- Если b = 0, то квадратное уравнение принимает вид ax 2 + 0x+c=0 и оно равносильно ax 2 + c = 0.
- Если c = 0, то квадратное уравнение выглядит так ax 2 + bx + 0 = 0, иначе его можно написать как ax 2 + bx = 0.
- Если b = 0 и c = 0, то квадратное уравнение выглядит так ax 2 = 0.
Такие уравнения отличны от полного квадратного тем, что их левые части не содержат либо слагаемого с неизвестной переменной, либо свободного члена, либо и того и другого. Отсюда и их название — неполные квадратные уравнения.
Решение неполных квадратных уравнений
Как мы уже знаем, есть три вида неполных квадратных уравнений:
- ax 2 = 0, ему отвечают коэффициенты b = 0 и c = 0;
- ax 2 + c = 0, при b = 0;
- ax 2 + bx = 0, при c = 0.
Давайте рассмотрим по шагам, как решать неполные квадратные уравнения по видам.
Как решить уравнение ax 2 = 0
Начнем с решения неполных квадратных уравнений, в которых b и c равны нулю, то есть, с уравнений вида ax 2 = 0.
Уравнение ax 2 = 0 равносильно x 2 = 0. Такое преобразование возможно, когда мы разделили обе части на некое число a, которое не равно нулю. Корнем уравнения x 2 = 0 является нуль, так как 0 2 = 0. Других корней у этого уравнения нет, что подтверждают свойства степеней.
Таким образом, неполное квадратное уравнение ax 2 = 0 имеет единственный корень x = 0.
Пример 1. Решить −6x 2 = 0.
- Замечаем, что данному уравнению равносильно x 2 = 0, значит исходное уравнение имеет единственный корень — нуль.
- По шагам решение выглядит так:
Как решить уравнение ax 2 + с = 0
Обратим внимание на неполные квадратные уравнения вида ax 2 + c = 0, в которых b = 0, c ≠ 0. Мы давно знаем, что слагаемые в уравнениях носят двусторонние куртки: когда мы переносим их из одной части уравнения в другую, они надевает куртку на другую сторону — меняют знак на противоположный.
Еще мы знаем, что если обе части уравнения поделить на одно и то же число (кроме нуля) — у нас получится равносильное уравнение. Ну есть одно и то же, только с другими цифрами.
Держим все это в голове и колдуем над неполным квадратным уравнением (производим «равносильные преобразования»): ax 2 + c = 0:
- перенесем c в правую часть: ax 2 = – c,
- разделим обе части на a: x 2 = – c/а.
Ну все, теперь мы готовы к выводам о корнях неполного квадратного уравнения. В зависимости от значений a и c, выражение — c/а может быть отрицательным или положительным. Разберем конкретные случаи.
Если — c/а 2 = – c/а не имеет корней. Все потому, что квадрат любого числа всегда равен неотрицательному числу. Из этого следует, что при — c/а 0, то корни уравнения x 2 = – c/а будут другими. Например, можно использовать правило квадратного корня и тогда корень уравнения равен числу √- c/а, так как (√- c/а) 2 = – c/а. Кроме того, корнем уравнения может стать -√- c/а, так как (-√- c/а) 2 = – c/а. Ура, больше у этого уравнения нет корней.
Неполное квадратное уравнение ax 2 + c = 0 равносильно уравнению х 2 = -c/a, которое:
- не имеет корней при — c/а 0.
В двух словах |
---|
Пример 1. Найти решение уравнения 8x 2 + 5 = 0.
-
Перенесем свободный член в правую часть:
Разделим обе части на 8:
Ответ: уравнение 8x 2 + 5 = 0 не имеет корней.
Как решить уравнение ax 2 + bx = 0
Осталось разобрать третий вид неполных квадратных уравнений, когда c = 0.
