия активации. Быстрое изменение скорости реакции с изменением температуры объясняет теория активации. Почему нагревание вызывает столь значительное ускорение химических превращений? Для ответа на этот вопрос нужно вспомнить, в чем заключается сущность химической реакции.

Химическое превращение происходит тогда, когда возникают условия для перераспределения электронной плотности столкнувшихся частиц. Этот процесс требует затраты времени и энергии. Мгновенных процессов в природе вообще не существует.

Реакционно-способную систему можно охарактеризовать тремя последовательно совершающимися состояниями:

[начальное] → [переходное] → [конечное]

Для реакции взаимодействия газообразных веществ A2 и B2:

можно записать ее состояние

Рис. 22. Изменение энергии реагирующей системы

Переходное состояние системы отвечает образованию так называемого активированного комплекса (A2B2). В этом комплексе происходит перераспределение электронной плотности между атомами: связи A―B начинают образовываться одновременно с разрывом связей A―A и B―B. В активированном комплексе как бы объединены «полуразрушенные» молекулы A2 и B2 и «полуобразовавшиеся» молекулы AB. Активированный комплекс существует очень короткое время (порядка 10 -13 с). Его распад приводит к образованию молекул AB либо молекул A2 и B2. Образование активированного комплекса требует затраты энергии. Вероятность того, что при столкновении двух молекул образуется активированный комплекс и произойдет реакция, зависит от энергии сталкивающихся частиц. Реагируют только те из молекул, энергия которых для этого достаточна. Такие молекулы называют активными. Необходимую для перехода веществ в состояние активированного комплекса энергию называют энергией активации (Eа). Ее определяют опытным путем и обычно выражают в кДж/моль. Так, например, для соединения водорода и йода Eа = 167,4кДж/моль, а для распада йодоводорода Eа = 186,2кДж/моль.

Энергия активации зависит от природы реагирующих веществ и служит характеристикой каждой реакции.

Энергетические изменения в реагирующей системе можно представить схемой, которая изображена на рис. 22.

Здесь ось абсцесс характеризует ход реакции: исходное состояние → переходное состояние → конечное состояние. По оси ординат отложена потенциальная энергия системы. Исходное состояние имеет энергию Hнач., конечное – Hкон. Разность энергий начального и конечного состояний системы равна тепловому эффекту реакции ∆H:

Энергия активированного комплекса выше энергии начального и конечного состояний системы. Таким образом, энергия активации – это своеобразный энергетический барьер, который отделяет исходные вещества от продуктов реакции.

Обратная реакция – превращение АВ в газообразные A2 и B2, естественно, также протекает через образование активированного комплекса A2B2. но величина энергии активации в этом случае иная, чем при синтезе АВ.

Как видно из рис. 22, затраченная на активацию молекул энергия затем, при образовании продуктов реакции, полностью или частично выделяется. Если при распаде активированного комплекса выделяется энергии больше, чем это необходимо для активирования молекул, то реакция экзотермическая, а в противном случае – эндотермическая.

Итак, скорость реакции непосредственно зависит от числа молекул, обладающих энергией, достаточной для образования активированного комплекса, а следовательно, способных к химическому превращению. Чем больше в системе активных молекул, тем скорость реакции больше. Один из путей увеличения числа активных молекул – нагревание.

6.5. Понятие о катализе и катализаторах. Катализом называется изменение скорости химических реакций в присутствии веществ – катализаторов. Катализаторы – это вещества, изменяющие скорость реакции за счет участия в промежуточном химическом взаимодействии с компонентами реакции, но восстанавливающие после каждого цикла промежуточного взаимодействия свой химический состав.

Различают положительный и отрицательный катализ. В случае положительного катализа скорость химической реакции при введении катализатора возрастает, например, получение серной кислоты или окисление аммиака в азотную кислоту с помощью платины. При отрицательном катализе, – наоборот, уменьшается, например, замедление взаимодействия раствора сульфита натрия с кислородом воздуха в присутствии этилового спирта. Отрицательный катализ часто называют ингибированием, а отрицательные катализаторы, снижающие скорость реакции, ингибиторами (механизм действия последних отличен от катализаторов).

Химические реакции, протекающие в присутствии катализаторов, называются каталитическими. На большинство химических реакций может быть оказано каталитическое воздействие. Число катализаторов велико. Их каталитическая активность весьма различна. Она определяется изменением скорости реакции, вызываемым катализатором.

Различают два вида катализа – гомогенный (однородный) и гетерогенный (неоднородный) катализ.

При гомогенном катализе реагирующие вещества и катализатор образуют однородную систему – газовую или жидкую. В этом случае между катализатором и реагирующими веществами отсутствует поверхность раздела. Примером может служить каталитическое окисление оксида серы (IV) оксидами азота в камерном способе получения серной кислоты (газовая фаза), а также действие разнообразных ферментов в биологических процессах. Для гомогенного катализа установлено, что скорость химической реакции пропорциональна концентрации катализатора.

