Как составить микроскоп

Устройство и основные части оптического микроскопа

Содержание

  1. Осветительная часть
  2. Воспроизводящая часть
  3. Визуализирующая часть
  4. Схема расположения основных элементов оптического микроскопа
  5. Механическая часть микроскопа
  6. Оптика микроскопа (оптическая часть)
  7. Электрическая часть микроскопа

В отличие от лупы, микроскоп имеет, как минимум, две ступени увеличения. Функциональные и конструктивно-технологические части микроскопа предназначены для обеспечения работы микроскопа и получения устойчивого, максимально точного, увеличенного изображения объекта. Здесь мы рассмотрим устройство микроскопа и постараемся описать основные части микроскопа.

Функционально устройство микроскопа делится на 3 части:

1. Осветительная часть

Предназначена для создания светового потока, который позволяет осветить объект таким образом, чтобы последующие части микроскопа предельно точно выполняли свои функции. Осветительная часть микроскопа проходящего света расположена за объектом под объективом в прямых микроскопах (например, биологические, поляризационные и др.) и перед объектом над объективом в инвертированных. Подробнее о видах световых микроскопов.

Осветительная часть конструкции микроскопа включает источник света (лампа и электрический блок питания) и оптико-механическую систему (коллектор, конденсор, полевая и апертурная регулируемые/ирисовые диафрагмы).

2. Воспроизводящая часть

Предназначена для воспроизведения объекта в плоскости изображения с требуемым для исследования качеством изображения и увеличения (т. е. для построения такого изображения, которое как можно точнее и во всех деталях воспроизводило бы объект с соответствующим оптике микроскопа разрешением, увеличением, контрастом и цветопередачей).
Воспроизводящая часть обеспечивает первую ступень увеличения и расположена после объекта до плоскости изображения микроскопа.
Воспроизводящая часть включает объектив и промежуточную оптическую систему.

Современные микроскопы последнего поколения базируются на оптических системах объективов, скорректированных на бесконечность. Это требует дополнительно применения так называемых тубусных систем, которые параллельные пучки света, выходящие из объектива, «собирают» в плоскости изображения микроскопа. 

3. Визуализирующая часть

Предназначена для получения реального изображения объекта на сетчатке глаза, фотоплёнке или пластинке, на экране телевизионного или компьютерного монитора с дополнительным увеличением (вторая ступень увеличения).
Визуализирующая часть расположена между плоскостью изображения объектива и глазами наблюдателя (цифровой камерой).
Визуализирующая часть включает монокулярную, бинокулярную или тринокулярную визуальную насадку с наблюдательной системной (окулярами, которые работают как лупа).
Кроме того, к этой части относятся системы дополнительного увеличения (системы оптовара/смены увеличения); проекционные насадки, в том числе дискуссионные для двух и более наблюдателей; рисовальные аппараты; системы анализа и документирования изображения с соответствующими адаптерами для цифровых камер.

Схема расположения основных элементов оптического микроскопа

Основные части микроскопа. Устройство оптических микроскопов.

С конструктивно-технологической точки зрения, микроскоп состоит из следующих частей:

  • механической;
  • оптической;
  • электрической.

1. Механическая часть микроскопа

Устройство микроскопа включается в себя штатив, который является основным конструктивно-механическим блоком микроскопа. Штатив включает в себя следующие основные блоки: основание и тубусодержатель.

Основание представляет собой блок, на котором крепится весь микроскоп и является одной из основных частей микроскопа. В простых микроскопах на основание устанавливают осветительные зеркала или накладные осветители. В более сложных моделях осветительная система встроена в основание без или с блоком питания.

Разновидности оснований микроскопа:

  1. основание с осветительным зеркалом;
  2. так называемое «критическое» или упрощенное освещение;
  3. освещение по Келеру.

Тубусодержатель представляет собой блок, часть конструкции микроскопа, на котором закрепляются:

  1. узел смены объективов, имеющий следующие варианты исполнения — револьверное устройство, резьбовое устройство для ввинчивания объектива, «салазки» для безрезьбового крепления объективов с помощью специальных направляющих;
  2. фокусировочный механизм грубой и точной настройки микроскопа на резкость — механизм фокусировочного перемещения объективов или столиков;
  3. узел крепления сменных предметных столиков;
  4. узел крепления фокусировочного и центрировочного перемещения конденсора;
  5. узел крепления сменных насадок (визуальных, фотографических, телевизионных, различных передающих устройств).

В микроскопах могут использоваться стойки для крепления узлов (например, фокусировочный механизм в стереомикроскопах или крепление осветителя в некоторых моделях инвертированных микроскопов).

Чисто механическим узлом микроскопа является предметный столик, предназначенный для крепления или фиксации в определенном положении объекта наблюдения. Столики бывают неподвижные, координатные и вращающиеся (центрируемые и нецентрируемые).

2. Оптика микроскопа (оптическая часть)

Оптические узлы и принадлежности обеспечивают основную функцию микроскопа — создание увеличенного изображения объекта с достаточной степенью достоверности по форме, соотношению размеров составляющих элементов и цвету. Кроме этого, оптика должна обеспечивать такое качество изображения, которое отвечает целям исследования и требованиям методик проводимого анализа.
Основными оптическими элементами микроскопа являются оптические элементы, образующие осветительную (в том числе, конденсор), наблюдательную (окуляры) и воспроизводящую (в том числе объективы) системы микроскопа.

Объективы микроскопа

— представляют собой оптические системы, предназначенные для построения микроскопического изображения в плоскости изображения с соответствующим увеличением, разрешением элементов, точностью воспроизведения по форме и цвету объекта исследования. Объективы являются одними из основных частей микроскопа. Они имеют сложную оптико-механическую конструкцию, которая включает несколько одиночных линз и компонентов, склеенных из 2-х или 3-х линз.
Количество линз обусловлено кругом решаемых объективом задач. Чем выше качество изображения, которое дает объектив, тем сложнее его оптическая схема. Общее число линз в сложном объективе может доходить до 14 (например, это может относиться к планапохроматическому объективу с увеличением 100х и числовой апертурой 1,40).

Объектив состоит из фронтальной и последующей частей. Фронтальная линза (или система линз) обращена к препарату и является основной при построении изображения соответствующего качества, определяет рабочее расстояние и числовую апертуру объектива. Последующая часть в сочетании с фронтальной обеспечивает требуемое увеличение, фокусное расстояние и качество изображения, а также определяет высоту объектива и длину тубуса микроскопа.

Классификация объективов

Классификация объективов значительно сложнее классификации микроскопов. Объективы разделяются по принципу расчетного качества изображения, параметрическим и конструктивно-технологическим признакам, а также по методам исследования и контрастирования.

По принципу расчетного качества изображения объективы могут быть:

  • ахроматическими;
  • апохроматическими;
  • объективами плоского поля (план).

Ахроматические объективы.

Ахроматические объективы рассчитаны для применения в спектральном диапазоне 486–656 нм. Исправление любой аберрации (ахроматизация) выполнено для двух длин волн. В этих объективах устранены сферическая аберрация, хроматическая аберрация положения, кома, астигматизм и частично — сферохроматическая аберрация. Изображение объекта имеет несколько синевато-красноватый оттенок.

Апохроматические объективы.