Неполное квадратное уравнение ax 2 + bx = 0 можно решить методом разложения на множители. Как разложить квадратное уравнение:
Разложим на множители многочлен, который расположен в левой части уравнения — вынесем за скобки общий множитель x.
Теперь можем перейти от исходного уравнения к равносильному x * (ax + b) = 0. А это уравнение равносильно совокупности двух уравнений x = 0 и ax + b = 0, последнее — линейное, его корень x = −b/a.
Таким образом, неполное квадратное уравнение ax 2 + bx = 0 имеет два корня:
Пример 1. Решить уравнение 0,5x 2 + 0,125x = 0
0,5x = 0,125,
х = 0,125/0,5
Ответ: х = 0 и х = 0,25.
Как разложить квадратное уравнение
С помощью теоремы Виета можно получить формулу разложения квадратного трехчлена на множители. Выглядит она так:
Формула разложения квадратного трехчлена
Если x1 и x2 — корни квадратного трехчлена ax 2 + bx + c, то справедливо равенство ax 2 + bx + c = a (x − x1) (x − x2).
Дискриминант: формула корней квадратного уравнения
Чтобы найти результат квадратного уравнения, придумали формулу корней. Выглядит она так:
где D = b 2 − 4ac — дискриминант квадратного уравнения.
Эта запись означает:
Чтобы легко применять эту формулу, нужно понять, как она получилась. Давайте разбираться.
Алгоритм решения квадратных уравнений по формулам корней
Теперь мы знаем, что при решении квадратных уравнения можно использовать универсальную формулу корней — это помогает находить комплексные корни.
В 8 классе на алгебре можно встретить задачу по поиску действительных корней квадратного уравнения. Для этого важно перед использованием формул найти дискриминант и убедиться, что он неотрицательный, и только после этого вычислять значения корней. Если дискриминант отрицательный, значит уравнение не имеет действительных корней.
Алгоритм решения квадратного уравнения ax 2 + bx + c = 0:
- вычислить его значение дискриминанта по формуле D = b 2 −4ac;
- если дискриминант отрицательный, зафиксировать, что действительных корней нет;
- если дискриминант равен нулю, вычислить единственный корень уравнения по формуле х = −b/2a;
- если дискриминант положительный, найти два действительных корня квадратного уравнения по формуле корней
Чтобы запомнить алгоритм решения квадратных уравнений и с легкостью его использовать, давайте тренироваться!
Примеры решения квадратных уравнений
Как решать квадратные уравнения мы уже знаем, осталось закрепить знания на практике.
Пример 1. Решить уравнение −4x 2 + 28x — 49 = 0.
- Найдем дискриминант: D = 28 2 — 4(-4)(-49) = 784 — 784 = 0
- Так как дискриминант равен нулю, значит это квадратное уравнение имеет единственный корень
- Найдем корень
Ответ: единственный корень 3,5.
Пример 2. Решить уравнение 54 — 6x 2 = 0.
-
Произведем равносильные преобразования. Умножим обе части на −1
Оставим неизвестное в одной части, остальное перенесем с противоположным знаком в другую
Ответ: два корня 3 и — 3.
Пример 3. Решить уравнение x 2 — х = 0.
-
Преобразуем уравнение так, чтобы появились множители
Ответ: два корня 0 и 1.
Пример 4. Решить уравнение x 2 — 10 = 39.
-
Оставим неизвестное в одной части, остальное перенесем с противоположным знаком в другую
Ответ: два корня 7 и −7.
Пример 5. Решить уравнение 3x 2 — 4x+94 = 0.
-
Найдем дискриминант по формуле
D = (-4) 2 — 4 * 3 * 94 = 16 — 1128 = −1112
Ответ: корней нет.
В школьной программе за 8 класс нет обязательного требования искать комплексные корни, но такой подход может ускорить ход решения. Если дискриминант отрицательный — сразу пишем ответ, что действительных корней нет и не мучаемся.
