Светлой
памяти
Чубича
Михаила Петровича
посвящается
§ 7.1. Определение линейного оператора.
Матрица линейного оператора
Пусть
и
– линейные пространства над одним и тем
же полем .
Будем говорить, что из
пространства
в пространство
действует оператор
или, что то же самое, отображение
,
преобразование
,
если каждому вектору
по какому – либо правилу поставлен в
соответствии определенный вектор
из .
Наиболее
простыми являются линейные операторы.
Отображение
называется линейным
оператором
(линейным
преобразованием),
действующим из
в ,
если оно удовлетворяет следующим двум
условиям:
;
,
.
Совокупность
условий 1 и 2 равносильна следующему
условию:
.
(7.1.1)
Обозначим
через
множество всех линейных операторов,
действующих из линейного пространства
в линейное пространство .
Два линейных оператора
и
из
называются равными,
если
.
(7.1.2)
Множество
будет линейным пространством над полем
,
если определить сумму
операторов
и произведение
оператора
на число
соотношениями
(7.1.3)
(7.1.4)
Нулевым
вектором пространства
будет нулевой
оператор
из
в,
т.е. оператор, переводящий любой вектор
линейного пространства
в нулевой вектор линейного пространства
.
В
случае, когда ,
линейный оператор
называется линейным преобразованием
пространства .
Пусть
–
оператор из ,
и пусть и
–
фиксированные базисы линейных пространств
исоответственно.
Разложим векторы
по базису :
,
,
(7.1.5)
.
Из
коэффициентов этих разложений составим
–
матрицу
.
(7.1.6)
Матрица
называется матрицей
линейного оператора
в паре базисов и
.
Заметим, что столбцами матрицы
служат столбцы координат векторов
в базисе ,
т.е. строки коэффициентов из разложений
(7.1.5).
Если
,
то при нахождении матрицы линейного
оператора фиксируются векторы одного
базиса ,
по которому раскладываются .
Записанные столбцами коэффициенты
разложений образуют квадратную матрицу
порядка .
Равные
линейные операторы в одном и том же
базисе имеют одинаковые матрицы.
Матрицей
суммы линейных операторов в фиксированных
базисах является сумма матриц слагаемых
операторов в тех же базисах.
При
умножении линейного оператора на число
его матрица умножается на то же число.
Если
и
–
соответственно,
–
и
–
мерное линейные пространства над одним
полем
,
то линейное пространство
изоморфно
линейному пространству
–
матриц с элементами из
с
операциями сложения матриц и умножения
их на числа из поля
.
Пример
1.
Оператор
называется
тождественным
(единичным)
оператором,
если
.
(7.1.7)
Покажите
линейность оператора
и постройте его матрицу в базисе .
Решение.
В силу того, что
,
убеждаемся
в линейности тождественного оператора.
Поскольку
получаем,
что
.
В
любом базисе тождественный оператор
имеет единичную матрицу.
Пример
2.
Докажите, что преобразование
пространства
линейно и найдите его матрицу в
каноническом базисе.
Решение.
Пусть
и
– произвольные векторы из .
Тогда
т.
е. преобразование
пространства
линейно. Канонический базис линейного
пространства
составляют векторы
.
Из определения оператора
вытекает, что
Таким
образом,
Пример
3.
Покажите, что умножение квадратных
матриц второго порядка слева на данную
матрицу
является линейным преобразованием
пространства
и найдите матрицу этого преобразования
в базисе, состоящем из матриц
Решение.
По определению преобразования
для любых матриц
и любых чисел
имеем:
.
Перейдем
к построению матрицы оператора
в данном базисе. В силу того, что
получаем:
.
7.1.1.
Какую матрицу имеет нулевой оператор
в любых базисах пространств
и ?
7.1.2.
Линейное пространство
является прямой суммой подпространств
и .
Докажите, что оператор
пространства ,
который каждому вектору
с разложением ,
где ,
ставит в соответствие вектор
этого разложения, является линейным.
Оператор
называется оператором
проектирования
пространства
на
параллельно .
Найдите
матрицу этого оператора в базисе,
полученном объединением базисов
подпространств
и .
7.1.3.
Линейное пространство
является прямой суммой подпространств
и .
Докажите, что оператор ,
который каждому вектору
с разложением ,
где ,
ставит в соответствие вектор ,
является линейным. Оператор
называется отражением
пространства
в
параллельно .
Найдите
матрицу этого оператора в базисе,
полученном объединением базисов
подпространств
и .
7.1.4.
Докажите, что всякий линейный оператор,
действующий в одномерном пространстве,
сводится к умножению всех векторов
пространства на фиксированное (для
данного оператора) число.
7.1.5.
Верно ли, что линейный оператор переводит:
а)
линейно зависимую систему векторов в
линейно зависимую;
б)
линейно независимую систему векторов
в линейно независимую?
7.1.6.
Выясните, какие из следующих преобразований
пространства
линейны, и в случае линейности найдите
их матрицы в каноническом базисе:
а)
б)
в)
г)
7.1.7.
Укажите, какие из приведенных преобразований
пространства
являются линейными операторами, и
найдите их матрицы в базисе .
Каждое преобразование описывается
своим действием на произвольный многочлен
:
а)
б)
в)
,
где
и
– фиксированные числа, причем ;
г)
Этот оператор в дальнейшем называется
оператором
дифференцирования.
7.1.8.
Какова матрица оператора дифференцирования,
действующего в линейном пространстве
,
в базисе ,
где
– действительное число?
7.1.9.
Покажите, что умножение квадратных
матриц второго порядка справа на данную
матрицу
является линейным преобразованием
пространства ,
и найдите матрицу этого преобразования
в базисе, состоящем из матриц :
7.1.10.
Проверьте линейность оператора ,
заданного формулой ,
где
и постройте матрицу этого оператора в
базисах
и
7.1.11.
В пространстве
фиксирован базис, состоящий из матриц
(в
указанном порядке). Запишите в этом
базисе матрицу оператора транспонирования,
т.е. оператора, который каждой матрице
ставит в соответствие транспонированную
матрицу.