Апохроматические объективы имеют расширенную спектральную область, и ахроматизация выполняется для трех длин волн. При этом, кроме хроматизма положения, сферической аберрации, комы и астигматизма, достаточно хорошо исправляются также вторичный спектр и сферохроматическая аберрация, благодаря введению в схему линз из кристаллов и специальных стекол. По сравнению с ахроматами, эти объективы обычно имеют повышенные числовые апертуры, дают четкое изображение и точно передают цвет объекта.

Полуапохроматы или микрофлюары.

Современные объективы, обладающие промежуточным качеством изображения.

Планобъективы.

В планобъективах исправлена кривизна изображения по полю, что обеспечивает резкое изображение объекта по всему полю наблюдения. Планобъективы обычно применяются при фотографировании, причем наиболее эффективно применение планапохроматов.

Потребность в подобного типа объективах возрастает, однако они достаточно дороги из-за оптической схемы, реализующей плоское поле изображения, и применяемых оптических сред. Поэтому рутинные и рабочие микроскопы комплектуются так называемыми экономичными объективами. К ним относятся объективы с улучшенным качеством изображения по полю: ахростигматы (LEICA), СР-ахроматы и ахропланы (CARL ZEISS), стигмахроматы (ЛОМО).

По параметрическим признакам объективы делятся следующим образом:

  1. объективы с конечной длиной тубуса (например, 160 мм) и объективы, скорректированные на длину тубуса «бесконечность» (например, с дополнительной тубусной системой, имеющей фокусное расстояние микроскопа 160 мм);
  2. объективы малых (до 10х); средних (до 50х) и больших (более 50х) увеличений, а также объективы со сверхбольшим увеличением (свыше 100х);
  3. объективы малых (до 0,25), средних (до 0,65) и больших (более 0,65) числовых апертур, а также объективы с увеличенными (по сравнению с обычными) числовыми апертурами (например, объективы апохроматической коррекции, а также специальные объективы для люминесцентных микроскопов);
  4. объективы с увеличенными (по сравнению с обычными) рабочими расстояниями, а также с большими и сверхбольшими рабочими расстояниями (объективы для работы в инвертированных микроскопах). Рабочее расстояние — это свободное расстояние между объектом (плоскостью покровного стекла) и нижним краем оправы (линзы, если она выступает) фронтального компонента объектива;
  5. объективы, обеспечивающие наблюдение в пределах нормального линейного поля (до 18 мм); широкопольные объективы (до 22,5 мм); сверхширокопольные объективы (более 22,5 мм);
  6. объективы стандартные (45 мм, 33 мм) и нестандартные по высоте.

Высота — расстояние от опорной плоскости объектива (плоскости соприкосновения ввинченного объектива с револьверным устройством) до плоскости предмета при сфокусированном микроскопе, является постоянной величиной и обеспечивает парфокальность комплекта аналогичных по высоте объективов разного увеличения, установленных в револьверном устройстве. Иными словами, если с помощью объектива одного увеличения получить резкое изображение объекта, то при переходе к последующим увеличениям изображение объекта остается резким в пределах глубины резкости объектива.

По конструктивно-технологическим признакам существует следующее разделение:

  1. объективы, имеющие пружинящую оправу (начиная с числовой апертуры 0,50), и без нее;
  2. объективы, имеющие ирисовую диафрагму внутри для изменения числовой апертуры (например, в объективах с увеличенной числовой апертурой, в объективах проходящего света для реализации метода темного поля, в поляризационных объективах отраженного света);
  3. объективы с корректирующей (управляющей) оправой, которая обеспечивает движение оптических элементов внутри объектива (например, для корректировки качества изображения объектива при работе с различной толщиной покровного стекла или с различными иммерсионными жидкостями; а также для изменения увеличения при плавной — панкратической — смене увеличения) и без нее.

По обеспечению методов исследования и контрастирования объективы можно разделить следующим образом:

  1. объективы, работающие с покровным и без покровного стекла;
  2. объективы проходящего и отраженного света (безрефлексные); люминесцентные объективы (с минимумом собственной люминесценции); поляризационные объективы (без натяжения стекла в оптических элементах, т. е. не вносящие собственную деполяризацию); фазовые объективы (имеющие фазовый элемент — полупрозрачное кольцо внутри объектива); объективы ДИК (DIC), работающие по методу дифференциально-интерференционного контраста (поляризационные с призменным элементом); эпиобъективы (объективы отраженного света, предназначенные для обеспечения методов светлого и темного поля, имеют в конструкции специально рассчитанные осветительные эпи-зеркала);
  3. иммерсионные и безыммерсионные объективы.

Иммерсия (от лат. immersio — погружение) — жидкость, заполняющая пространство между объектом наблюдения и специальным иммерсионным объективом (конденсором и предметным стеклом). В основном применяются три типа иммерсионных жидкостей: масляная иммерсия (МИ/Oil), водная иммерсия (ВИ/W) и глицериновая иммерсия (ГИ/Glyc), причем последняя в основном применяется в ультрафиолетовой микроскопии.
Иммерсия применяется в тех случаях, когда требуется повысить разрешающую способность микроскопа или её применения требует технологический процесс микроскопирования. При этом происходит:

  1. повышение видимости за счет увеличения разности показателя преломления среды и объекта;
  2. увеличение глубины просматриваемого слоя, который зависит от показателя преломления среды.

Кроме того, иммерсионная жидкость может уменьшать количество рассеянного света за счет исчезновения бликов от объекта. При этом устраняются неизбежные потери света при его попадании в объектив.

Иммерсионные объективы. Качество изображения, параметры и оптическая конструкция иммерсионных объективов рассчитываются и выбираются с учетом толщины слоя иммерсии, которая рассматривается как дополнительная линза с соответствующим показателем преломления. Иммерсионная жидкость, расположенная между объектом и фронтальным компонентом объектива, увеличивает угол, под которым рассматривается объект (апертурный угол). Числовая апертура безыммерсионного (сухого) объектива не превышает 1,0 (разрешающая способность порядка 0,3 мкм для основной длины волны); иммерсионного — доходит до 1,40 в зависимости от показателя преломления иммерсии и технологических возможностей изготовления фронтальной линзы (разрешающая способность такого объектива порядка 0,12 мкм).
Иммерсионные объективы больших увеличений имеют короткое фокусное расстояние — 1,5–2,5 мм при свободном рабочем расстоянии 0,1–0,3 мм (расстояние от плоскости препарата до оправы фронтальной линзы объектива).

Маркировка объективов.

Данные о каждом объективе маркируются на его корпусе с указанием следующих параметров:

  1. увеличение («х»-крат, раз): 8х, 40х, 90х;
  2. числовая апертура: 0,20; 0,65, пример: 40/0,65 или 40х/0,65;
  3. дополнительная буквенная маркировка, если объектив используется при различных методах исследования и контрастирования: фазовый — Ф (Рп2 — цифра соответствует маркировке на специальном конденсоре или вкладыше), поляризационный — П (Pol), люминесцентный — Л (L), фазово-люминесцентный — ФЛ (PhL), ЭПИ (Epi, HD) — эпиобъектив для работы в отраженном свете по методу темного поля, дифференциально-интерференционный контраст — ДИК (DIC), пример: 40х/0,65 Ф или Ph2 40x/0,65;
  4. маркировка типа оптической коррекции: апохромат — АПО (АРО), планахромат — ПЛАН (PL, Plan), планапохромат — ПЛАН-АПО (Plan-Аро), улучшенный ахромат, полуплан — СХ — стигмахромат (Achrostigmat, CP-achromat, Achroplan), микрофлюар (полуплан-полуапохромат) — СФ или М-ФЛЮАР (MICROFLUAR, NEOFLUAR, NPL, FLUOTAR).