При гетерогенном катализе реагирующие вещества и катализаторы образуют систему из разных фаз. В этом случае между катализатором и реагирующими веществами существует поверхность раздела. Обычно катализатор является твердым веществом, а реагирующие вещества – газами или жидкостями. Например, окисление аммиака (газообразная фаза) в присутствии платины (твердая фаза). Все реакции при гетерогенном катализе протекают на поверхности катализатора. Поэтому активность твердого катализатора будет зависеть и от свойств его поверхности (размера, химического состава, строения и состояния).

Действие положительных катализаторов сводится к уменьшению энергии активации реакции, другими словами, к снижению высоты энергетического барьера (см. рис. 22, пунктирная кривая).

В присутствии катализатора образуется активированный комплекс с более низким уровнем энергии, чем без него, а потому скорость реакции резко возрастает.

Механизм действия катализаторов обычно объясняют образованием промежуточных соединений с одним из реагирующих веществ. Так, если медленно протекающую реакцию A + B = AB вести в присутствии катализатора K, то катализатор вступает в химическое взаимодействие с одним из исходных веществ, образуя непрочное промежуточное соединение:

Реакция протекает быстро, так как энергия активации этого процесса мала. Затем промежуточное соединение АК взаимодействует с другим исходным веществом, выделяя катализатор К в свободном состоянии:

Энергия активации этого процесса также мала, а потому реакция протекает с достаточной скоростью. Если теперь оба процесса, протекающие одновременно, суммировать, то получим окончательное уравнение уже быстро протекающей реакции:

Поверхность катализатора неоднородна. На ней имеются так называемые активные центры, на которых, главным образом, и протекают каталитические реакции. Реагирующие вещества адсорбируются на этих центрах, в результате чего увеличивается концентрация их на поверхности катализатора. Это отчасти приводит к ускорению реакции. Но главной причиной возрастания скорости реакции является сильное повышение химической активности адсорбированных молекул. Под действием катализатора у адсорбированных молекул ослабляются связи между атомами и они делаются более реакционноспособными. В этом случае реакция ускоряется благодаря снижению энергии активации (в том числе за счет образования поверхностных промежуточных соединений).

Некоторые вещества снижают или полностью уничтожают активность твердого катализатора. Такие вещества называются каталитическими ядами.

В качестве примера можно привести соединения мышьяка, ртути, свинца, цианиды, к которым особенно чувствительны платиновые катализаторы.

Однако имеются и такие вещества, которые усиливают действие катализаторов данной реакции, хотя сами катализаторами не являются. Эти вещества называются промоторами (например, промотирование платиновых катализаторов добавками железами, алюминия и др.).

Следует особо отметить, что действие катализаторов избирательно, поэтому применяя разные катализаторы, можно получить из одного и того же вещества разные продукты. Для каждой реакции имеется свой наилучший катализатор.

Роль катализаторов в химическом производстве исключительно велика. (например, получение серной кислоты, синтез аммиака, получение из твердого угля жидкого топлива, переработка нефти и природного газа, получение искусственного каучука и т.д.). Большая роль принадлежит биологическим катализаторам – ферментам– особым веществам животного или растительного происхождения, являющихся белками. Они обладают каталитическим действием по отношению к некоторым биохимическим реакциям за счет понижения их очередной инактивации.

6.6. Химическое равновесие. Принцип Ле Шателье. Реакции, которые протекают в одном направлении и идут до конца, называются необратимыми. Их не так много. Большинство реакций являются обратимыми, т.е. они протекают в противоположных направлениях и не идут до конца. Например, реакция J2 + H2 2HJ при 350°С является типичной обратимой реакцией. В этом случае устанавливается подвижное химическое равновесие и скорости прямого процесса и обратного делаются равными.

Химическое равновесие – такое состояние системы реагирующих веществ, при котором скорости прямой и обратной реакций равны между собой.

Химическое равновесие называют динамическим равновесием. Этим подчеркивается, что при равновесии протекают и прямая, и обратная реакции, но их скорости одинаковы, вследствие чего изменений в системе не заметно.

Концентрации реагирующих веществ, которые устанавливаются при химическом равновесии, называются равновесными концентрациями. Обычно их обозначают при помощи квадратных скобок, например, [J2], [H2], [HJ] в отличие от неравновесных, обозначаемых СJ2, Cн2, СнJ

Количественной характеристикой химического равновесия служит величина, называемая константной химического равновесия. Изобразим обратимую реакцию в общем виде:

Согласно закону действующих масс, скорости прямой (V1) и обратной (V2) реакций выражаются уравнениями:

При равновесии скорости прямой и обратной реакций равны друг другу, откуда

Но k1 и k2 для данной реакции при одной и той же температуре являются величинами постоянными, а значит, и их отношение будет величиной постоянной. Обозначим его через К, получим

где: К – константа химического равновесия.