Как
изменится эта матрица, если в базисе
поменять местами векторы
и ?
Соседние файлы в папке Задачник-2
- #
- #
- #
- #
- #
- #
Матрица линейного оператора примеры
Построение матрицы по заданной формуле отображения.
Пусть отображение задано с помощью формулы:
то есть для координат произвольного исходного вектора определены координаты его образа. Тогда, рассматривая вместо произвольного вектора x вектор , найдём его образ, это будет вектор . Для этого в формуле, задающей образ вектора, полагаем , ,…, . Аналогично находим образы для ,…, . Из координат образа вектора составляем 1-й столбец матрицы линейного оператора, аналогично из координат последующих векторов – остальные столбцы. Рассмотрим на примере.
Пример 1. Пусть оператор задан с помощью формулы:
.
Прежде всего, докажем, что это отображение – действительно линейный оператор.
Отобразим сумму векторов:
Теперь каждую координату получившегося вектора можем преобразовать:
.
Аналогично для умножения на константу:
Для того чтобы найти матрицу этого линейного оператора, нужно, как было сказано выше, подставить значения x1 = 1, x2 = 0, а затем x1 = 0, x2 = 1. В этом примере образы базисных векторов – соответственно (3, 1) и (2, -1).
Поэтому матрица линейного оператора будет иметь вид:
.
Аналогичным способом решается задача и для 3 и большего количества переменных.
Пример 2. .
Построим матрицу оператора. Отображая вектор (1,0,0), получаем (1,4,-1), соответственно (0,1,0) переходит в (2,1,-2), а вектор (0,0,1) – в (-1,1,3).
Матрица линейного оператора:
.
2.2. Построение матрицы оператора в случае, когда известен исходный базис и система векторов, в которую он отображается.
Если задана система из n векторов, образующих базис, и какая-нибудь произвольная система n векторов (возможно, линейно-зависимая), то однозначно определён линейный оператор, отображающий каждый вектор первой системы в соответствующий вектор второй системы.
Матрицу этого оператора можно найти двумя способами: с помощью обратной матрицы и с помощью системы уравнений.
Пусть – матрица оператора в базисе . По условию, для всех индексов . Данные n равенств можно записать в виде одного матричного равенства: , при этом столбцы матрицы – это векторы , а столбцы матрицы – векторы . Тогда матрица может быть найдена в виде .
Пример. Найти матрицу линейного оператора, отображающего базис
в систему векторов .
Здесь , , , и получаем:
.
Проверка осуществляется умножением получившейся матрицы на каждый вектор: .
Аналогично решаются подобные задачи и для трёхмерного пространства. В приложении (§5) есть несколько вариантов таких задач.
2.3. Прочие способы нахождения матрицы оператора.
Существуют также примеры, где линейный оператор задаётся другими способами, отличными от рассмотренных в п. 2.1 и 2.2.
Пример. Линейными операторами являются как правое, так и левое векторное умножение на фиксированный вектор в трёхмерном пространстве, то есть отображения вида и . Построим матрицу одного из этих операторов, . Для этого найдём образы всех трёх базисных векторов линейного пространства.
.
Аналогично, ,
.
Координаты полученных векторов запишем в виде столбцов матрицы оператора.
Матрица оператора: .
Аналогично можно построить матрицу линейного оператора :
.
Пример. Линейный оператор дифференцирования в пространстве всех многочленов степени не более n. Это пространство размерности n + 1. Возьмём в качестве базиса элементы , , ,…, .
, , , аналогично получим ,…, .
Матрица этого линейного оператора:
Линейные операторы могут отображать не только пространства конечной размерности, но и бесконечномерные пространства. Так, оператор дифференцирования может рассматриваться также в пространстве всех непрерывных функций. (В этом пространстве нет конечного базиса). В этом случае, очевидно, оператор не может быть задан матрицей конечного порядка.
Не нашли то, что искали? Воспользуйтесь поиском:
Лучшие изречения: Для студента самое главное не сдать экзамен, а вовремя вспомнить про него. 10219 – | 7588 – или читать все.
91.146.8.87 © studopedia.ru Не является автором материалов, которые размещены. Но предоставляет возможность бесплатного использования. Есть нарушение авторского права? Напишите нам | Обратная связь.
Отключите adBlock!
и обновите страницу (F5)
очень нужно
Матрица линейного оператора
Определение 1. Если задан закон, который каждому вектору x?? ставит в соот ветствие вектор y . то говорят, что в линейном пространстве ? задан оператор A , при этом пишут:
Определение 2. Оператор A называется линейным, если для любых x 1 ?? и x 2 ?? и произвольного числа ? выполняются условия:
Рассмотрим теперь в евклидовом пространстве E n базис e 1 ,e 2 . e n и пусть в этом пространстве определён линейный оператор A : y = A x .
Разложим векторы x и y по базису e 1 ,e 2 . e n :
В силу линейности оператора A можно написать
Заметим, что каждый вектор , следовательно, его также можно разложить по базису e 1 ,e 2 . e n , т.е.
В силу единственности разложения по данному базису мы можем при равнять коэффициенты при базисных векторах в правых частях формул (1) и (2); тогда получим:
Получили, что линейному оператору A в данном базисе соответствует квадратная матрица
которая называется матрицей линейного оператора A , i -й столбец которой состоит из координат вектора Ae i (i = 1,2. n ) относительно данного базиса. Отметим, что матрица A оператора A зависит от выбора базиса e 1 ,e 2 . e n .
Итак, мы показали, что всякому линейному оператору A в евклидовом пространстве E n соответствует матрица A ; можно доказать и обратное утверждение: всякую квадратную матрицу A можно рассматривать как матрицу некоторого линейного оператора A в данном базисе e 1 ,e 2 . e n .
Представляют интерес невырожденные линейные операторы, т.е. такие операторы, матрицы которых имеют обратную A -1 , т.е. также являются невырожденными. В этом случае каждому вектору y (образу), определённому соотношением, отвечает единственный вектор x (прообраз) и при этом имеет место матричное равенство: X = A -1 ? Y .