Формула корней для четных вторых коэффициентов
Рассмотрим частный случай. Формула решения корней квадратного уравнения , где D = b 2 — 4ac, помогает получить еще одну формулу, более компактную, при помощи которой можно решать квадратные уравнения с четным коэффициентом при x. Рассмотрим, как появилась эта формула.
Например, нам нужно решить квадратное уравнение ax 2 + 2nx + c = 0. Сначала найдем его корни по известной нам формуле. Вычислим дискриминант D = (2n) 2 – 4ac = 4n 2 — 4ac = 4(n 2 – ac) и подставим в формулу корней:
2 + 2nx + c = 0″ height=”705″ src=”https://user84060.clients-cdnnow.ru/uploads/5fc11a460e2f8354381151.png” width=”588″>
Для удобства вычислений обозначим выражение n 2 -ac как D1. Тогда формула корней квадратного уравнения со вторым коэффициентом 2·n примет вид:
где D1 = n 2 – ac.
Самые внимательные уже заметили, что D = 4D1, или D1= D/4. Проще говоря, D1 — это четверть дискриминанта. И получается, что знак D1 является индикатором наличия или отсутствия корней квадратного уравнения.
Сформулируем правило. Чтобы найти решение квадратного уравнения со вторым коэффициентом 2n, нужно:
- вычислить D1= n 2 – ac;
- если D1 0, значит можно найти два действительных корня по формуле
Формула Виета
Если в школьной геометрии чаще всего используется теорема Пифагора, то в школьной алгебре ведущую роль занимают формулы Виета. Теорема звучит так:
Сумма корней x 2 + bx + c = 0 равна второму коэффициенту с противоположным знаком, а произведение корней равняется свободному члену.
Если дано x 2 + bx + c = 0, где x₁ и x₂ являются корнями, то справедливы два равенства:
Знак системы, который принято обозначать фигурной скобкой, означает, что значения x₁ и x₂ удовлетворяют обоим равенствам.
Рассмотрим теорему Виета на примере: x 2 + 4x + 3 = 0.
Пока неизвестно, какие корни имеет данное уравнение. Но в соответствии с теоремой можно записать, что сумма этих корней равна второму коэффициенту с противоположным знаком. Он равен четырем, значит будем использовать минус четыре:
Произведение корней по теореме соответствует свободному члену. В данном случае свободным членом является число три. Значит:
Необходимо проверить равна ли сумма корней −4, а произведение 3. Для этого найдем корни уравнения x 2 + 4x + 3 = 0. Воспользуемся формулами для чётного второго коэффициента:
2 + 4x + 3 = 0″ height=”215″ src=”https://lh5.googleusercontent.com/E_X403ETh_88EANRWdQN03KRT8yxP2HO4HoCrxj__c8G0DqmNJ1KDRqtLH5Z1p7DtHm-rNMDB2tEs41D7RHpEV5mojDTMMRPuIkcW33jVNDoOe0ylzXdHATLSGzW4NakMkH2zkLE” width=”393″>
Получилось, что корнями уравнения являются числа −1 и −3. Их сумма равняется второму коэффициенту с противоположным знаком, а значит решение верное.
2 + 4x + 3 = 0″ height=”52″ src=”https://lh5.googleusercontent.com/VzGPXO9B0ZYrr9v0DpJfXwuzeZtjYnDxE_ma76PUC8o7jVWwa8kZjTJhq2Lof0TiJXAp_ny3yRwI_OyRzeucv9xUZ63yoozGPP4xd4OxvElVT7Pt-d6xL5w17e_mQNs5qZJQiwfG” width=”125″>
Произведение корней −1 и −3 по теореме Виета должно равняться свободному члену, то есть числу 3. Это условие также выполняется:
2 + 4x + 3 = 0″ height=”52″ src=”https://lh4.googleusercontent.com/Cq-LCFmY3YGNSan1VF3l3CqIeojoJYAvGAiTBWnzyoZu_xJFrF5NfQ3xCe59apJklw6uYbmQ4lAkBTeC-TJmEGicN3rgGtsezhuqdNiOWjZT39NziOB5uOmQr3cr9-5fNnepdZDo” width=”112″>
Результат проделанных вычислений в том, что мы убедились в справедливости выражения:
Когда дана сумма и произведение корней квадратного уравнения, принято начинать подбор подходящих корней. Теорема, обратная теореме Виета, при таких условиях может быть главным помощником. Вот она:
Обратная теорема Виета
Если числа x1 и x2 таковы, что их сумма равна второму коэффициенту уравнения x 2 + bx + c = 0, взятому с противоположным знаком, а их произведение равно свободному члену, то эти числа и есть корни x 2 + bx + c = 0.