Она зависит от температуры и природы реагирующих веществ, но не зависит от их концентрации. Константа равновесия показывает, во сколько раз скорость прямой реакции больше скорости обратной реакции, если концентрации каждого из реагирующих веществ равна 1 моль/л. В этом физический смысл К. Значения К находят путем расчета или на основании экспериментальных данных. Константа равновесия – важная характеристика реакции. По ее значению можно судить о направлении процесса при исходном соотношении концентраций реагирующих веществ, о максимально возможном выходе продукта реакции при тех или иных условиях.

На состояние химического равновесия оказывает влияние концентрация реагирующих веществ, температура, а для газообразных веществ – и давление.

При изменении одного из этих параметров равновесие нарушается, и концентрация всех реагирующих веществ будет изменяться до тех пор, пока не установится новое равновесие, но уже при иных значениях равновесных концентраций.

Подобный переход реакционной системы из одного состояния равновесия к другому называется смещением (или сдвигом) химического равновесия. Если при изменении условий увеличивается концентрация конечных веществ, то говорят о смещении равновесия вправо. Если же увеличивается концентрация исходных веществ, то равновесие смещается влево.

Направление смещения химического равновесия при изменениях концентрации реагирующих веществ, температуры и давления (в случае газовых реакций) определяется общим положением, известным под названием принципа подвижного равновесия или принципа Ле Шателье: если на систему, находящуюся в равновесии, производится какое-либо внешнее воздействие (изменяется концентрация, температура, давление), то оно благоприятствует протеканию одной из двух противоположных реакций, которая ослабляет воздействие. Поясним это правило на примере синтеза аммиака:

Если увеличить концентрации азота или водорода, то это будет благоприятствовать реакции, протекающей с уменьшением концентрации этих веществ, т.е. равновесие сместится вправо. Наоборот, при увеличении концентрации аммиака равновесие сместится влево.

Поскольку прямая реакция протекает с выделением тепла, то повышение температуры будет благоприятствовать реакции с поглощением тепла, т.е. равновесие будет смещаться влево. Наоборот, понижение температуры вызовет смещение равновесия вправо.

Чтобы решить вопрос, как влияет на смещение равновесия изменение давления, надо подсчитать число молей газообразных веществ в левой и правой частях уравнения. В приведенном примере в левой части уравнения содержится 4 моль (4 объема), а в правой – 2 моль (2 объема). Поскольку увеличение давления должно благоприятствовать процессу, ведущему к уменьшению объема, то в данном случае равновесие сместится вправо. Уменьшение давления сместит равновесие влево. Если же в уравнении обратимой реакции число молей в левой части равно числу молей в правой части, то изменение давления не вызывает смещения химического равновесия.

Следует отметить, что все катализаторы одинаково ускоряют как прямую, так и обратную реакции и поэтому на смещение равновесия влияние не оказывают, а только способствуют более быстрому его достижению.

Пример 1. Во сколько раз изменится скорость прямой и обратной реакции в системе

если объем газовой смеси уменьшится в три раза? В какую сторону сместится равновесие системы?

Решение. Обозначим концентрации реагирующих веществ: [SO2] = а,

2] =b, [SO3] == с. Согласно закону действующих масс, скорости прямой и обратной реакций до изменения объема равны

После уменьшения объема гомогенной системы в три раза концентрация каждого из реагирующих веществ увеличится в три раза: [SO2] = 3а, [О2] = Зb; [SO3] = Зс. При новых концентрациях скорости v’пр прямой и обратной реакций:

Следовательно, скорость прямой реакции увеличилась в 27 раз, а обратной — только в девять раз. Равновесие системы сместилось в сторону образования SO3.

Пример 2. Вычислите, во сколько раз увеличится скорость реакции, протекающей в газовой фазе, при повышении температуры от 30 до 70° С, если температурный коэффициент реакции равен 2.

Решение. Зависимость скорости химической реакции от температуры определяется эмпирическим правилом Вант-Гоффа по формуле:

Следовательно, скорость реакции vT2. при 70 0 С больше скорости реакции vT1 при 30° С в 16 раз.

Пример 3. Константа равновесия гомогенной системы

при 850 0 С равна 1. Вычислите концентрации всех веществ при равновесии, если исходные концентрации: [СO]исх = 3 моль/л, [H2O]иcx = 2 моль/л.