Примеры линейных операторов
1. В пространстве 2-мерных векторов линейным оператором является правило
связывающее вектор-прообраз с вектором-образом
2. В пространстве бесконечно дифференцируемых функций линейным оператором является операция дифференцирования, ставящая в соответствие каждому элементу этого простран ства его производную функцию.
3. В пространстве многочленов P n (t) линейным оператором является операция умножения многочлена на независимую переменную t .
Пример: Известны образы базисных векторов E 3 под действием оператора A :
Найти матрицу этого оператора в исходном базисе.
Решение: По определению y = A x, значит в матричном виде можно записать, что A = X -1 Y . Для нашего примера получаем
Действия над операторами
Сложение линейных операторов. Пусть x?E n , A и B – два линейных оператора в этом пространстве.
Определение 1. Суммой линейных операторов A и B в E n называется оператор C, определяемый равенством Cx = A x + Bx , где x – любой вектор из E n .
Сумма линейных операторов является линейным оператором, причём его матрица C = A + B, где A и B – матрицы линейных операторов A и B .
Умножение линейного оператора на число. Пусть x?E n , линейный оператор A определён в E n , ? – некоторое число.
Определение 2. Произведением линейного оператора A на число ? называется оператор ?A , определяемый равенством .
?A является линейным оператором, а матрица этого линейного оператора получается из матрицы A умножением её на число ? , т.е. она равна ? ? A.
Умножение линейных операторов. Пусть x? E n , y ? E n , z ? E n и кроме того в E n определены линейные операторы A и B таким образом, что y = Bx, z = A y .
Определение 3. Произведением A ? B линейных операторов A и B называется оператор C, определяемый соотношением Cx = A (Bx) .
Таким образом, перемножение линейных операторов состоит в последовательном их применении по отношению к вектору x .
Рассмотрим матрицы – столбцы:
и обозначим через A, B и C – соответственно матрицы линейных операторов A, B и C. Тогда Z = A ? (B ? X) = (A ? B) ? X = C ? X , таким образом, C = A ? B, т.е. матрица произведения линей ных операторов также является линейным оператором.
a) (A ? B)(x + y) = A (B(x + y)) = A (Bx + By) = A (Bx) + A (By) = = (A ? B) ? x + (A ? B) ? y
б) (A ? B)(? x) = A (B(? x)) = A (?Bx) =?A (Bx) =? (A ? B)x
Свойства умножения линейных операторов вытекают из свойств умножения матриц.
Определение 4. Линейные операторы A и В называются равными, если . Равенство операторов обозначается как A = B .
Определение 5. Оператор E называется единичным (или тождественным) оператором, если каждому элементу x линейного пространства он ставит в соответствие тот же самый элемент, то есть
1. Понятие линейного оператора
Пусть R и S линейные пространства, которые имеют размерность n и m соответственно. Оператором A действующим из R в S называется отображение вида , сопоставляющее каждому элементу x пространства R некоторый элемент y пространства S. Для этого отображения будем использовать обозначение y= A(x) или y= Ax.
Определение 1. Оператор A действующий из R в S называется линейным, если для любых элементов x1 и x2 пространства R и любого λ из числового поля K выполняются соотношения
Если пространство S совпадает с пространством R, то линейный оператор, который действует из R в R называют линейным преобразованием пространства R.
Пусть заданы два векторных пространства n-мерный R и m-мерный S, и пусть в этих пространствах заданы базисы и соответственно. Пусть задано отображение
где A – m×n -матрица с коэффициентами из поля K. Тогда каждому элементу из R соответствует элемент y=Ax из S. Отображение (1) определяет оператор A. Покажем, что этот оператор обладает свойством линейности. Действительно, учитывая свойства умножения матриц, можно записать:
Покажем теперь обратное, т.е. что для любого линейного оператора A, отображающего пространство R в S и произвольных базисов и в R и S соответственно, существует такая матрица A с элементами из численного поля K, что определяемое этой матрицей линейное отображение (1) выражает координаты отображенного вектора y через координаты исходного вектора x.
Пусть x − произвольный элемент в R. Тогда
(3) |
является разложением x в по базису .
Применим оператор A к базисным векторам :
(4) |
где aij − координаты полученного вектора в базисе .
Тогда применяя оператор A к элементу x и учитывая (3) и (4), имеем
Сделаем следующее обозначение:
(6) |
Тогда равенство (5) примет следующий вид:
(7) |
Из равенства (7) следует, что любой элемент из пространства R при отображении оператором A, в пространстве S и в базисе имеет координаты yi, i=1,2. m. В свою очередь, из (6) следует, что этим координатам соответствуют линейные комбинации координатов элемента xj, j=1,2. n с коэффициентами aij i=1,2. m; j=1,2. n.
Построим матрицу A с элементами aij:
(8) |
Тогда выражение (6) можно записать в матричном виде:
Матрица A называется матрицей линейного оператора в заданных базисах и .
2. Сложение линейных операторов
Пусть A и B два линейных оператора действующих из R в S и пусть A и B – mxn − матрицы соответствующие этим операторам.
Определение 2. Суммой линейных операторов A и B называется оператор C, определяемый равенством
где x∈R означает, что x принадлежит пространстве R.
Сумма линейных операторов обозначается так C=A+B. Легко убедится, что сумма линейных операторов также является линейным оператором.
Применим оператор C к базисному вектору ej, тогда:
Cej= Aej+ Bej= | n | (aij+bij) ej |
∑ | ||
j= 1 |
Следовательно оператору C отвечает матрица ,где i=1,2. m, j=1,2. n, т.е.
3. Умножение линейных операторов
Пусть заданы три линейных пространства R, S и T. Пусть линейный оператор B отображает R в S, а линейный оператор A отображает S в T.
Определение 3. Произведением операторов A и B называется оператор C, для которого выполняется следующее равенство при любом x из R:
Произведение линейных операторов обозначается C=AB. Легко убедится, что произведение линейных операторов также является линейным оператором.
