Как составить многоугольник распределения вероятностей



2.2.6. Многоугольник распределения

Итак, пусть дискретная случайная величина  задана своим законом распределения:

Многоугольником распределения вероятностей данной величины называют ломаную, звенья которой соединяют соседние точки . Иногда вместо «многоугольника»

используют термин полигон, но этот вариант больше в ходу в математической статистике.

Всё очень просто:

Задача 91
Построить многоугольник распределения вероятностей случайной величины

Решение: чертим прямоугольную систему координат, в которой по оси абсцисс отсчитываются  – значения случайной величины, а по оси ординат  – их вероятности. Отмечаем на чертеже

точки , в данном случае их

пять, и соединяем «соседей» отрезками:

При выполнении чертежа от руки по возможности придерживайтесь следующего масштаба:
горизонтальная ось:  1 ед. = 2 тетрадные клетки (1 см);
вертикальная ось: 0,1  = 2 тетрадные клетки.

Если значения  достаточно велики, то ось абсцисс можно «разорвать» (не чертить

её кусочек после единицы), и справа продолжить нумерацию, например, с 20.

Теперь обратите внимание на следующую важную вещь: помимо того, что дискретную случайную величину можно изобразить с

помощью многоугольника – её ведь можно ещё и ЗАДАТЬ этим способом. До сих пор мы делали это с помощью таблички, но никто же не мешает

использовать и чертёж!

Задача 92
Дискретная случайная величина  задана своим многоугольником

Записать закон распределения данной случайной величины, выполнить проверку.

Это задание для самостоятельного решения. И тут мы, кстати, видим изъян графического способа: по чертежу не всегда понятны точные

значения случайной величины и их вероятности.

На практике задачи с многоугольником встречаются довольно часто, но гораздо бОльшее распространение получила:

2.2.7. Функция распределения случайной величины

2.2.5. Формула для вычисления дисперсии

| Оглавление |



Полную и свежую версию этой книги в pdf-формате,
а также курсы по другим темам можно найти здесь.

Также вы можете изучить эту тему подробнее – просто, доступно, весело и бесплатно!

С наилучшими пожеланиями, Александр Емелин

Закон распределения дискретной случайной величины

В задачах 12.1-12.10 требуется найти: а) математическое ожидание; б) дисперсию; в) среднее квадратическое отклонение дискретной случайной величины X по заданному закону её распределения, заданному таблично (в первой строке таблицы указаны возможные значения, во второй строке – вероятности возможных значений).

Закон распределения дискретной случайной величины можно изобразить графически. С этой целью на прямоугольной системе координат строят точки M1(x1; p1), M2(x2; p2), …, Mn(xn; pn), где xi – возможные значения случайной величины, а pi – соответствующие вероятности, и соединяют их последовательно отрезками прямых. Полученную фигуру называют многоугольником распределения. Построим многоугольник распределения дискретной случайной величины X, заданной следующим законом распределения:

X 1 3 5 6
p 0,2 0,4 0,1 0,3

Математическое ожидание:

Дисперсия: .

Среднее квадратическое отклонение: .

Перейти к онлайн решению своей задачи

Задать свои вопросы или оставить замечания можно внизу страницы в разделе Disqus.
Можно также оставить заявку на помощь в решении своих задач у наших проверенных партнеров (здесь или здесь).

Многоугольник распределения

Итак, пусть дискретная случайная величина X задана своим законом распределения:

Многоугольником распределения вероятностей данной величины называют

ломаную, звенья которой соединяют соседние точки (xi ; pi ) . Иногда вместо

«многоугольника» используют термин полигон, но этот вариант больше в ходу в математической статистике.

Всё очень просто:

Задача 91

Построить многоугольник распределения вероятностей случайной величины X

Решение: чертим прямоугольную систему координат, в которой по оси абсцисс отсчитываются xi – значения случайной величины, а по оси ординат pi – их вероятности.

Отмечаем на чертеже точки (xi ; pi ) , в данном случае их пять, и соединяем «соседей» отрезками:

При выполнении чертежа от руки по возможности придерживайтесь следующего масштаба:

горизонтальная ось: 1 ед. = 2 тетрадные клетки (1 см); вертикальная ось: 0,1 = 2 тетрадные клетки.

Если значения xi достаточно велики, то ось абсцисс можно «разорвать» (не чертить её кусочек после единицы), и справа продолжить нумерацию, например, с 20.