Решение. При равновесии скорости прямой и обратной реакций равны, а отношение констант этих скоростей постоянно и называется константой равновесия данной системы:

В условии задачи даны исходные концентрации, тогда как в выражение Кр входят только равновесные концентрации всех веществ системы. Предположим, что к моменту равновесия концентрация [CO2]p = x моль/л. Согласно уравнению системы число молей образовавшегося водорода при этом будет также х моль/л. По столько же молей моль/л) СО и H2O расходуется для образования по х молей СО2 и Н2. Следовательно, равновесные концентрации всех четырех веществ (моль/л):

Зная константу равновесия, находим значение х, а затем исходные концентрации всех веществ:

Таким образом, искомые равновесные концентрации: [СO2]р = 1,2 моль/л; [H2]p = 1,2 моль/л; [СO]р= 3-1,2 = 1,8 моль/л; [Н2O]р =2-1,2 =0,8 моль/л.

Пример 4. Эндотермическая реакция разложения пентахлорида фосфора протекает по уравнению

Как надо изменить: а) температуру; б) давление; в) концент­рацию, чтобы сместить равновесие в сторону прямой реакции — разложения РС15?

Решение. Смещением или сдвигом химического равновесия называют изменение равновесных концентраций реагирующих веществ в результате изменения одного из условий реакции. Направление, в котором сместилось равновесие, определяется по принципу Ле Шателье: а) так как реакция разложения РС15 эндотермическая (H > 0), то для смещения равновесия в сторону прямой реакции нужно повысить температуру: б) так как в данной системе разложение РС15 ведет к увеличению объема (из одной молекулы газа образуются две газообразные молекулы), то для смещения равновесия в сторону прямой реакции надо уменьшить давление; в) смещения равновесия в указанном направлении можно достигнуть как увеличением концентрации РС15, так и уменьшением концентрации РС13 или Сl2.

[spoiler title=”источники:”]

[/spoiler]

КИНЕТИЧЕСКОЕ УРАВНЕНИЕ

КИНЕТИЧЕСКОЕ УРАВНЕНИЕ, выражает зависимость скорости хим. р-ции от концентраций компонентов реакц. смеси. Для простой (одностадийной) гомог. р-ции скорость v пропорциональна произведению концентраций реагирующих в-в и кинетическое уравнение записывается в виде:

361_380-78.jpg

где [Ai] (i=1,2,…,l) – концентрация i-го в-ва, ni-порядок реакции по i-му в-ву, k-константа скорости р-ции.

Обычно экспериментально изучают р-ции в замкнутой системе при постоянном объеме и представляют результаты графически в виде т. наз. кинетич. кривой, выражающей зависимость концентрации реагента или продукта от времени t. Аналит. вид этой зависимости наз. ур-нием кинетич. кривой. В отличие от кинетического уравнения, ур-ния кривых расходования реагирующих в-в или накопления продукта содержат в качестве параметров начальные концентрации компонентов в момент времени t=0. Так, для бимолекулярной р-ции 2А:Z кривая накопления продукта Z выражается ур-нием:

361_380-79.jpg

где [А]0 = [А] при t=0.

Дифференцированием этого ур-ния можно получить кинетическое уравнение
р-ции:

361_380-80.jpg

к-рое не зависит от начальных условий и потому имеет более широкое применение.
Сложная р-ция состоит из неск. стадий, совокупность и последовательность к-рых представляет собой механизм реакции. Предполагаемый механизм р-ции наз. ее кинетич. схемой. Кинетика сложной р-ции с неск. промежут. продуктами описывается системой дифференц. кинетических уравнений. Если в к.-л. из стадий скорости образования и расходования промежут. продукта очень близки и в реакц. смеси устанавливается его квазистационарная концентрация, систему кинетических уравнений можно упростить и перейти от дифференциальных к алгебраич. ур-ниям (см. Квазистационарности приближение). В ряде случаев это позволяет получить для сложной р-ции одно кинетическое уравнение. В нестационарном режиме, при к-ром концентрация каждого промежут. продукта отличается от квазиравновесной, система дифференц. Кинетическое уравнение сложной р-ции решается, как правило, с помощью ЭВМ.
Следует различать эмпирич. кинетическое уравнение, к-рое получают на основании измеренных значений v при варьировании концентраций всех участвующих в р-ции в-в (реагентов, катализатора, инициатора, ингибитора) и теоретич. кинетическое уравнение, к-рое выводится математически из предполагаемой кинетич. схемы р-ции. Совпадение эмпирич. кинетического уравнения с теоретическим свидетельствует о достоверности кинетич. схемы р-ции.
Лит. см. при ст Кинетика химическая Е. Т Денисов


===
Исп. литература для статьи «КИНЕТИЧЕСКОЕ УРАВНЕНИЕ»: нет данных

Страница «КИНЕТИЧЕСКОЕ УРАВНЕНИЕ» подготовлена по материалам химической энциклопедии.

Добавить комментарий