Окуляры

Оптические системы, предназначенные для построения микроскопического изображения на сетчатке глаза наблюдателя. В общем виде окуляры состоят из двух групп линз: глазной — ближайшей к глазу наблюдателя — и полевой — ближайшей к плоскости, в которой объектив строит изображение рассматриваемого объекта.

Окуляры классифицируются по тем же группам признаков, что и объективы:

  1. окуляры компенсационного (К — компенсируют хроматическую разность увеличения объективов свыше 0,8%) и безкомпенсационного действия;
  2. окуляры обычные и плоского поля;
  3. окуляры широкоугольные (с окулярным числом — произведение увеличения окуляра на его линейное поле — более 180); сверхширокоугольные (с окулярным числом более 225);
  4. окуляры с вынесенным зрачком для работы в очках и без;
  5. окуляры для наблюдения, проекционные, фотоокуляры, гамалы;
  6. окуляры с внутренней наводкой (с помощью подвижного элемента внутри окуляра происходит настройка на резкое изображение сетки или плоскость изображения микроскопа; а также плавное, панкратическое изменение увеличения окуляра) и без нее.

Осветительная система

Осветительная система является важной частью конструкции микроскопа и представляет собой систему линз, диафрагм и зеркал (последние применяются при необходимости), обеспечивающую равномерное освещение объекта и полное заполнение апертуры объектива.
Осветительная система микроскопа проходящего света состоит из двух частей — коллектора и конденсора.

Коллектор.
При встроенной осветительной системе проходящего света коллекторная часть расположена вблизи источника света в основании микроскопа и предназначена для увеличения размера светящегося тела. Для обеспечения настройки коллектор может быть выполнен подвижным и перемещаться вдоль оптической оси. Вблизи коллектора располагается полевая диафрагма микроскопа.

Конденсор.
Оптическая система конденсора предназначена для увеличения количества света, поступающего в микроскоп. Конденсор располагается между объектом (предметным столиком) и осветителем (источником света).
Чаще всего в учебных и простых микроскопах конденсор может быть выполнен несъемным и неподвижным. В остальных случаях конденсор является съемной частью и при настройке освещения имеет фокусировочное перемещение вдоль оптической оси и центрировочное перемещение, перпендикулярное оптической оси.
При конденсоре всегда находится осветительная апертурная ирисовая диафрагма.

Конденсор является одним из основных элементов, обеспечивающих работу микроскопа по различным методам освещения и контрастирования:

  • косое освещение (диафрагмирование от края к центру и смещение осветительной апертурной диафрагмы относительно оптической оси микроскопа);
  • темное поле (максимальное диафрагмирование от центра к краю осветительной апертуры);
  • фазовый контраст (кольцевое освещение объекта, при этом изображение светового кольца вписывается в фазовое кольцо объектива).

Классификация конденсоров близка по группам признаков к объективам:

  1. конденсоры по качеству изображения и типу оптической коррекции делятся на неахроматические, ахроматические, апланатические и ахроматические-апланатические;
  2. конденсоры малой числовой апертуры (до 0,30), средней числовой апертуры (до 0,75), большой числовой апертуры (свыше 0,75);
  3. конденсоры с обычным, большим и сверхбольшим рабочим расстоянием;
  4. обычные и специальные конденсоры для различных методов исследования и контрастирования;
  5. конструкция конденсора — единая, с откидным элементом (фронтальным компонентом или линзой большого поля), со свинчивающимся фронтальным элементом.

Конденсор Аббе — не исправленный по качеству изображения конденсор, состоящий из 2-х неахроматических линз: одной — двояковыпуклой, другой — плосковыпуклой, обращенной к объекту наблюдения (плоская сторона этой линзы направлена вверх). Апертура конденсора, А= 1,20. Имеет ирисовую диафрагму.

Апланатический конденсор — конденсор, состоящий из трех линз, расположенных следующим образом: верхняя линза — плосковыпуклая (плоская сторона направлена к объективу), далее следуют вогнуто-выпуклая и двояковыпуклая линзы. Исправлен в отношении сферической аберрации и комы. Апертура конденсора, А = 1.40. Имеет ирисовую диафрагму.

Ахроматический конденсор — конденсор, полностью исправленный в отношении хроматической и сферической аберрации.

Конденсор темного поля — конденсор, предназначенный для получения эффекта темного поля. Может быть специальным или переделан из обычного светлопольного конденсора путем установки в плоскости ирисовой диафрагмы конденсора непрозрачного диска определенного размера.

Маркировка конденсора.
На фронтальной части конденсора наносится маркировка числовой апертуры (осветительной).

3. Электрическая часть микроскопа

В современных микроскопах, вместо зеркал, используются различные источники освещения, питаемые от электрической сети. Это могут быть как обычные лампы накаливания, так и галогенные, и ксеноновые, и ртутные лампы. Также все большую популярность набирают светодиодные осветители. Они обладают значительными преимуществами перед обычными лампами, как например долговечность, меньшее энергопотребление и др. Для питания источника освещения используются различные блоки питания, блоки розжига и другие устройства, преобразующие ток из электрической сети в подходящий для питания того или иного источника освещения. Также это могут быть и аккумуляторные батареи, что позволяет использовать микроскопы в полевых условиях при отсутствии точки подключения.

Микроскоп Левенгука XVII века с увеличением до 30x[1].

Микроско́п (др.-греч. μικρός «маленький» + σκοπέω «смотрю»[2]) — прибор, предназначенный для получения увеличенных изображений, а также измерения объектов или деталей структуры, невидимых или плохо видимых невооружённым глазом.

Совокупность технологий и методов практического использования микроскопов называют микроскопией.

История создания[править | править код]

Первые микроскопы, изобретённые человечеством, были оптическими, и первого их изобретателя не так легко выделить и назвать. Возможность скомбинировать две линзы так, чтобы достигалось большее увеличение, впервые предложил в 1538 году итальянский врач Дж. Фракасторо. Самые ранние сведения о микроскопе относят к 1590 году и городу Мидделбург, что в Зеландии, и связывают с именами Иоанна Липперсгея (который также разработал первый простой оптический телескоп) и Захария Янсена, которые занимались изготовлением очков[3]. Чуть позже, в 1624 году Галилео Галилей представляет свой составной микроскоп, который он первоначально назвал «оккиолино»[4] (occhiolino итал. — маленький глаз). Годом спустя его друг по Академии Джованни Фабер  (англ.) (рус. предложил для нового изобретения термин микроскоп.

Разрешающая способность[править | править код]

Разрешающая способность микроскопа — это способность выдавать чёткое раздельное изображение двух близко расположенных точек объекта. Степень проникновения в микромир, возможности его изучения зависят от разрешающей способности прибора. Эта характеристика определяется прежде всего длиной волны используемого в микроскопии излучения (видимое, ультрафиолетовое, рентгеновское излучение). Фундаментальное ограничение заключается в невозможности получить при помощи электромагнитного излучения изображение объекта, меньшего по размерам, чем длина волны этого излучения.