Обычно вся суть обратных теорем в том самом выводе, которое дает первая теорема. Так, при доказательстве теоремы Виета стало понятно, что сумма x1 и x2 равна −b, а их произведение равно c. В обратной теореме это и есть утверждение.
Пример 1. Решить при помощи теоремы Виета: x 2 − 6x + 8 = 0.
-
Для начала запишем сумму и произведение корней уравнения. Сумма будет равна 6, так как второй коэффициент равен −6. А произведение корней равно 8.
2 − 6x + 8 = 0″ height=”59″ src=”https://user84060.clients-cdnnow.ru/uploads/5fc101ce2e346034751939.png” width=”117″>
Когда у нас есть эти два равенства, можно подобрать подходящие корни, которые будут удовлетворять обоим равенствам системы.
Чтобы проще подобрать корни, нужно их перемножить. Число 8 можно получить путем перемножения чисел 4 и 2 либо 1 и 8. Но значения x1 и x2 надо подбирать так, чтобы они удовлетворяли и второму равенству тоже.
Можно сделать вывод, что значения 1 и 8 не подходят, так как они не удовлетворяют равенству x1 + x2 = 6. А значения 4 и 2 подходят обоим равенствам:
Значит числа 4 и 2 — корни уравнения x 2 − 6x + 8 = 0. p>
Упрощаем вид квадратных уравнений
Если мы ходили в школу всегда одной тропинкой, а потом вдруг обнаружили путь короче — это значит теперь у нас есть выбор: упростить себе задачу и сократить время на дорогу или прогуляться по привычному маршруту.
Так же и при вычислении корней квадратного уравнения. Ведь проще посчитать уравнение 11x 2 — 4 x — 6 = 0, чем 1100x 2 — 400x — 600 = 0.
Часто упрощение вида квадратного уравнения можно получить через умножение или деление обеих частей на некоторое число. Например, в предыдущем абзаце мы упростили уравнение 1100x 2 — 400x — 600 = 0, просто разделив обе части на 100.
Такое преобразование возможно, когда коэффициенты не являются взаимно простыми числами. Тогда принято делить обе части уравнения на наибольший общий делитель абсолютных величин его коэффициентов.
Покажем, как это работает на примере 12x 2 – 42x + 48 = 0. Найдем наибольший общий делитель абсолютных величин его коэффициентов: НОД (12, 42, 48) = 6. Разделим обе части исходного квадратного уравнения на 6, и придем к равносильному уравнению 2x 2 — 7x + 8 = 0. Вот так просто.
А умножение обеих частей квадратного уравнения отлично помогает избавиться от дробных коэффициентов. Умножать в данном случае лучше на наименьшее общее кратное знаменателей его коэффициентов. Например, если обе части квадратного уравнения
умножить на НОК (6, 3, 1) = 6, то оно примет более простой вид x 2 + 4x — 18 = 0.
Также для удобства вычислений можно избавиться от минуса при старшем коэффициенте квадратного уравнения — для этого умножим или разделим обе части на −1. Например, удобно от квадратного уравнения −2x 2 – 3x + 7 = 0 перейти к решению 2x 2 + 3x — 7 = 0.