Таким образом оператор C отображает пространство R в T. Выберем в пространствах R, S и T базисы и обозначим через A, B и C матрицы операторов A, B и C соответствующие этим базисам. Тогда отображения линейных операторов A, B, C
можно записать в виде матричных равенств
где x, y, z − векторы x, y, z − представленные в виде координатных столбцов. Тогда
Учитывая произвольность х, получим
Следовательно произведению операторов C=AB соответствует матричное произведение C=AB.
4. Умножение линейного оператора на число
Пусть задан линейный оператор A отображающий R в S и некоторое число λ из поля K.
Определение 4. Произведением оператора A на число λ называется оператор C, для которого выполняется следующее равенство при любом x из R:
Таким образом оператор C отображает пространство R в S. Выберем в пространствах R и S базисы и обозначим через A матрицу оператора A соответствующее этим базисам векторные равенства
можно записать в виде матричных равенств
где x, y, z − векторы x, y, z − представленные в виде координатных столбцов. Тогда
Учитывая произвольность х, получим
Следовательно произведению оператора C на число λ соответствует произведение матрицы A на число λ.
5. Нулевой оператор
Оператор, отображающий все элементы пространства R в нулевой элемент пространства S называется нулевым оператором и обозначается через O. Действие нулевого оператора можно записать так:
6. Противоположный оператор
Противоположным оператору A называется оператор −A удовлетворяющий равенству:
7. Ядро линейного оператора
Определение 5. Ядром линейного оператора A называется множество всех тех элементов x пространства R, для которых выполняется следующее равенство: Ax=0.
Ядро линейного оператора также называют дефектом оператора. Ядро линейного оператора обозначается символом ker A.
8. Образ линейного оператора
Определение 6. Образом линейного оператора A называется множество всех элементов y пространства R, для которых выполняется следующее равенство: y=Ax для всех x из R.
Образ линейного оператора обозначается символом im A.
9. Ранг линейного оператора
Определение 7. Рангом линейного оператора A обозначаемое символом rang A называется число равное размерности образа im A оператора A, т.е.: rang A=dim(im A).
Ядро и образ линейного отображения
Ядром линейного отображения называется множество таких векторов , что , т.е. множество векторов из , которые отображаются в нулевой вектор пространства . Ядро отображения обозначается:
Образом линейного отображения называется множество образов всех векторов из . Образ отображения обозначается или
Заметим, что символ следует отличать от — мнимой части комплексного числа.
Примеры ядер и образов линейных отображений
1. Ядром нулевого отображения является все пространство , а образом служит один нулевой вектор, т.е.
2. Рассмотрим отображение , которое ставит в соответствие каждому вектору n-мерного линейного пространства его координатный столбец относительно заданного базиса . Ядром этого отображения является нулевой вектор пространства , поскольку только этот вектор имеет нулевой координатный столбец . Образ преобразования совпадает со всем пространством , так как это преобразование сюръективно (любой столбец из является координатным столбцом некоторого вектора пространства ).
3. Рассмотрим отображение , которое каждому вектору n-мерного евклидова пространства ставит в соответствие алгебраическое значение его проекции на направление, задаваемое единичным вектором . Ядром этого преобразования является ортогональное дополнение — множество векторов, ортогональных . Образом является все множество действительных чисел .
4. Рассмотрим отображение , которое каждому многочлену степени не выше ставит в соответствие его производную. Ядром этого отображения является множество многочленов нулевой степени, а образом — все пространство .
Свойства ядра и образа линейного отображения
1. Ядро любого линейного отображения является подпространством: .
В соответствии с определением требуется доказать, что множество является непустым и замкнутым относительно операций сложения векторов и умножения вектора на число. В самом деле, из однородности отображения следует, что
т.е. нулевой вектор отображается в нулевой вектор . Следовательно, ядро любого линейного отображения не является пустым и содержит, по крайней мере, нулевой элемент: . Покажем, что множество замкнуто по отношению к операциям сложения векторов и умножения вектора на число. Действительно:
Следовательно, множество является линейным подпространством пространства .
2. Образ любого линейного отображения является подпространством: .
В самом деле, докажем, например, замкнутость множества по отношению к операции умножения вектора на число. Если , то существует вектор такой, что . Тогда , то есть .
Поскольку ядро и образ линейного отображения являются линейными подпространствами (свойства 1 и 2), можно говорить об их размерностях.
Дефектом линейного отображения называется размерность его ядра: , а рангом линейного отображения — размерность его образа: .
3. Ранг линейного отображения равен рангу его матрицы (определенной относительно любых базисов).
В самом деле, если любой базис пространства , то . Поэтому максимальное число линейно независимых векторов системы (ранг системы векторов) равно максимальному числу линейно независимых столбцов матрицы отображения, т.е. рангу матрицы: .
4. Линейное отображение инъективно тогда и только тогда, когда , другими словами, когда дефект отображения равен нулю: .
Действительно, образом нулевого вектора служит нулевой вектор . Поэтому, если отображение инъективно, то ядро содержит только нулевой вектор , иначе два разных вектора имели бы один и тот же образ . Обратно, при условии разные векторы не могут иметь одинаковые образы , так как в этом случае из равенств , следует, что ненулевой вектор (приходим к противоречию).
5. Линейное отображение сюръективно тогда и только тогда, когда , другими словами, когда ранг отображения равен размерности пространства образов: .
6. Линейное отображение биективно (значит, обратимо) тогда и только тогда, когда и одновременно.
Теорема (9.1) о размерностях ядра и образа. Сумма размерностей ядра и образа любого линейного отображения равна размерности пространства прообразов:
Действительно, пусть . Выберем в подпространстве базис и дополним его векторами до базиса всего пространства . Покажем, что векторы образуют базис подпространства .