Теперь обратите внимание на следующую важную вещь: помимо того, что дискретную случайную величину можно изобразить с помощью многоугольника – её ведь можно ещё и ЗАДАТЬ этим способом. До сих пор мы делали это с помощью таблички, но никто же не мешает использовать и чертёж!

Внимание! Это демо-версия книги, полную и свежую версию курса можно найти здесь: http://mathprofi.com/knigi_i_kursy/

105

Задача 92

Дискретная случайная величина X задана своим многоугольником

Записать закон распределения данной случайной величины, выполнить проверку.

Это задание для самостоятельного решения. И тут мы, кстати, видим изъян графического способа: по чертежу не всегда понятны точные значения случайной величины и их вероятности.

На практике задачи с многоугольником встречаются довольно часто, но гораздо бОльшее распространение получила:

Функция распределения случайной величины Стандартное обозначение: F (x)

Идля дискретной, и для непрерывной случайной величины она определяется одинаково:

…, где P( X x) – вероятность того, что случайная величина X примет значение,

МЕНЬШЕЕ, чем переменная x , которая «пробегает» все действительные значения от

«минус» до «плюс» бесконечности.

Построим функцию распределения для нашей подопытной игры:

Начинаем разбираться. Чему, например, равно значение F ( 20) ? Это вероятность того, что выигрыш будет меньше, чем –20. И это невозможное событие:

F ( 20) P( X 20) 0 . Совершенно понятно, что F (x) 0 и для всех «икс» из интервала ( ; 5) , а также для x 5 . Почему? По определению функции распределения:

F ( 5) P( X 5) 0 – вы согласны? Функция F (x) возвращает вероятность того, что в точке x 5 выигрыш будет СТРОГО МЕНЬШЕ «минус» пяти.

Таким образом: F (x) 0 , если x 5 .

Внимание! Это демо-версия книги, полную и свежую версию курса можно найти здесь: http://mathprofi.com/knigi_i_kursy/

106

На интервале 5 x 2,5 функция F (x) P( X x) 0,5 , поскольку левее любой точки этого интервала есть только одно значение x1 5 случайной величины, которое появляется с вероятностью 0,5. Кроме того, сюда же следует отнести точку x 2,5 , так как:

F (2,5) P( X 2,5) 0,5 – очень хорошо осознайте этот момент!

Таким образом, если 5 x 2,5 , то F (x) 0,5

Далее рассматриваем промежуток 2,5 x 10 . СТРОГО ЛЕВЕЕ любой точки этого промежутка находятся два выигрыша x1 5, x2 2,5, поэтому:

F (x) P( X x) 0,5 0,4 0,9

И, наконец, если x 10 , то F (x) P( X x) 0,5 0,4 0,1 1 , ибо все значения x1 5, x2 2,5, x3 10 случайной величины X лежат СТРОГО левее любой точки интервала x (10; )

Заметим, кстати, важную особенность: коль скоро функция F (x) характеризует вероятность, то она может принимать значения лишь из промежутка 0 F (x) 1 – и никакие другие!

Итак, функция распределения вероятностей ДСВ является кусочной и, как многие знают, в таких случаях принято использовать фигурные скобки:

0,

если

x 5

если

5 x 2,5

0,5,

F (x)

0,9,

если

2,5 x 10

1,

если

x 10

График данной функции имеет разрывный «ступенчатый» вид:

Причём, функция F (x) или её график однозначно определяют сам закон распределения: в точке x1 5 высота «ступеньки» (разрыв) составляет p1 0,5 (следим

по графику), в точке x2 2,5 «скачок» разрыва равен

p2 0,4

и, наконец, в точке x3 10

он равен в точности p3 0,1.

Внимание! Это демо-версия книги, полную и свежую версию курса можно найти здесь: http://mathprofi.com/knigi_i_kursy/

107

Таким образом, функция распределения вероятностей – это ещё один способ ЗАДАТЬ случайную величину. И этот способ особо важен для непрерывной случайной величины – по той причине, что её невозможно описать таблицей (ввиду бесконечного и несчётного количества принимаемых значений). Однако, всему своё время, и НСВ – тоже.

Освоим технические моменты решения типовой задачи:

Задача 93

Построить функцию распределения случайной величины X

Найти вероятности того, что случайная величина примет значение из следующих промежутков:

P( 1 X 5),

P(4 X 10),

P( X 2),

P(3 X 7),

P(X 7),

P

X M (X )

(X ) …, пожалуй, достаточно.