Связь между корнями и коэффициентами
Мы уже запомнили, что формула корней квадратного уравнения выражает корни уравнения через его коэффициенты:
Из этой формулы, можно получить другие зависимости между корнями и коэффициентами.
Например, можно применить формулы из теоремы Виета:
Для приведенного квадратного уравнения сумма корней равна второму коэффициенту с противоположным знаком, а произведение корней — свободному члену. Например, по виду уравнения 3x 2 – 7x + 22 = 0 можно сразу сказать, что сумма его корней равна 7/3, а произведение корней равно 22/3.
Можно активно использовать уже записанные формулы и с их помощью получить ряд других связей между корнями и коэффициентами квадратного уравнения. Таким образом можно выразить сумму квадратов корней квадратного уравнения через его коэффициенты:
Теорема Виета
Приведенное квадратное уравнение и его корни
Приведенным квадратным уравнением называется уравнение вида:
Для корней $x_1$ и $x_2$ приведенного квадратного уравнения (при $D ge 0$) справедливо следующее:
$$ x_1+x_2 = -b, quad x_1 x_2 = c $$
$$ x_1 = -6, x_2 = 1, quad x_1+x_2 = -5, quad x_1 x_2 = -6 $$
Теорема Виета
Для корней $x_1$ и $x_2$ квадратного уравнения $ax^2+bx+c = 0$ (при $D ge 0$) справедливо следующее:
$$ ax^2+bx+c = a(x-x_1 )(x-x_2 ) $$
$$ 2x^2+5x-3 = 2 left(x-frac<1> <2>right)(x+3) $$
$$ x_1 = frac<1><2>, x_2=-3, quad x_1+x_2=-frac<5><2>, quad x_1 x_2 = – frac<3> <2>$$
Примеры
Пример 1. Составьте квадратное уравнение по его корням:
Искомое уравнение: $x^2-3x-10 = 0$
Искомое уравнение: $x^2-3,5x-2 = 0$
$$ left(x-frac<1> <3>right) left(x-frac<1> <2>right) = x^2- left(frac<1><3>+frac<1> <2>right)x+frac<1> <3>cdot frac<1> <2>= x^2-frac<5> <6>x+frac<1> <6>$$
Искомое уравнение: $x^2-frac<5> <6>x+frac<1> <6>= 0 или 6x^2-5x+1 = 0$
$г) frac<3><5>$ – один корень
$$ left(x-frac<3> <5>right)^2 = x^2-2 cdot frac<3> <5>x+ left(frac<3> <5>right)^2 = x^2-frac<6> <5>x+frac<9><25>$$
Искомое уравнение: $x^2-frac<6> <5>x+ frac<9> <25>= 0$ или $25x^2-30x+9 = 0$
Пример 2. Один из корней уравнения $x^2+bx-21 = 0$ равен 3. Найдите другой корень и коэффициент b.
По теореме Виета можем записать:
Получаем: второй корень равен -7, уравнение имеет вид $x^2+4x-21 = 0$.
Ответ: $x_2$ = -7, b = 4
Пример 3. Один из корней уравнения $x^2+3x+c = 0$ равен 12. Найдите другой корень и коэффициент c.
По теореме Виета можем записать:
$$ <left< begin x_2+12 = -3 \ 12x_2 = c end right.> Rightarrow <left< begin x_2 = -15 \ c = 12 cdot (-15) = -180 end right.> $$
Получаем: второй корень равен -15, уравнение имеет вид $x^2+3x-180 = 0$.
Ответ: $x_2$ = -15, c = -180
Пример 4*. Дано уравнение $x^2+5x-7 = 0$ с корнями $x_1$ и $x_2$.