Во-первых, , так как образ любого вектора линейно выражается через векторы
Во-вторых, образующие линейно независимы. Если их линейная комбинация равна нулевому вектору:
то вектор принадлежит ядру (его образ — нулевой вектор). Однако, по построению этот вектор принадлежит алгебраическому дополнению . Учитывая, что , заключаем: . Получили разложение нулевого вектора по линейно независимой системе векторов, значит, все коэффициенты . Поэтому равенство справедливо только для тривиальной линейной комбинации, т.е. система векторов линейно независимая.
Таким образом, векторы образуют базис подпространства , а его размерность определяется количеством базисных векторов, т.е. , что равносильно (9.3).
Следствие. Линейное отображение биективно (значит, обратимо) тогда и только тогда, когда обратима его матрица (определенная относительно любых базисов).
Действительно, для обратимости преобразования (см. свойство 6) его матрица (размеров ) должна удовлетворять условиям (см. свойства 3,4,5):
Тогда по теореме 9.1 заключаем, что , т.е. матрица — квадратная n-го порядка и невырожденная , что и требовалось доказать.
Обратимые линейные отображения называются также невырожденными (имея в виду невырожденность их матрицы).
Линейные операторы
1. Понятие линейного оператора
Пусть R и S линейные пространства, которые имеют размерность n и m соответственно. Оператором A действующим из R в S называется отображение вида , сопоставляющее каждому элементу x пространства R некоторый элемент y пространства S. Для этого отображения будем использовать обозначение y= A(x) или y= Ax.
Определение 1. Оператор A действующий из R в S называется линейным, если для любых элементов x1 и x2 пространства R и любого λ из числового поля K выполняются соотношения
Если пространство S совпадает с пространством R, то линейный оператор, который действует из R в R называют линейным преобразованием пространства R.
Пусть заданы два векторных пространства n-мерный R и m-мерный S, и пусть в этих пространствах заданы базисы и соответственно. Пусть задано отображение
где A – m×n -матрица с коэффициентами из поля K. Тогда каждому элементу из R соответствует элемент y=Ax из S. Отображение (1) определяет оператор A. Покажем, что этот оператор обладает свойством линейности. Действительно, учитывая свойства умножения матриц, можно записать:
Покажем теперь обратное, т.е. что для любого линейного оператора A, отображающего пространство R в S и произвольных базисов и в R и S соответственно, существует такая матрица A с элементами из численного поля K, что определяемое этой матрицей линейное отображение (1) выражает координаты отображенного вектора y через координаты исходного вектора x.
Пусть x − произвольный элемент в R. Тогда
(3) |
является разложением x в по базису .
Применим оператор A к базисным векторам :
(4) |
где aij − координаты полученного вектора в базисе .
Тогда применяя оператор A к элементу x и учитывая (3) и (4), имеем
Сделаем следующее обозначение:
(6) |
Тогда равенство (5) примет следующий вид:
(7) |
Из равенства (7) следует, что любой элемент из пространства R при отображении оператором A, в пространстве S и в базисе имеет координаты yi, i=1,2. m. В свою очередь, из (6) следует, что этим координатам соответствуют линейные комбинации координатов элемента xj, j=1,2. n с коэффициентами aij i=1,2. m; j=1,2. n.
Построим матрицу A с элементами aij:
(8) |
Тогда выражение (6) можно записать в матричном виде:
Матрица A называется матрицей линейного оператора в заданных базисах и .
2. Сложение линейных операторов
Пусть A и B два линейных оператора действующих из R в S и пусть A и B – mxn − матрицы соответствующие этим операторам.
Определение 2. Суммой линейных операторов A и B называется оператор C, определяемый равенством
где x∈R означает, что x принадлежит пространстве R.
Сумма линейных операторов обозначается так C=A+B. Легко убедится, что сумма линейных операторов также является линейным оператором.
Применим оператор C к базисному вектору ej, тогда:
Cej= Aej+ Bej= | n | (aij+bij) ej |
∑ | ||
j= 1 |
Следовательно оператору C отвечает матрица ,где i=1,2. m, j=1,2. n, т.е.
3. Умножение линейных операторов
Пусть заданы три линейных пространства R, S и T. Пусть линейный оператор B отображает R в S, а линейный оператор A отображает S в T.
Определение 3. Произведением операторов A и B называется оператор C, для которого выполняется следующее равенство при любом x из R:
Произведение линейных операторов обозначается C=AB. Легко убедится, что произведение линейных операторов также является линейным оператором.
Таким образом оператор C отображает пространство R в T. Выберем в пространствах R, S и T базисы и обозначим через A, B и C матрицы операторов A, B и C соответствующие этим базисам. Тогда отображения линейных операторов A, B, C
можно записать в виде матричных равенств
где x, y, z − векторы x, y, z − представленные в виде координатных столбцов. Тогда
Учитывая произвольность х, получим
Следовательно произведению операторов C=AB соответствует матричное произведение C=AB.
4. Умножение линейного оператора на число
Пусть задан линейный оператор A отображающий R в S и некоторое число λ из поля K.
Определение 4. Произведением оператора A на число λ называется оператор C, для которого выполняется следующее равенство при любом x из R:
Таким образом оператор C отображает пространство R в S. Выберем в пространствах R и S базисы и обозначим через A матрицу оператора A соответствующее этим базисам векторные равенства
можно записать в виде матричных равенств
где x, y, z − векторы x, y, z − представленные в виде координатных столбцов. Тогда
Учитывая произвольность х, получим
Следовательно произведению оператора C на число λ соответствует произведение матрицы A на число λ.
5. Нулевой оператор
Оператор, отображающий все элементы пространства R в нулевой элемент пространства S называется нулевым оператором и обозначается через O. Действие нулевого оператора можно записать так:
6. Противоположный оператор
Противоположным оператору A называется оператор −A удовлетворяющий равенству:
7. Ядро линейного оператора
Определение 5. Ядром линейного оператора A называется множество всех тех элементов x пространства R, для которых выполняется следующее равенство: Ax=0.
Ядро линейного оператора также называют дефектом оператора. Ядро линейного оператора обозначается символом ker A.