«Проникнуть глубже» в микромир возможно при применении излучений с меньшими длинами волн.

Классификация[править | править код]

Иллюстрация работы различных микроскопов

Классификация микроскопов

Группа Макс. достигнутое разрешение Виды
Оптические микроскопы около 10 *10−9 м
  • Ближнепольный оптический микроскоп
  • Конфокальный микроскоп
  • Двухфотонный лазерный микроскоп
  • Флуоресцентная микроскопия
Электронные микроскопы 3,9 *10−11 м[5]
  • Просвечивающий электронный микроскоп
  • Растровый электронный микроскоп
Сканирующий зондовый микроскоп
  • Сканирующий атомно-силовой микроскоп
  • Сканирующий туннельный микроскоп
Рентгеновские микроскопы около 5 *10−9 м
  • Рентгеновские микроскопы отражательные
  • Рентгеновские микроскопы проекционные
    • Лазерный рентгеновский микроскоп (XFEL)
Дифференциальный
интерференционно-контрастный микроскоп

Оптические микроскопы[править | править код]

Современный металлографический микроскоп Альтами МЕТ 3М

Человеческий глаз представляет собой естественную оптическую систему, характеризующуюся определённым разрешением, то есть наименьшим расстоянием между элементами наблюдаемого объекта (воспринимаемыми как точки или линии), при котором они ещё могут быть отличны один от другого. Для нормального глаза при удалении от объекта на т. н. расстояние наилучшего видения (D = 250 мм), среднестатистическое нормальное разрешение составляет ~0,2 мм. Размеры микроорганизмов, большинства растительных и животных клеток, мелких кристаллов, деталей микроструктуры металлов и сплавов и т. п. значительно меньше этой величины.

До середины XX века работали только с видимым оптическим излучением, в диапазоне 400—700 нм, а также с ближним ультрафиолетом (люминесцентный микроскоп). Оптические микроскопы не могли давать разрешающей способности менее полупериода волны опорного излучения (диапазон длин волн 0,2—0,7 мкм, или 200—700 нм). Таким образом, оптический микроскоп способен различать структуры с расстоянием между точками до ~0,20 мкм, поэтому максимальное увеличение, которого можно было добиться, составляло ~2000 крат.

Электронные микроскопы[править | править код]

Электронный микроскоп. Модель 1960-х годов

Пучок электронов, которые обладают свойствами не только частицы, но и волны, может быть использован в микроскопии.

Длина волны электрона зависит от его энергии, а энергия электрона равна E = Ve, где V — разность потенциалов, проходимая электроном, e — заряд электрона. Длины волн электронов при прохождении разности потенциалов 200 000 В составляет порядка 0,1 нм. Электроны легко фокусировать электромагнитными линзами, так как электрон — заряженная частица. Электронное изображение может быть легко переведено в видимое.

Разрешающая способность электронного микроскопа в 1000—10 000 раз превосходит разрешение традиционного светового микроскопа и для лучших современных приборов может быть меньше одного ангстрема.

Сканирующие зондовые микроскопы[править | править код]

Класс микроскопов, основанных на сканировании поверхности зондом.

Сканирующие зондовые микроскопы (СЗМ) — относительно новый класс микроскопов. На СЗМ изображение получают путём регистрации взаимодействий между зондом и поверхностью. На данном этапе развития возможно регистрировать взаимодействие зонда с отдельными атомами и молекулами, благодаря чему СЗМ по разрешающей способности сопоставимы с электронными микроскопами, а по некоторым параметрам превосходят их.

Рентгеновские микроскопы[править | править код]

Рентге́новский микроско́п — устройство для исследования очень малых объектов, размеры которых сопоставимы с длиной рентгеновской волны. Основан на использовании электромагнитного излучения с длиной волны от 0,01 до 1 нанометра.

Рентгеновские микроскопы по разрешающей способности находятся между электронными и оптическими микроскопами. Теоретическая разрешающая способность рентгеновского микроскопа достигает 2-20 нанометров, что на порядок больше разрешающей способности оптического микроскопа (до 150 нанометров). В настоящее время существуют рентгеновские микроскопы с разрешающей способностью около 5 нанометров[6].

Микроскопы до XX века[править | править код]

  • Микроскоп, 1876 год

    Микроскоп, 1876 год

  • Бинокулярный (стерео) микроскоп Olympus_SZIII Stereo microscope. Модель 1970-х годов

    Бинокулярный (стерео) микроскоп Olympus_SZIII Stereo microscope. Модель 1970-х годов

  • Микроскопы XVIII века

    Микроскопы XVIII века

  • Рисунок микроскопа из английского словаря 1911 года. 1 — окуляр; 2 — револьвер для смены объективов; 3 — объектив; 4 — кремальера для грубой наводки; 5 — микрометрический винт для точной наводки; 6 — предметный столик; 7 — зеркало; 8 — конденсор

    Рисунок микроскопа из английского словаря 1911 года. 1 — окуляр; 2 — револьвер для смены объективов; 3 — объектив; 4 — кремальера для грубой наводки; 5 — микрометрический винт для точной наводки; 6 — предметный столик; 7 — зеркало; 8 — конденсор

Галерея оптических микроскопов[править | править код]

  • Лабораторные микроскопы

    Лабораторные микроскопы

  • Бинокулярные лабораторные микроскопы

    Бинокулярные лабораторные микроскопы

  • Оптическая схема бинокулярной насадки микроскопа

    Оптическая схема бинокулярной насадки микроскопа

  • Стереоскопический микроскоп

    Стереоскопический микроскоп

  • Микроскопические объективы

    Микроскопические объективы

  • Микроскопические объективы

    Микроскопические объективы

  • Микроскопические объективы

    Микроскопические объективы

  • Окуляры микроскопа

    Окуляры микроскопа

  • Окуляры с микрометрической шкалой

    Окуляры с микрометрической шкалой

  • Окуляры стереомикроскопа

  • Окуляры микроскопа

    Окуляры микроскопа

  • Окуляры микроскопа

    Окуляры микроскопа

Узлы и механизмы оптического микроскопа[править | править код]

  • Предметный столик с препаратоводителем

    Предметный столик с препаратоводителем

  • Револьвер с объективами

    Револьвер с объективами

  • Макро- и микровинт

    Макро- и микровинт

  • Тубус микроскопа без окуляра

    Тубус микроскопа без окуляра

  • Станина, отражающее зеркало

    Станина, отражающее зеркало

  • Предметный столик снизу — конденсор, ножки станины

    Предметный столик снизу — конденсор, ножки станины

  • Отражающее зеркало под конденсором

    Отражающее зеркало под конденсором

  • Диафрагма и конденсор

  • Макровинт

    Макровинт

  • Макро- и микровинт

    Макро- и микровинт

  • Предметный столик

    Предметный столик

См. также[править | править код]

  • Оптические системы
  • Микроскопия
  • Инфракрасная микроскопия
  • Роял Реймонд Райф

Примечания[править | править код]

  1. A glass-sphere microscope. Funsci.com. Дата обращения: 13 июня 2010. Архивировано 11 июня 2010 года.
  2. σκοπέω. Дата обращения: 23 сентября 2018. Архивировано 23 сентября 2018 года.
  3. Microscopes: Time Line. Nobel Web AB. Дата обращения: 27 января 2010. Архивировано 22 августа 2011 года.
  4. Gould, Stephen Jay. Chapter 2: The Sharp-Eyed Lynx, Outfoxed by Nature // The Lying Stones of Marrakech: Penultimate Reflections in Natural History (англ.). — New York, N.Y: Harmony, 2000. — ISBN 0-224-05044-3.
  5. Rachel Courtland. The microscope revolution that’s sweeping through materials science (EN) // Nature. — 2018-11-21. — Т. 563. — С. 462. — doi:10.1038/d41586-018-07448-0. Архивировано 1 декабря 2021 года.
  6. Достигнут новый предел разрешения рентгеновского микроскопа. Дата обращения: 25 апреля 2015. Архивировано 18 сентября 2008 года.