Не решая его, постройте уравнение:
а) с корнями $y_1 = frac<1>, y_2 = frac<1>$
По теореме Виета для корней исходного уравнения получаем:
Для корней искомого уравнения можем записать:
$$ y^2-frac<5> <7>y-frac<1> <7>= 0 iff 7y^2-5y-1 = 0 $$
б) с корнями $y_1 = frac ,y_2 = frac $
Для корней искомого уравнения можем записать:
$$ y^2+frac<39> <7>y+1 = 0 iff 7y^2+39y+7 = 0 $$
[spoiler title=”источники:”]
http://skysmart.ru/articles/mathematic/kak-reshat-kvadratnye-uravneniya
http://reshator.com/sprav/algebra/8-klass/teorema-vieta/
[/spoiler]
Лучший ответ
Кио Кио
Просветленный
(22766)
4 года назад
Легко, уравнение x^2+15x+26=0
Проверяй, какие корни. Такое уравнение единственное, я его получил древней магией.
Остальные ответы
Ksenia
Гений
(60494)
4 года назад
выучи теорему Виета, и будет тебе пожизненное счастье
NaumenkoВысший разум (856085)
4 года назад
суть
сумма корней с противоположным знаком =р.
те второй коэффициент в х”2+рх+q=0
произведение- свободному члену. q
Aljebro
Просветленный
(27044)
4 года назад
(x-x1)(x-x2)=0
(x+2)(x+13)=0 – очевидно, что корни -2 и -13, раскрывай скобки, будет кв. уравнение
На чтение 7 мин. Просмотров 3.9k.
Наблюдательность и способность к анализу позволяет сделать величайшие открытия. Так французский математик Франсуа Виет открыл закономерность, связывающую корни квадратного уравнения и его коэффициенты.
В курсе алгебры 8 класса изучается теорема Виета. Основное применение этой теоремы — упрощение вычисления корней приведенного квадратного уравнения.
В этой статье мы дадим определение теоремы Виета, докажем ее, покажем применение теоремы при решении квадратных уравнений, а также рассмотрим теорему обратную теореме Виета.
Квадратное уравнение и его корни
Давайте вспомним, как решается обычное квадратное уравнение. Сначала мы определяем его дискриминант по формуле: , затем мы сравниваем дискриминант с нулем:
- Если , то уравнение имеет два разных корня, которые определяются по формулам: и
- Если , то имеем два, совпадающих друг с другом корня: .
- Если , то уравнение не имеет действительных корней.
Давайте запишем уравнение и решим его.
Разделим левую и правую части на 2, получим приведенное квадратное уравнение:
Определим дискриминант: . Дискриминант больше нуля, значит, решением будут два корня:
и .
Сумма этих корней , а произведение . То есть сумма этих корней равна второму коэффициенту приведенного уравнения, взятому с противоположным знаком, а произведение равно свободному члену.
Проанализировав множество приведенных уравнений и сумм и произведений их корней, французский математик Франсуа Виет (1540—1603) открыл эту закономерность и доказал, что она справедлива для всех приведенных уравнений. Эту закономерность он назвал теоремой, которую мы теперь знаем, как теорему Виета. Она была доказана в 1591 году.
Теорема Виета и ее доказательство
Теорема. Если и корни уравнения , то , а .
Доказательство:
Используя формулу корней приведенного квадратного уравнения, запишем их сумму и произведение:
Что и требовалось доказать.
Теорема (обратная теореме Виета)
Если числа и такие, что их сумма равна , а их произведение равно , то они являются корнями уравнения .
Доказательство.
Если , а , то заменим и в уравнении:
Если , — корни уравнения, то, подставив в уравнение сначала , потом , мы должны получить верное равенство.
То есть, мы доказали, что — корень уравнения.
Подставим теперь :
Итак, доказано, что — корень уравнения .
Теорема доказана.
Примеры применения теоремы Виета
Рассмотрим примеры, в которых целесообразно применение теоремы Виета.
Пример 1
Напишите приведенное квадратное уравнение, корнями которого являются числа 25 и 2.
Решение:
Приведенное квадратное уравнение имеет вид:
По теореме Виета имеем:
Тогда:
Искомое уравнение будет иметь вид:
Ответ: .