8. Образ линейного оператора
Определение 6. Образом линейного оператора A называется множество всех элементов y пространства R, для которых выполняется следующее равенство: y=Ax для всех x из R.
Образ линейного оператора обозначается символом im A.
9. Ранг линейного оператора
Определение 7. Рангом линейного оператора A обозначаемое символом rang A называется число равное размерности образа im A оператора A, т.е.: rang A=dim(im A).
[spoiler title=”источники:”]
http://mathhelpplanet.com/static.php?p=yadro-i-obraz-linyeinogo-otobrazheniya
http://matworld.ru/linear-algebra/linear-operator.php
[/spoiler]
Определение. Пусть даны два пространства и . Если по закону каждому вектору поставлен в соответствие вектор , то говорят, что задан оператор (функция, отображение), отображающий в и пишут .
Обозначение: ; – образ, – прообраз.
Определение. Если для любых и из и любых вещественных чисел и имеет место , то оператор называется линейным.
Произвольные отображения линейных пространств изучаются в курсе математического анализа. В курсе линейной алгебры изучаются лишь линейные отображения.
Пример 6. Оператор действует из в по закону , где , и – фиксированный вектор, например, . Оператор переводит вектор из в другой вектор из . Докажем, что он линейный: . Здесь воспользовались свойствами векторного произведения.
Пример 7. Линеен ли оператор , где произвольный вектор, а вектор – фиксированный?
Решение. , так как , . Следовательно, оператор – нелинейный.
Пусть даны два пространства и и оператор , действующий из в . Пусть в есть базис , а в – базис .
Подействовав оператором на базисные векторы пространства , получим векторы из , которые можно разложить по базису с коэффициентами линейных комбинаций :
Строим матрицу таким образом, чтобы в ее столбцах стояли координаты образов базисных векторов пространства относительно базисных векторов пространства :
.
Матрица называется матрицей линейного оператора , действующего из в . Таким образом, если оператор , то матрица этого оператора имеет размер , то есть у нее строк и столбцов.
Замечание. Если в и выбрать другие базисы, то в этих базисах матрица линейного оператора будет иметь другой вид.
Из определения матрицы линейного оператора следует, что, зная закон (оператор), по которому вектору сопоставляется вектор , можно построить матрицу, и наоборот, любой матрице соответствует некоторый линейный оператор.
Пример 8. Построить матрицу линейного оператора, действующего из в по закону , где векторы и заданы относительно канонического базиса.
Решение. Подействуем оператором на базисные векторы :
;
;
.
Таким, образом, – искомая матрица.
Пример 9. Пусть в выбран базис , , , а в выбран базис , . Найти матрицу линейного оператора, действующего из в по закону , где .
Решение. ; ;
; .
Пример 10. Дана матрица . Найти линейный оператор (закон, по которому действует оператор).
Решение. Матрица – это матрица линейного оператора, действующего из в . Пусть в базис , в базис . Так как в столбцах матрицы стоят координаты векторов относительно базиса , то
(1)
Пусть произвольный вектор из , где – координаты этого вектора в базисе , тогда . Действуя оператором на вектор и учитывая линейность оператора, получим: .
Учитывая (1), имеем:
.
Таким образом, оператор действует по закону
.
Зная матрицу оператора , результат его действия на вектор можно найти в матричной форме. Пусть известна матрица оператора размера с элементами . В этом случае оператор с такой матрицей действует из в . Если – любой вектор из , то результат действия оператора на вектор можно найти по формуле:
,
Где – координаты вектора .
Пример 11. Операторы и действуют в пространстве по законам , , где ; ( – скалярное произведение векторов и ). Найти координаты вектора в каноническом базисе.
Решение. Координаты вектора можно найти двумя способами:
А) найдем матрицу .
Строим матрицу в каноническом базисе:
; ;
.
.
Строим матрицу в каноническом базисе:
; ;
.
;
.
.
Этот способ решения называется матричным;
Б) операторный способ.
. Подействуем оператором на вектор :
, теперь на полученный вектор подействуем оператором :
.
Для самостоятельной работы.
1. Оператор действует по закону:
.
Найти его матрицу в каноническом базисе.
Ответ: .
2. Оператор действует в плоскости и осуществляет зеркальное отражение относительно прямой . Доказать, что он линейный и найти его матрицу в каноническом базисе.
Ответ: .
3. Дана матрица .
А) Найти оператор, матрицей которого является матрица .
Б) Найти образ вектора .
Ответ: .
< Предыдущая | Следующая > |
---|
Пример 4.3 более глубок, чем это может показаться с первого взгляда. Фактически любой линейный оператор можно интерпретировать как линейный оператор, описанный в этом примере, т.е. действие линейного оператора сводится к умножению столбца координат вектора на матрицу. Поясним это подробнее.
Пусть задан линейный оператор А: L → L, т.е. линейное преобразование n-мерного линейного пространства L в себя. Выберем базис b = (b1 … bn) в L. Действие линейного оператора полностью определено, если известны образы векторов базиса. Действительно, если вектор х имеет координаты х = (x1 … хn)T , то
Ах = A(x1b1 + … + хnbn) = x1(Ab1) +… + хn(Аbn),
т.е., зная векторы Abi, мы можем найти образ любого вектора x линейного пространства L.
Рассмотрим действие линейного оператора А на векторы базиса b. Обозначим столбцы координат векторов Abix в базисе через аi, ai = (а1i … аin) , i = 1,n. Тогда
Abi = bai, i = 1,n.
Определение 4.4. Матрицу А = (а1 … an), составленную из координатных столбцов векторов Ab1, … , Abn в базисе b = (b1 … bn) называют матрицей линейного оператора А в базисе b.
Матрица линейного оператора А: L → L является квадратной, ее порядок совпадает с размерностью линейного пространства L.
Рассмотрим несколько примеров линейных операторов и их матриц.
Пример 4.7. Матрицей нулевого оператора Θ: L → L независимо от выбора базиса является нулевая матрица соответствующего типа. Действительно, образом любого вектора в случае нулевого оператора является нулевой вектор. Поэтому матрица нулевого оператора в любом базисе должна состоять из нулевых столбцов.