Литература[править | править код]

  • Микроскопы. Л., 1969
  • Проектирование оптических систем. М., 1983
  • Иванова Т. А., Кирилловский В. К. Проектирование и контроль оптики микроскопов. М., 1984
  • Кулагин С. В., Гоменюк А. С. и др. Оптико-механические приборы. М., 1984

Ссылки[править | править код]

  • Микроскоп // Энциклопедический словарь Брокгауза и Ефрона : в 86 т. (82 т. и 4 доп.). — СПб., 1890—1907.
  • Microscope (англ.). — статья из Encyclopædia Britannica Online. Дата обращения: 29 марта 2019.
  • Микроскоп — статья из энциклопедии «Кругосвет»

Микроскоп – одно из самых важных изобретений в истории человечества. Сегодня этот оптический прибор широко используется для работы, учебы или домашних исследований и досуга. В новом материале мы подробно рассказываем о том, как устроен микроскоп и объясняем принцип его работы.

Фото: Яндекс Картинки
Фото: Яндекс Картинки

Как устроен микроскоп

Рассмотрим устройство микроскопа на примере светового прибора, так как это самая популярная категория, которая используется для любительских исследований. С конструктивной точки зрения микроскоп состоит из трех групп деталей.

  • МеханическаяВключает штатив, основание, предметный столик с препаратоводителем или без него, держатель для тубуса окуляра, револьверного устройства с объективами, фокусировочного механизма. Эта часть обеспечивает комфортную работу с микроскопом, удерживая все остальные составляющие вместе.
  • ОптическаяСюда относятся линзы, окуляр, объективы, различные насадки и фильтры, элементы осветительной системы. Эта часть отвечает за формирование качественной картинки.
  • ЭлектрическаяВключает проводку и сами источники дополнительного света. Наличие этого элемента упрощает порядок работы с микроскопом, поскольку пользователь может вести наблюдения в любое время суток.
Фото: Яндекс Картинки
Фото: Яндекс Картинки

Основные характеристики микроскопа

Независимо от того, как сконструирован микроскоп, есть несколько основных общих характеристик для каждого инструмента:

  • апертура,
  • уровень оптического разрешения,
  • источники света.

Одна из главных задач микроскопа – построение четкого и максимально крупного изображения наблюдаемого объекта. Апертура – это диаметр увеличивающей линзы или системы линз, которые поставлены в тот или иной микроскоп. Чем больше величина апертуры, тем выше сила преломления объективом световых лучей и больше их количество, попадающее в поле наблюдения.

Еще один важный параметр – способность оптики к разрешению. То, насколько качественно будет работать оптическая схема микроскопа, напрямую зависит от того, насколько точно изготовленные и подогнаны линзы.

Последняя характеристика – источники света. Самый простой световой источник – зеркало. Оно используется в бюджетных моделях микроскопов. Поворачивая зеркало под разными углами, можно добиться разно освещенности наблюдаемого объекта. Микроскопы, имеющие более сложную конструкцию, оснащены лампами различной яркости и мощности.

Как работает микроскоп

В микроскопе используется то же явление, что и в телескопе-рефракторе – световые лучи преломляются при прохождении сквозь стекло. Чтобы было понятнее, давайте что-нибудь увеличим. Например, рассмотрим строение луковой шелухи.

Для этого кладем кусочек шелухи на предметный столик. Теперь ее нужно подсветить. Сделаем это с помощью зеркала в нижней части микроскопа. Свет отражается от зеркала, проходит сквозь шелуху и стекло вокруг нее и попадает в объектив. Объектив собирает часть расходящихся лучей от шелухи в параллельный пучок световых лучей, который идет вверх по тубусу микроскопа и достигает линзы окуляра. Окуляр преломляет лучи и собирает их на сетчатке глаза, и мы можем видеть строение кусочка луковой шелухи вблизи и очень подробно.

Увеличение микроскопа зависит от того, насколько сильно каждая линза преломляет свет. Обычно увеличение написано прямо на корпусе прибора. Например, надпись «30х» означает, что изображение в микроскопе в 30 раз крупнее, чем при наблюдении невооруженным глазом.

Микроскопы для школы

Для многих школьников занятия с микроскопом – самая интересная часть урока по биологии. И это не удивительно. Микроскоп открывает огромные возможности, помогает изучать микромир, который просто невозможно увидеть невооруженным глазом.

ГК

“Новация” предлагает микроскопы для оснащения школьных кабинетов биологии. У нас вы можете приобрести модели с самой разной комплектацией. Все они подходят для использования в школах. Гарантируем высокое качество товаров и оперативную доставку по России.

Как работает микроскоп

ОТКРЫТЬ КАТАЛОГ

Остались вопросы? Оставьте заявку, и с вами свяжется персональный менеджер.

ЗАКАЗАТЬ ЗВОНОК

Устройство микроскопа

История создания

До сих пор нет достоверных сведений о появлении первого микроскопа. В начале XVI века первым человеком, который предложил объединить 2 линзы для увеличения изучаемых объектов, был известный врач из Италии Д. Фракасторо. По другим данным, первый оптический прибор изобрели в Голландии отец и сын Янсены.

Первый микроскоп

Известно это стало после заявления, сделанного в середине XVII века младшим Янсеном. Существует версия, что первую конструкцию с выпуклой и вогнутой линзами создал знаменитый Галилео Галилей в начале XVII века. Спустя 10 лет К. Дреббель собрал устройство с двумя выпуклыми линзами, в качестве которых он использовал 2 лупы.

Через несколько лет голландец К. Гюйгенс, создавший окуляр для телескопа, придумал и собрал двухлинзовую систему, которая регулировалась, не разлагая света на составные цвета. Это изобретение стало настоящим прорывом в истории создания оптической техники, а окуляры Гюйгенса применяются и по сей день.

Большую роль в разработках оптических приборов сыграл известный основоположник научной микроскопии Левенгук. Он собирал небольшие устройства с одной мощной линзой. Хотя простые конструкции были очень неудобны, но они давали возможность детальней изучать изображения объектов, чем составные приборы.

Виды микроскопов

За всю историю развития микроскопной техники было изобретено множество приборов. Все они отличались устройством и принципом действия. Основные виды микроскопов:

  • оптические;
  • электронные;
  • сканирующие зондовые;
  • рентгеновские.