Пример 2
Решите уравнение, применяя теорему Виета.
Решение:
По теореме корни уравнения удовлетворяют системе:
Подбирая, получим:
, .
Действительно, подставим данные корни по очереди в исходное уравнение, и проверим правильность решения.
Корни уравнения найдены верно.
Ответ: , .
Пример 3
Требуется найти корни уравнения .
Решение:
Решать будем через теорему Виета, так как уравнение приведенное — старший коэффициент .
.
Корнями уравнения будут числа и . Они удовлетворяют системе. Сделаем проверку:
Ответ: и .
Совет 1. Если вы делаете выбор в пользу применения теоремы Виета, то обязательно делайте проверку, так как на этапе подбора корней очень часто совершаются ошибки.
Совет 2. Если вы не можете подобрать корни, используя теорему Виета, то вы всегда можете решить уравнение, используя формулы для корней квадратного уравнения.
Пример 4
Найдите сумму и произведение корней уравнения:
Решение:
Сумму и произведение корней найдем по формулам Виета , .
Ответ: , .
Пример 5
Составьте квадратное уравнение, корнями которого являются числа и .
Решение:
Связь между корнями уравнения и его коэффициентами устанавливает теорема Виета.
, тогда .
Определим :
Тогда уравнение будет иметь вид: .
Ответ: .
zindshend829
Вопрос по алгебре:
Составьте квадратное уравнение корнями которого являются числа 1 и 3
Трудности с пониманием предмета? Готовишься к экзаменам, ОГЭ или ЕГЭ?
Воспользуйся формой подбора репетитора и занимайся онлайн. Пробный урок – бесплатно!
Ответы и объяснения 2
lytitlengni887
(x – 1)(x – 3) = x^2 – 3x – x + 3 = x^2 – 4x + 3
solykea438
Теорема Виета:
х1+х2=-b
х1*х2=с
х1=1
х2=3
1+3=-b
4=-b
-4=b
1*3=с
3=c
Составляем уравнение:
х^2-4х+3=0
Знаете ответ? Поделитесь им!
Гость ?
Как написать хороший ответ?
Как написать хороший ответ?
Чтобы добавить хороший ответ необходимо:
- Отвечать достоверно на те вопросы, на которые знаете
правильный ответ; - Писать подробно, чтобы ответ был исчерпывающий и не
побуждал на дополнительные вопросы к нему; - Писать без грамматических, орфографических и
пунктуационных ошибок.
Этого делать не стоит:
- Копировать ответы со сторонних ресурсов. Хорошо ценятся
уникальные и личные объяснения; - Отвечать не по сути: «Подумай сам(а)», «Легкотня», «Не
знаю» и так далее; - Использовать мат – это неуважительно по отношению к
пользователям; - Писать в ВЕРХНЕМ РЕГИСТРЕ.
Есть сомнения?
Не нашли подходящего ответа на вопрос или ответ отсутствует?
Воспользуйтесь поиском по сайту, чтобы найти все ответы на похожие
вопросы в разделе Алгебра.
Трудности с домашними заданиями? Не стесняйтесь попросить о помощи –
смело задавайте вопросы!
Алгебра — раздел математики, который можно нестрого охарактеризовать как обобщение и расширение арифметики.
Составьте квадратное уравнение, корнями которого являются числа 4 и 1.
Вопрос Составьте квадратное уравнение, корнями которого являются числа 4 и 1?, расположенный на этой странице сайта, относится к
категории Алгебра и соответствует программе для 5 – 9 классов. Если
ответ не удовлетворяет в полной мере, найдите с помощью автоматического поиска
похожие вопросы, из этой же категории, или сформулируйте вопрос по-своему.
Для этого ключевые фразы введите в строку поиска, нажав на кнопку,
расположенную вверху страницы. Воспользуйтесь также подсказками посетителей,
оставившими комментарии под вопросом.