Пример 4.8. Матрица тождественного оператора I также не зависит от выбора базиса и в любом базисе является единичной. Действительно, взяв произвольный базис b = (b1 … bn), заключаем, что при i = 1,n
где единица в последнем столбце стоит на i-м месте. Видно, что столбец координат вектора Ibi является i-м столбцом единичной матрицы.
Теорема 4.3. Пусть А: L → L – линейный оператор. Тогда столбец у координат вектора у = Ах в данном базисе b линейного пространства L равен произведению Ах матрицы А оператора А в базисе b на столбец х координат вектора x в том же базисе: у = Ах.
◄ Выберем произвольный вектор х = х1b1 + … + хnbn. Его образом будет вектор
у = Ах = A(x1b1 + … + xnbn) = x1(Ab1) + … + хn(Аbn) = x1(a11b1 + … + an1bn) + … + xn(a1nb1 + … + annbn) =
(а11x1 + … + a1nxn)b1 + … + (an1x1 + … + annxn)bn.
Столбец координат вектора Ax в базисе b имеет вид
Запись у = Ах из формулировки теоремы 4.3 удобно называть матричной формой записи действия линейного оператора А в базисе b.
Замечание 4.1. Выкладки, приведенные в доказательстве теоремы, можно упростить, если использовать матричные обо-значения и правила выполнения матричных операций. Полагая, что строка образов базисных векторов (Ab1 … Abn) получается “умножением” строки векторов b слева на оператор А:
(Аb1 … Аbn) = Аb,
получаем
Ab = (Ab1 … Abn) = (ba1 … ban) = b(a1 … аn) = bА,
так как bai – матричная запись разложения вектора Abi по базису b, i = 1,n. Здесь мы использовали технику операций с блочными матрицами.
Взяв произвольный вектор х = bх, получаем
Ах = А(bх) = (Аb)х = (bА)х = b(Ах).
Это означает, что столбец Ах является столбцом координат вектора Ах.
Пример 4.9. Рассмотрим отображение А: V3 → V3, которое каждый вектор х преобразует в его векторное произведение Ах = х × i на орт i оси Ох. В силу свойств векторного произведения это отображение – линейный оператор. Найдем матрицу А этого линейного оператора в (правом) ортонорми- рованном базисе i, j, k. Для этого надо найти образы базисных векторов и разложить их по тому же базису. Поскольку Ai = i × i = 0, то первый столбец в матрице А нулевой. Далее получаем второй столбец матрицы А:
Затем третий столбец:
Итак, матрица А имеет вид
Действие линейного оператора А на вектор х можно теперь записать как умножение столбца координат (х у z)T вектора х слева на матрицу оператора:
Матрица линейного оператора полностью характеризует линейный оператор. В то же время, какую бы квадратную матрицу порядка n мы ни взяли, она будет матрицей некоторого линейного оператора в заданном базисе n-мерного линейного пространства (см. пример 4.3). Таким образом, между линейными операторами, действующими в данном n-мерном линейном пространстве L и квадратными матрицами порядка n существует соответствие, которое является взаимно однозначным, что и утверждает следующая теорема.
Теорема 4.4. Пусть b – произвольный базис в n-мерном линейном пространстве L. Различным линейным операторам А и В, действующим в пространстве L, соответствуют и различные матрицы в базисе b. Любая квадратная матрица А порядка n является матрицей некоторого линейного оператора, действующего в линейном пространстве L.
◄ Если матрицы А и В операторов А и В в базисе b совпадают, то, согласно теореме 4.3, для любого вектора х со столбцом координат х
Ах = bАх = bВх = Вх,
т.е. образы произвольного вектора при двух отображениях совпадают. Следовательно, совпадают и сами отображения.
Пусть А = (aij) – произвольная квадратная матрица порядка n. Определим отображение А: L → L согласно формуле А(х) = bАх, где х – столбец координат вектора х. Несложно проверить, что заданное таким образом отображение является линейным оператором. Действительно, для любых векторов х,у ∈ L и любых действительных чисел λ, μ
А(λx + μу) = bА(λх + μу) = λ(bАx) + μ(bАу) = λА(х) + μА(у).
В этой выкладке мы использовали теорему 1.3 и свойства умножения матриц. Вычислив для i = 1,n столбец координат образа i-го вектора из базиса b
где единица стоит в i-й строке, убеждаемся, что он совпадает с i-м столбцом матрицы А и поэтому матрица заданного линейного оператора совпадает с исходной матрицей А. ►
Теорема 4.5. Ранг матрицы линейного оператора А: L → L совпадает с рангом этого оператора.
◄ Образ imA линейного оператора А представляет собой линейную оболочку системы векторов Ab1, …, Abn, где b1, …, bn – некоторый базис линейного пространства L. Размерность линейного подпространства imA, представляющая собой ранг оператора, совпадает с максимальным количеством линейно независимых векторов в системе Ab1, … , Abn и равна
максимальному количеству линейно независимых столбцов в матрице А, составленной из столбцов координат этих векторов. Но матрица А является матрицей оператора А. Значит, dim imA совпадает с рангом матрицы оператора А в указанном базисе. Поскольку понятие ранга линейного оператора не зависит от выбора базиса, то и ранг его матрицы в любом базисе один и тот же. ►
Замечание 4.2. Связь между линейными операторами и матрицами, вскрытая доказанными теоремами, позволяет дать геометрическую интерпретацию системе линейных алгебраических уравнений (СЛАУ). Если СЛАУ записать в матричной форме Ах = b, то матрицу А можно связать с некоторым линейным оператором А, а столбцы х и b интерпретировать как столбцы координат векторов x и b. Мы приходим к операторному уравнению, Ах = b, решение которого означает определение вектора х по его образу b. В частном случае b = 0 СЛАУ однородна, а решение операторного уравнения означает определение ядра оператора. Отметим, что тривиальное решение х = 0 однородной СЛАУ Ах = 0 соответствует нулевому вектору, всегда входящему в ядро оператора.