Оптические и электронные

Оптический микроскоп

Самым простым и недорогим устройством считается оптический прибор. По своим техническим параметрам он позволяет увеличивать изображение объекта в 2 тыс. раз. Благодаря такому высокому показателю, с помощью оптического микроскопа можно исследовать:

  • структуру клеток;
  • поверхность ткани;
  • дефекты на искусственных объектах и т. д.

Приборы с таким увеличением выполнены более качественно, поэтому стоят довольно дорого. Большинство устройств обладают простой конструкцией и небольшим увеличением. Применяются они в основном для учебных целей при выполнении лабораторных работ по биологии. Обычно приборы имеют несколько подвижных объективов с разными показателями увеличения, которые можно менять, в зависимости от выполняемой работы.

Электронный микроскоп

Более современным прибором считается электронный микроскоп, который может увеличивать изображение предмета в 20 тыс. раз. От оптического устройства он отличается тем, что вместо луча света используется пучок электронов. Специальные магнитные линзы преобразовывают в изображение перемещение отрицательно заряженных частиц, а направленность пучка регулируется изменением магнитного поля.

Использование прибора в комплексе с компьютером позволяет значительно увеличить изображение и одновременно сделать снимок объекта. Недостатком таких устройств считается высокая стоимость и их эксплуатация только в лабораторных условиях, так как молекулы воздуха воздействуют на электроны, нарушая четкость изображения. Кроме того, чтобы на функционирование микроскопа не влияли внешние магнитные поля, лаборатории размещают в подземных бункерах с толстыми стенами.

Зондовые и рентгеновские

Сканирующие устройства позволяют получить нужное изображение с помощью специального зонда, который выполняет роль объектива и проводит исследование объекта. В итоге получается трехмерное изображение с точными характеристиками исследуемого предмета. Эта новая техника обладает довольно высоким разрешением, а зонд представляет собой сложный механизм, оснащенный чувствительными сенсорами, которые реагируют на перемещение электронов.

Рентгеновские микроскоп

Зачастую такие конструкции используются для сканирования объектов со сложным рельефом. Сканерами исследуются внутренние пространства труб и мелких тоннелей. В результате исследования полученные первоначальные показатели обрабатываются математическим методом с помощью специальной компьютерной программы.

Для исследования предметов, размеры которых соизмеримы с длиной электромагнитных волн от 10 до 0,001 нм, применяются рентгеновские микроскопы. По своим характеристикам и эффективности работы эти приборы находятся между оптическими и электронными устройствами. Рентгеновские волны могут проникать сквозь поверхность объекта, поэтому существует возможность, кроме структуры предмета, узнать его химический состав.

Строение приборов

Все микроскопы делятся по классам сложности, и всего их существует 6. К первым относятся простые конструкции, а к последним — самые сложные. Устройство микроскопа зависит от его типа и назначения. Чтобы ознакомиться с основными частями оптического устройства, достаточно узнать строение простейшего лабораторного прибора.

Рисунок (раскраска) карандашом — строение микроскопа с подписями. Обозначения узлов схемы:

Строение микроскопа

  1. Окуляр.
  2. Тубус.
  3. Штатив.
  4. Винт грубой настройки фокуса.
  5. Винт тонкой регулировки.
  6. Основание.
  7. Насадка.
  8. Объективы.
  9. Зажимы.
  10. Предметный столик.
  11. Конденсор с диафрагмой.
  12. Осветитель.

На старых моделях установлены зеркала, которые выполняют функцию отражателя света, а вместо зажимов применяется стекло. Основной частью микроскопа являются объектив и окуляр, кроме того, это главные детали оптической системы. С помощью этого узла происходит формирование изображения объекта. Чтобы изменить кратность, в профессиональных приборах подбираются различные комбинации окуляров и объективов.

Для определения увеличения микроскопа следует умножить соответствующий показатель окуляра на значение объектива. К механической части прибора относятся: тубус, штатив, столик, система фокусировки, револьверная головка. Фокусировка выполняется двумя винтами (грубой и тонкой настройки), чтобы можно было быстро отрегулировать резкость изображения предмета.

Правила работы с микроскопом

При этом на некоторых конструкциях регулировка осуществляется перемещением столика, а на других — тубуса. На профессиональных микроскопах обычно устанавливают съемные объективы, которые крепятся резьбовым соединением. Важную роль в оптическом приборе играет осветительная система, в которую входят: источник света, конденсор, диафрагма.

Конденсор устроен из линз или зеркал, предназначен для сбора лучей света и направление их на изучаемый объект. Он может состоять из одной, двух или трех линз. Пользователь, поднимая или опуская устройство, конденсирует или рассеивает свет, падающий на предмет. Яркость плавно регулируется с помощью диафрагмы, которая обычно бывает ирисовой. Источник света может быть как встроенным, так и внешним, а сложные конструкции обладают еще несколькими подсветками.

Особенности работы с устройством

Для эффективного изучения объектов следует соблюдать ряд правил при работе с микроскопом. Придерживаясь их, пользователь более эффективно проведет исследование предмета:

Работа с микроскопом

Настройка микроскопа

  1. Перед началом работы следует подготовить себе место за столом, поставив удобный стул.
  2. Все действия необходимо выполнять только сидя.
  3. Прибор надо протереть от пыли и пятен мягкой салфеткой.
  4. Заняв место за столом, установить микроскоп немного левее себя.
  5. Работа начинается с небольшого увеличения.
  6. Затем устанавливается уровень освещения. Для этого следует включить источник света и, глядя в окуляр одним глазом, установить нужную яркость. Если микроскоп с зеркалом, его направляют вогнутой стороной на окно, чтобы отражение света попадало на предметный столик.
  7. Когда прибор будет настроен, на столик крепится зажимами исследуемый объект. Далее, винтом грубой регулировки тубус устанавливается так, чтобы расстояние между линзой и предметом было 4—5 мм.
  8. Проверив местоположение объекта, винтом тонкой регулировки устанавливается окончательная резкость.
  9. Для детального изучения предмета, повернув револьверную головку, следует установить объектив, увеличивающий в 40 раз. Затем опять микрометренным винтом настроить правильный фокус. Причем регулировка осуществляется таким образом, чтобы риска на винте постоянно находилась между двумя черточками на коробке механизма. Если это правило нарушить, винт просто перестанет работать.

Закончив работу с большим увеличением, следует опять вернуться на малое значение, поднять объектив, убрать объект со стола, протереть все детали прибора, поставить его в шкаф и накрыть полиэтиленовой пленкой.

Микроскоп своими руками

  • Авторы
  • Руководители
  • Файлы работы
  • Наградные документы

Купянский Д.О. 1


1МОУ Лицей №10 имени Д.И.Менделеева

Крайнова З.Б. 1


1МОУ Лицей №10 имени Д.И.Менделеева


Текст работы размещён без изображений и формул.
Полная версия работы доступна во вкладке “Файлы работы” в формате PDF

ВВЕДЕНИЕ

Актуальность темы исследования

Каждый любознательный школьник хочет почувствовать себя ученым, погрузиться в невероятный мир науки и узнать, как в мельчайших деталях выглядит всё, что нас окружает. Микроскоп помогает увидеть этот микромир своими глазами и изучить его. Этот прибор прошел долгий путь от простой трубки с двумя линзами, в котором было увеличение не более, чем в 5 раз, до суперсовременного электронного устройства с увеличительными способностями в несколько тысяч раз. Тема моего исследования актуальна потому, что благодаря микроскопу современные ученые теперь способны провести анализ крови человека, выявить виновников заболеваний человека, рассмотреть бактерии и вирусы.