Решение: На практике удобно использовать формальный алгоритм построения

функции распределения:

Сначала берём первое значение x1 2 и составляем нестрогое неравенство

x 2 . На этом промежутке F (x) 0 .

На промежутке 2 x 0 (между x1 и x2 ):

На промежутке 0 x 3 (между x2

и x3 ):

На промежутке 3 x 7 (между x3

и x4 ):

И, наконец, если x строго больше самого последнего значения x4 7 , то:

Легко заметить, что с увеличением «икс» идёт накопление (суммирование) вероятностей, и поэтому функцию F (x) иногда называют интегральной функцией

распределения. В практических задачах проведённые выше действия обычно выполняют устно, а результат сразу записывают под единую скобку:

Внимание! Это демо-версия книги, полную и свежую версию курса можно найти здесь: http://mathprofi.com/knigi_i_kursy/

108

Закон распределения дискретной случайной величины можно представить в графическом виде с помощью декартова системой координат, то есть если по оси OY отложить вероятности этих значений pi, a по оси OX значения случайной величины xi и соединив точки между собой получим многоугольником распределения.

Многоугольник распределения является одной из форм закона распределения случайной величины.


Пример

Закон распределения случайной дискретной величины задан в виде таблицы.

x 0 1 2 3 4 5
p 0.05 0.2 0.3 0.2 0.15 0.1

Требуется построить многоугольник распределения дискретной случайной величины.

  Решение

  Для построения многоугольник распределения дискретной СВ воспользуемся прямоугольной (декартовой) системой координат и на графике отметим точки в соответствии с таблицей выше:

(0; 0,05), (1; 0,2), (2; 0,3), (3; 0,2), (4; 0,15) и (5; 0,1)

Многоугольник распределения дискретной случайной величины

Соединив точки между собой, построим многоугольника распределения дискретной случайной величины

7172


Содержание

  1. I. Определение случайной величины (СВ), дискретной случайной величины (ДСВ). Закон и многоугольник распределения ДСВ
  2. Функция распределения
  3. II. Операции над дискретными случайными величинами

I. Определение случайной величины (СВ), дискретной случайной величины (ДСВ). Закон и многоугольник распределения ДСВ

При бросании игральной кости могут появиться числа 1, 2, 3, 4, 5 и 6. Заранее определить возможные исходы невозможно, так как они зависят от многих случайных причин, которые не могут быть полностью учтены. В данном примере выпавшее число очков есть величина случайная, а числа 1, 2, 3, 4, 5 и 6 есть возможные значения этой величины.

Случайная величина – величина, которая в результате опыта со случайным исходом принимает то или иное числовое значение, причем заранее неизвестно, какое именно. Случайные величины (кратко: СВ) обозначают большими латинскими буквами X,  Y, ..., а принимаемые ими значения — малыми буквами x_1, x_2, cdots , y_1, y_2, cdots

Из приведенного выше  примера, видно, что случайная величина Х может принять одно из следующих возможных значений: 1, 2, 3, 4, 5, 6. Эти значения отделены одно от другого промежутками, в которых нет возможных значений Х. Таким образом, в этом примере СВ принимает отдельные, изолированные возможные значения.

Дискретной (прерывной) называют случайную величину, которая принимает отдельные, изолированные возможные значения с определенными вероятностями. Число возможных значений дискретной случайной величины может быть конечным или бесконечным.

Законом распределения дискретной случайной величины называют соответствие между возможными значениями и их вероятностями; его можно задать таблично, аналитически (в виде формулы) и графически.

Закон распределения ДСВ Х удобно задавать с помощью следующей таблицы

x_i x_1 x_2 cdots x_n cdots
p_i p_n p_n cdots p_n cdots

называемой рядом распределения. При этом возможные значения x_1,quad x_2, cdots СВ Х в верхней строке этой таблицы располагаются в определенном порядке, а в нижней — соответствующие вероятности p_i=P{X=x_i} quad (sum_i p_i=1).

Графически ряд распределения изображают в виде многоугольника (или полигона) распределения.

1.1. В ящике 2 нестандартные и 4 стандартные детали. Из него последовательно вынимают детали до первого появления стандартной детали. Построить ряд и многоугольник распределения ДСВ X — числа извлеченных деталей.

Решение.

Рассмотрим все возможные значения, которые может принимать случайна величина (СЛ) X:

x_1=1 – первой вынули  стандартную деталь;

x_2=2 — первая вынутая деталь нестандартная, вторая стандартная;

x_3=3 — первая деталь нестандартная, вторая деталь нестандартная, третья деталь стандартная.