-
Линейные операции над векторами
-
Базис. Cкалярное произведение
-
Векторное и смешанное произведения векторов
-
Декартова система координат. прямая на плоскости
-
Плоскость в пространстве
-
Прямая в пространстве
-
Кривые второго порядка — I
-
Кривые второго порядка — II
-
Поверхности второго порядка
-
Матрицы и операции с ними
-
Обратная матрица
-
Ранг матрицы
-
Системы линейных алгебраических уравнений
-
Свойства решений однородных и неоднородных СЛАУ
Линейные операторы
1. Понятие линейного оператора
Пусть R и S линейные пространства, которые имеют размерность n и m соответственно. Оператором A действующим из R в S называется отображение вида , сопоставляющее каждому элементу x пространства R некоторый элемент y пространства S. Для этого отображения будем использовать обозначение y=A(x) или y=Ax.
Определение 1. Оператор A действующий из R в S называется линейным, если для любых элементов x1 и x2 пространства R и любого λ из числового поля K выполняются соотношения
- A(x1+x2)=Ax1+Ax2.
- A(λx)=λAx.
Если пространство S совпадает с пространством R, то линейный оператор, который действует из R в R называют линейным преобразованием пространства R.
Пусть заданы два векторных пространства n-мерный R и m-мерный S, и пусть в этих пространствах заданы базисы и соответственно. Пусть задано отображение
где A – m×n -матрица с коэффициентами из поля K. Тогда каждому элементу из R соответствует элемент y=Ax из S. Отображение (1) определяет оператор A. Покажем, что этот оператор обладает свойством линейности. Действительно, учитывая свойства умножения матриц, можно записать:
Покажем теперь обратное, т.е. что для любого линейного оператора A, отображающего пространство R в S и произвольных базисов и в R и S соответственно, существует такая матрица A с элементами из численного поля K, что определяемое этой матрицей линейное отображение (1) выражает координаты отображенного вектора y через координаты исходного вектора x.
Пусть x − произвольный элемент в R. Тогда
(3) |
является разложением x в по базису .
Применим оператор A к базисным векторам :
(4) |
где aij − координаты полученного вектора в базисе .
Тогда применяя оператор A к элементу x и учитывая (3) и (4), имеем
(5) |
Сделаем следующее обозначение:
(6) |
Тогда равенство (5) примет следующий вид:
(7) |
Из равенства (7) следует, что любой элемент из пространства R при отображении оператором A, в пространстве S и в базисе имеет координаты yi, i=1,2,…,m. В свою очередь, из (6) следует, что этим координатам соответствуют линейные комбинации координатов элемента xj, j=1,2,…n с коэффициентами aij i=1,2,…,m; j=1,2,…,n.
Построим матрицу A с элементами aij:
(8) |
Тогда выражение (6) можно записать в матричном виде:
Матрица A называется матрицей линейного оператора в заданных базисах и .
2. Сложение линейных операторов
Пусть A и B два линейных оператора действующих из R в S и пусть A и B – mxn − матрицы соответствующие этим операторам.
Определение 2. Суммой линейных операторов A и B называется оператор C, определяемый равенством
где x∈R означает, что x принадлежит пространстве R.
Сумма линейных операторов обозначается так C=A+B. Легко убедится, что сумма линейных операторов также является линейным оператором.
Применим оператор C к базисному вектору ej, тогда:
Cej=Aej+Bej= | n | (aij+bij)ej |
∑ | ||
j=1 |
Следовательно оператору C отвечает матрица ,где i=1,2,…m, j=1,2,…n, т.е.
3. Умножение линейных операторов
Пусть заданы три линейных пространства R, S и T. Пусть линейный оператор B отображает R в S, а линейный оператор A отображает S в T.
Определение 3. Произведением операторов A и B называется оператор C, для которого выполняется следующее равенство при любом x из R:
Произведение линейных операторов обозначается C=AB. Легко убедится, что произведение линейных операторов также является линейным оператором.
Таким образом оператор C отображает пространство R в T. Выберем в пространствах R, S и T базисы и обозначим через A, B и C матрицы операторов A, B и C соответствующие этим базисам. Тогда отображения линейных операторов A, B, C
можно записать в виде матричных равенств
где x, y, z − векторы x, y, z − представленные в виде координатных столбцов. Тогда
Учитывая произвольность х, получим
Следовательно произведению операторов C=AB соответствует матричное произведение C=AB.
4. Умножение линейного оператора на число
Пусть задан линейный оператор A отображающий R в S и некоторое число λ из поля K.
Определение 4. Произведением оператора A на число λ называется оператор C, для которого выполняется следующее равенство при любом x из R:
Таким образом оператор C отображает пространство R в S. Выберем в пространствах R и S базисы и обозначим через A матрицу оператора A соответствующее этим базисам векторные равенства
можно записать в виде матричных равенств
где x, y, z − векторы x, y, z − представленные в виде координатных столбцов. Тогда
Учитывая произвольность х, получим
Следовательно произведению оператора C на число λ соответствует произведение матрицы A на число λ.
5. Нулевой оператор
Оператор, отображающий все элементы пространства R в нулевой элемент пространства S называется нулевым оператором и обозначается через O. Действие нулевого оператора можно записать так:
6. Противоположный оператор
Противоположным оператору A называется оператор −A удовлетворяющий равенству:
7. Ядро линейного оператора
Определение 5. Ядром линейного оператора A называется множество всех тех элементов x пространства R, для которых выполняется следующее равенство: Ax=0.
Ядро линейного оператора также называют дефектом оператора. Ядро линейного оператора обозначается символом ker A.
8. Образ линейного оператора
Определение 6. Образом линейного оператора A называется множество всех элементов y пространства R, для которых выполняется следующее равенство: y=Ax для всех x из R.
Образ линейного оператора обозначается символом im A.
9. Ранг линейного оператора
Определение 7. Рангом линейного оператора A обозначаемое символом rang A называется число равное размерности образа im A оператора A, т.е.: rang A=dim(im A).