Объект моего исследования – микроскоп.

Новизна исследуемой темы отражена в том, что в последние годы при помощи этого устройства были совершены невероятные открытия, которые отразились на всём человечестве и ученые ежегодно совершенствуют этот полезный увеличительный прибор. Например, в декабре 2018 года микробиологи благодаря микроскопу обнаружили новые виды бактерий в образцах, взятых на Международной Космической Станции. Эти бактерии устойчивы ко всем известным видам антибиотиков. И этот факт заставил исследователей приступить к созданию новых видов антибиотиков, а значит к новым открытиям. А в этом как раз отражена практическая значимость моего исследования, ведь подготовленный мной исследовательский материал может подтолкнуть моих одноклассников к более глубокому изучению микроскопов, а в будущем, возможно, к научным открытиям.

Обзор использованной литературы

Изучить окружающий нас невидимый мир мне помогла книга знаний Ольги Мазур «Невидимый мир» [5]. А благодаря иллюстрированному путеводителю «Удивительный микроскоп» [6] этого же автора мне удалось понять, как же устроен самый главный прибор, который позволяет изучать этот микромир.

Мир, который мы каждый день видим своими глазами – это наша реальность. Но коллекция фотографий, сделанных через мощные линзы цифрового микроскопа открыла для меня другую вселенную. Хоть эта вселенная и маленькая, но она очень интересная. Я долго рассматривал фотографии раздела «микромир» на сайте www.bigpicture.ru [10] , потому что они завораживают и вдохновляют. Больше всего меня удивили изображения кристаллов меди, полированных полудрагоценных камней и снежинок, увеличенные до невероятных размеров Я никогда раньше не мог себе даже представить, что окружающие нас предметы могут так выглядеть при увеличении под микроскопом.

Очень познавательной оказалась детская энциклопедия «Микромир» автора Кирстин Роджерс [4]. В этом источнике доступно и понятно рассказано про бактерии, вирусы, и про клетки растений под микроскопом.

Любое незнакомое или не очень понятное слово я легко находил в электронной энциклопедии Википедия ru.wikipedia.org/ [9] и на сайтах www.вокабула.рф [12], www.krugosvet.ru [11].

Цель, задачи, гипотеза

Цель моего исследования: собрать микроскоп своими руками и узнать его возможности.

Для достижения цели сформулированы задачи проекта:

Узнать, кем и как был изобретен первый микроскоп.

Изучить, для чего нужен микроскоп, как он устроен и что в него можно увидеть.

Провести эксперимент по созданию собственного микроскопа.

В основу исследования положена гипотеза:

Микроскоп можно создать самостоятельно в домашних условиях.

ИССЛЕДОВАТЕЛЬСКАЯ ЧАСТЬ

Моё первое знакомство с увеличительной линзой

Мой дедушка чинит технику и у него всегда с собой есть увеличительная лупа. Однажды он показал мне, как выглядит экран телефона под этой лупой. Я посмотрел в лупу на включенный дисплей [1, стр. 70] своего телефона и увидел, что он состоит из множества маленьких прямоугольников трёх цветов: красные, зелёные и синие.. Что бы узнать, что же это такое, я обратился к энциклопедии [8, стр. 199], в которой прочитал, что такой прямоугольный элемент изображения в дисплее телефона называется пикселем. Получается, что под лупой я сумел разглядеть мельчайшие пиксели, из которых и состоит дисплей телефона, которые невооруженным взглядом рассмотреть не удастся.

Мне стало интересно, почему просто посмотрев глазами на экран этого не видно, а под лупой всё увеличивается. Дедушка рассказал, что лупа [3, стр. 150] – это линза, которая увеличивает всё, на что бы я не посмотрел. А если таких линз будет несколько, то это будет уже мощный микроскоп. В детской энциклопедии [6, стр. 14] я прочитал, что в микроскоп можно даже рассмотреть микробов, которые живут на наших руках. Этот факт меня заинтересовал, и я решил подробнее изучить увеличительные приборы.

Существует несколько разновидностей увеличительных приборов, такие как: лупа, микроскоп, подзорная труба, бинокль, телескоп [Приложение 1]. Все они состоят из специальных выпуклых линз, расположенных в оправе и имеющих разную степень увеличения. Меня больше всего заинтересовал именно микроскоп.

В энциклопедии [6, стр. 8] я прочитал, что Микроско́п – это прибор, предназначенный для получения увеличенных изображений объектов, невидимых или плохо видимых невооружённым глазом.

История создания микроскопа

В XVI веке мастер по изготовлению очков Захарий Янссен создал первый микроскоп из обычной трубки с двумя линзами на концах. Этот простой микроскоп увеличивал в 3-7 раз и стал основой для создания более сложных приборов.

Уже в 1609 году итальянский учёный Галилео Галилей доработал прибор Янссена [Приложение 2], заменив одну из выпуклых линз на вогнутую. Он называл его «оккиолино» – маленький глаз. Трубка микроскопа была изготовлена из дерева, картона и кожи и прибор ставился на трехногую подставку из металла. Это устройство увеличивало примерно в 9 раз.

В 1665 году Антони ван Левенгук описал живые организмы, которые увидел при помощи своего простейшего микроскопа с одной линзой. Изобретение Левенгука [Приложение 2] представляло собой две маленькие пластины, между которыми помещалась линза, а предмет исследования прикреплялся на специальную иглу, которую можно было перемещать с помощью винта.

Он придумал линзы, которые увеличивали в 275 раз. Это были маленькие стеклянные капельки, которые получались при плавлении стеклянных нитей, а затем шлифовались. Учёные частично разгадали секрет его линз только в 1970 году.

Устройство микроскопа

Для того, что бы правильно использовать световой микроскоп, нужно ознакомиться с его строением и изучить принцип работы. В справочнике [6, стр. 8] я посмотрел устройство микроскопа и выяснил, что он включает в себя объектив, предметный столик, осветитель, окуляр, штатив, основание. [Приложение 3]. Если посмотреть на микроскоп в целом, то это всего лишь мощное увеличительное стекло. Увеличение происходит благодаря двум линзам, одна из них расположена в объективе, а другая – в окуляре. При этом мощность этих линз написана на их оправе, а чтобы узнать мощность микроскопа, нужно всего лишь перемножить цифры, написанные на окуляре и объективе. Окуляр и объектив расположены на разных концах полой трубки. Под объективом находится предметный столик, на который необходимо помещать исследуемый объект. Предметный столик можно приближать или отдалять от объектива при помощи специальных винтов. Под предметным столиком находится зеркало, благодаря которому можно регулировать поток света на объект, лежащий на предметном столике.

Что можно увидеть в микроскоп?

В микроскоп можно рассматривать листву деревьев и лепестки цветов, крупинки соли, кристаллы сахара, срезы фруктов, кожицу овощей, даже плесень и насекомых. Очень интересно выглядят увеличенные крылья бабочки, различные бактерии, бытовая пыль, шерсть животных [Приложение 4]. Я очень вдохновился этими невероятными изображениями из детской энциклопедии и задумал провести эксперимент по созданию микроскопа в домашних условиях.