Соответствующие им вероятности p_1,  p_2, p_3 найдем воспользовавшись правилом умножения вероятностей (заметьте, что события зависимы):

p_1=P{X=x_1=1}=frac{4}{6}=frac{2}{3}

p_2=P{X=x_2=2}=frac{2}{6}cdot frac{4}{5}=frac{4}{15}

p_3=P{X=x_3=3}=frac{2}{6}cdot frac{1}{5}cdot frac{4}{4}=frac{1}{15}

Тогда закон распределения дискретной случайной величины Х примет вид:

Построим многоугольник распределения, отложив на оси абсцисс (ОХ) значения ДСВ Х, а на оси ординат (ОY) соответствующие им вероятности:

Дискретные случайные величины

1.2. В партии, содержащей 20 изделий, имеется четыре изделия с дефектами. Наудачу отобрали три изделия для проверки их качества. Построить ряд распределения числа дефектных изделий, содержащихся в указанной выборке.

Решение.

X — число дефектных изделий, содержащихся в выборке.

Рассмотрим все возможные значения, которые может принимать случайна величина (СЛ) X:

x_1=0 — ни одно изделие выборки не является дефектным, т.е. все изделия удовлетворяют стандарту;

x_2=1 — выборка содержит одно изделие с дефектом и два стандартных изделия;

x_3=2 — выборка содержит два изделия с дефектом и одно стандартное изделие;

x_4=3 — выборка содержит три изделия с дефектом;

Найдем соответствующие им вероятности p_1,  p_2, p_3, p_4:

    [p_1=P(X=0)=frac{C_{16}^3cdot C_{4}^0}{C_{20}^3}]

    [p_2=P(X=1)=frac{C_{16}^2cdot C_{4}^1}{C_{20}^3}]

    [p_3=P(X=2)=frac{C_{16}^1cdot C_{4}^2}{C_{20}^3}]

    [p_4=P(X=3)=frac{C_{16}^0cdot C_{4}^3}{C_{20}^3}]

Тогда закон распределения дискретной случайной величины Х примет вид:

x_i 0 1 2 3
p_i frac{28}{57} frac{8}{19} frac{8}{95} frac{1}{285}

1.3. Три стрелка, ведущие огонь по цели, сделали по одному выстрелу. Вероятности их попадания в цель соответственно равны 0,5; 0,6; 0,8. Построить ряд и многоугольник  распределения СВ X — числа попаданий в цель.

Решение.

Пусть вероятности попадания для 1-го, 2-го и 3-го стрелков соответственно равны h_1=0,5;quad h_2=0,6;quad h_3=0,8, тогда вероятности их промахов равны g_1=0,5;quad g_2=0,4;quad g_3=0,2. Из предыдущих занятий должны помнить как связаны противоположные события: h_1=1-g_1.

Рассмотрим все значения, которые может принять ДСВ Х – числа попаданий в цель.

x_0=0 – ни один из стрелков не попал в цель;

x_1=1 – один из стрелков попал в цель;

x_2=2 – двое стрелков поразили цель;

x_3=3 – три стрелка поразили цель.

Найдем соответствующие им вероятности p_0, p_1, p_2, p_3:

p_0=P{X=0}=g_1 cdot g_2 cdot g_3 =0,5cdot 0,4 cdot 0,2=0,04;

p_1=P{X=1}=h_1 cdot g_2 cdot g_3+g_1 cdot h_2 cdot g_3 +g_1 cdot g_2 cdot h_3=\ =0,5cdot 0,4 cdot 0,2+0,5cdot 0,6 cdot 0,2+0,5cdot 0,4 cdot 0,8=0,04+0,06+0,16=0,26.

Запись вида h_1 cdot g_2 cdot g_3 означает, что 1-й стрелок попал, два других промахнулись, аналогичные рассуждения применимы к другим слагаемым.

p_2=P{X=2}=h_1 cdot h_2 cdot g_3+g_1 cdot h_2 cdot h_3 +h_1 cdot g_2 cdot h_3=\ =0,5cdot 0,6 cdot 0,2+0,5cdot 0,6 cdot 0,8+0,5cdot 0,4 cdot 0,8=0,06+0,24+0,16=0,46 — (двое из трех поразили цель);

p_3=P{X=3}=h_1 cdot h_2 cdot h_3=0,5cdot 0,6 cdot 0,8=0,24 — (три стрелка поразили цель).