ПРАКТИЧЕСКАЯ РЕАЛИЗАЦИЯ ПРОЕКТА

Эксперимент по созданию микроскопа

Я подготовил всё необходимое и приступил к созданию собственного микроскопа [Приложение 5]. Для этого мне понадобились:

Дощечка-подставка

Зеркальце

Пластилин

Пищевая фольга

Ножницы

Шприц с водой и иглой

Карманный фонарик

Скотч

Стеклянный стакан

Изучив устройство микроскопа, я предположил, что можно по аналогии воссоздать его из подручных материалов. На деревянную дощечку я прикрепил зеркальце под наклоном при помощи пластилина [Приложение 6].

Напротив зеркала установил включённый фонарик, так, что бы свет отражался от зеркала вертикально вверх. Конструкция не должна быть слишком большой по размеру, поэтому фонарик нужно подобрать миниатюрного размера. Отлично подойдет плоский светодиодный фонарик-брелок с батарейками.

Затем получившуюся конструкцию я накрыл стеклянным стаканом, предварительно перевернув его вверх дном. Дно стакана будет служить моим предметным столиком, на который я потом буду выкладывать предметы для исследования [Приложение 6].

Затем я отрезал лист фольги размером с альбомный лист и сложил его в несколько слоёв гармошкой [Приложение 7]. У меня получилась длинная плотная полоска, в ней я проделал небольшое отверстие иглой от шприца. Желательно, что бы отверстие было круглым и имело ровные края. Чем меньше отверстие, тем больше будет увеличение. Через большое отверстие капля просочится, поэтому иглу я подобрал тонкую. Эту полоску я согнул в П-образную форму и закрепил при помощи скотча на перевёрнутый стакан, так, что бы между фольгой и донышком стакана был 1-2 сантиметра.

Мой микроскоп готов! Аккуратно капаю капельку воды из шприца на отверстие в фольге. Капелька будет служить увеличительной линзой.

Фантик от конфеты под микроскопом

С помощью изготовленного мной микроскопа я открыл для себя нечто интересное и необычное. И первым делом решил рассмотреть под микроскопом совершенно неожиданный предмет – полупрозрачный фантик от конфеты [Приложение 8]. При помощи специального пинцетного зажима я аккуратно положил фантик на дно стакана, которое служит моим предметным столиком и посмотрел на него через каплю воды. Мне удалось разглядеть на фантике красивые буквы. Под микроскопом они показались мне большими! Благодаря тому, что фантик был частично прозрачным, свет от фонарика проходил хорошо и при передвижении фантика были хорошо заметны буквы. Моя линза работает, а это означает, что мой эксперимент удачный!

Кожица чеснока под микроскопом

Затем я вспомнил, что в книге [5] под микроскопом рассматривалась кожица лука. Я решил провести аналогичный эксперимент. Аккуратно снял сухую кожицу чеснока и приступил к изучению [Приложение 9]. Невероятно, но мне удалось рассмотреть под микроскопом кожицу чеснока. Конечно, клетки разглядеть не удалось, но все прожилки и бороздки просматривались чётко! При рассматривании кожицы невооруженным взглядом, кажется, что это всего лишь шелуха, но через каплю видно, что между прожилок есть влага. Из энциклопедии я узнал, что чешуйки-листья служат для запасания воды и питательных веществ [5].

Верёвочка под микроскопом

Очень увлекательно было рассмотреть в мой микроскоп верёвочку. Для этого мне понадобилось отрезать 10 сантиметров нейлоновой тонкой веревочки [Приложение 10]. Один конец я закрепил специальным пинцетом, а другой кончик пропустил между предметным столиком и фольгой. При рассмотрении через каплю воды было отчетливо видно сплетение волокон, через них хорошо проходил свет и я даже разглядел подобие косички в сплетении волокон.

Мой микроскоп работает! Исследование завершено.

ЗАКЛЮЧЕНИЕ

У меня получилось создать свой микроскоп в домашних условиях с линзой из капли воды! Правда микробов и бактерий на своих руках я не смог разглядеть, ведь для этого необходима очень мощная увеличительная линза. Но всё же, моя гипотеза подтвердилась: и дома можно создать свой простейший микроскоп из подручных материалов. В таком микроскопе можно рассмотреть такие предметы, которые имеют воздушную пористую структуру, либо очень тонкие и полупрозрачные объекты, которые легко пропускают свет. После изучения интереснейших энциклопедий я сделал вывод, что создание микроскопа позволило человечеству встать на следующую ступень развития, спасти миллионы жизней, создать лекарства. При помощи микроскопов проводятся сложные операции на глазах и других органах. Благодаря этому уникальному прибору врачи изучили строение тканей человека и распознали причины многих заболеваний. Практическую значимость исследования можно определить кратким выводом, о том, что чем больше накапливается знаний, полученных при помощи микроскопов, тем дальше шагает наука и тем стремительнее происходят всё новые и новые открытия. Проведение такой исследовательской работы и реализация практической части путём создания микроскопа в домашних условиях может подтолкнуть каждого любознательного школьника к более глубокому изучению естественных наук.

БИБЛИОГРАФИЧЕСКИЙ СПИСОК:

Печатные издания:

Ермолович А. В. // Большая российская энциклопедия. Том 9. Москва, 2007, стр. 70

Завязкин О. «Микромир», КРИСТАЛЛ-БУК, 2016 г.

Короленко П. В. ЛУПА // Большая российская энциклопедия. Том 18. Москва, 2011, стр. 150

Кирстин Роджерс Детская энциклопедия «Микромир», Росмэн, 2017 г.

Мазур О.Ч. «Книга знаний. Невидимый мир», Levenhuk Press, 2016 г.

Мазур О.Ч. «Удивительный микроскоп: иллюстрированный путеводитель», Москва: ЭКСМО, 2015 г. – 96 с.: ил. – (Занимательная энциклопедия).

Райнер Кете «Микроскоп» серия «Зачем и почему», Мир книги, 2007 г.

Шилов В. В. // Большая российская энциклопедия. Том 26. Москва, 2014, стр. 199

Электронные источники сети интернет:

ru.wikipedia.org/ Википедия – свободная энциклопедия Wikimedia Foundation, Inc. 2018 г.

www.bigpicture.ru // Микромир // крупнейший информационно-развлекательный блог Рунета. 2019 г.

www.krugosvet.ru/ «Энциклопедия Кругосвет» / Универсальная научно-популярная онлайн-энциклопедия 1997 – 2018 г.

www.вокабула.рф/ «Энциклопедия Кольера – Микроскоп» / Вокабула – Энциклопедии, словари, справочники – онлайн 2013 – 2015 г.

ПРИЛОЖЕНИЯ

Приложение 1«Виды увеличительных приборов»:

Приложение 2 «Микроскопы Г.Галилея и А.Левенгука»:

Приложение 3 «Устройство современного микроскопа»:

Приложение 4 «Что можно увидеть в микроскоп?»:

Приложение 5 «Материалы для изготовления микроскопа»:

Приложение 6 «Изготовление микроскопа»:

Приложение 7 «Микроскоп готов!»:

Приложение 8 «Буквы под микроскопом»:

Приложение 9 «Кожица чеснока под микроскопом»:

Приложение 10 «Нейлоновая верёвочка под микроскопом»:

Просмотров работы: 530

Добавить комментарий