Контроль: sum_{i=0}^3=0,04+0,26+0,46+0,24=1

x_i 0 1 2 3
p_i 0,04 0,26 0,46 0,24

Многоугольник распределения:

Дискретные случайные величины

Функция распределения F(x)

Функцией распределения называют функцию F(x) , определяющую вероятность того, что случайная величина X в результате испытания примет значение, меньшее некоторого фиксированного значения x

    [F(x)=P(X<x)]

Свойства функции распределения:

  1.  0 le F(x) le 1;
  2.  F(x) – неубывающая функция, т.е. F(x_2) ge F(x_1),  если x_2>x_1;
  3.  F(-infty)=0, quad F(+infty)=1;
  4.  F(x) непрерывна слева в любой точке x, т.е. F(x-0)=F(x), quad x in R;
  5.  P{ale X <b}=F(b)-F(a).

Функция распределения ДСВ имеет вид

    [F(x)=sum_{x_i<x} p_i]

где суммирование ведется по всем индексам i, для которых x_i<x.

1.4. Задан закон распределения ДСВ Х:

x_i -2 -1 0 2 3
p_i 0,1 0,2 0,3 0,3 0,1

Найти функцию распределения и построить ее график.

Решение.

По определению функции распределения находим:

если xle -2, то F(x)=P{X<x}=0, так как значения меньше -2 ДСВ Х не принимает;

если -2<xle -1, то F(x)=P{X<x}=P{X=-2}=0,1

если -1<xle 0, то F(x)=P{X<x}=P{X=-2}+P{X=-1}=0,1+0,2=0,3, так как X может принять значения -2 или -1

если 0<xle 2, то F(x)=P{X<x}=P{X=-2}+P{X=-1}+P{X=0}=0,1+0,2+0,3=0,6

если 2<xle 3, то F(x)=P{X<x}=P{X=-2}+P{X=-1}+P{X=0}+P{X=2}=0,1+0,2+0,3+0,3=0,9

если xge 3, то F(x)=P{X<x}=P{X=-2}+P{X=-1}+P{X=0}+\+P{X=2}+P{X=3}=0,1+0,2+0,3+0,3+0,1=1

Таким образом, функция распределения F(x) имеет вид:

    begin{displaymath} F(x) = left{ begin{array}{ll} 0, qquad  xle -2 , \ 0,1,  qquad -2< x le -1,\ 0,3, qquad  -1< x le 0,\ 0,6, qquad 0< x le 2,\ 0,9, qquad  2< x le 3, \ 1, qquad  x>3. end{array} right. end{displaymath}

Дискретные случайные величины

II. Операции над дискретными случайными величинами

Суммой (соответственно, разностью или произведением) ДСВ Х, принимающей значения x_i с вероятностями p_i=P{X=x_i}, quad i=1,2, ... , n и ДСВ Y, принимающей значения y_j с вероятностями q_j=P{Y=y_j}, quad j=1,2, ... , m называется ДСВ, принимающая все значения вида x_i+y_j (соответственно, x_i-y_j или x_icdot y_j) с вероятностями p_{ij}=P{{X=x_i}cdot {Y=y_j}}=P{X=x_i,quad Y=y_j}.

Обозначение: X+Y (соответственно, X-Y или Xcdot Y).

Произведением ДСВ Х на число c называется ДСВ  cX, принимающая значения cx_i с вероятностями p_i=P{X=x_i}.

Квадратом (соответственно, m-ой степенью) ДСВ Х называется ДСВ, принимающая значения x_i^2 (соответственно, x_i^m) с вероятностями p_i=P{X=x_i}. Обозначение: X^2 (соответственно, X^m).

Дискретные СВ Х и Y называются независимыми, если независимы события {X=x_i} и {Y=y_j} при любых i=1, 2, 3, ... , n, quad j=1, 2, ..., m.

2.1. Задано распределение ДСВ Х

x_i -2 -1 1 2 3
p_i 0,2 0,25 0,3 0,15 0,1

Построить ряд распределения случайных величин:

а) Y=2X

б) Z=X^2

Решение.

Возможные значения СВ Y таковы:

    [y_1=2 cdot (-2)=-4]

    [y_2=2 cdot (-1)=-2]

    [y_3=2]

    [y_4=4]

    [y_5=6]

Вероятности значений СВ Y равны вероятностям соответствующих значений СВ Х (например, P{Y=-4}=P{X=-2}=0,20 и т. д.), т.е. каждое значение СВ Х мы умножаем на 2, а вероятности оставляем прежними. Таким образом

y_i -4 -2 2 4 6
p_i 0,2 0,25 0,3 0,15 0,1

б) Значения СВ Z таковы (возведем каждое значение СВ Х в квадрат): 

    [z_1={(-2)}^2=4;  z_2={(-1)}^2=1,]

    [z_3=1^2=1;  z_4=2^2=4;  z_5=3^2=9]

Составим вспомогательную таблицу для распределения СВ X^2

x_i^2 4 1 1 4 9
p_i 0,2 0,25 0,3 0,15 0,1

При этом мы должны помнить, что при одинаковых значениях СВ Z, соответствующие им вероятности нужно сложить, т.е.

    [P{Z=1}=P{X^2=1}=P{X=-1}+P{X=1}=0,25+0,3=0,55;]

    [P{Z=4}=P{X^2=4}=P{X=-2}+P{X=2}=0,20+0,15=0,35.]

Поэтому ряд распределения СВ Z имеет вид

2.2. Дискретная случайная величина Х имеет ряд распределения:

x_i 0 frac{pi}{4} frac{pi}{2} frac{3pi}{4} pi frac{5pi}{4} frac{3pi}{2}
p_i frac{1}{16} frac{1}{8} frac{3}{16} frac{1}{4} frac{3}{16} frac{1}{8} frac{1}{16}

Построить:

а) ряд распределения СВ Y=sin(X-frac{pi}{4});

б) График функции распределения СВ Y

Решение.

а) Вычисляем все значения y_i СВ Y,  подставляя соответствующие значения x_i в формулу Y=sin(X-frac{pi}{4}):

y_1=sinleft(0-frac{pi}{4}right)=sin(-frac{pi}{4})=-frac{sqrt{2}}{2}

y_2=sin(frac{pi}{4}-frac{pi}{4})=sin(0)=0

y_3=sin(frac{pi}{2}-frac{pi}{4})=sin(frac{pi}{4})=frac{sqrt{2}}{2}

y_4=sin(frac{3pi}{4}-frac{pi}{4})=sin(frac{pi}{2})=1

y_5=sin(pi-frac{pi}{4})=sin(frac{pi}{4})=frac{sqrt{2}}{2}

y_6=sin(frac{5pi}{4}-frac{pi}{4})=sin(pi)=0

y_7=sin(frac{3pi}{2}-frac{pi}{4})=-cos(frac{pi}{4})=-frac{sqrt{2}}{2}

Составим вспомогательную таблицу ряда распределения:

y_i -frac{sqrt{2}}{2} 0 frac{sqrt{2}}{2} 1 frac{sqrt{2}}{2} 0 -frac{sqrt{2}}{2}
p_i frac{1}{16} frac{1}{8} frac{3}{16} frac{1}{4} frac{3}{16} frac{1}{8} frac{1}{16}

Составим ряд распределения.

При этом

P{Y=-frac{sqrt{2}}{2}}=P{X=0}+P{X=frac{3pi}{2}}=frac{1}{16}+frac{1}{16}=frac{1}{8}

P{Y=0}=P{X=frac{pi}{4}}+P{X=frac{5pi}{4}}=frac{1}{8}+frac{1}{8}=frac{1}{4}

P{Y=frac{sqrt{2}}{2}}=P{X=frac{pi}{2}}+P{X=pi}=frac{3}{16}+frac{3}{16}=frac{3}{8}

Т. е. записываем значения ДСВ Y в таблицу в порядке возрастания. При одинаковых значениях ДСВ соответствующие вероятности складываем.

Итак, получаем

y_i -frac{sqrt{2}}{2} 0 frac{sqrt{2}}{2} 1
p_i frac{1}{8} frac{1}{4} frac{3}{8} frac{1}{4}

б) Самостоятельно.

2.3. Заданы распределения двух независимых случайных величин X и Y:

Найти:

а) функцию распределения СВ Х;

б) ряд распределения случайных величин Z=X+Y,  quad W=X-Y, quad V=X cdot Y;

в) P(|X-Y|le 2);

г) построить многоугольники распределения СВ Z ,W и V.

Решение.

а) Найдите функцию распределения СВ Х самостоятельно.

б) Найдем всевозможные значения z_{ij}=x_{i}+y_{j}, т. е. просуммируем все значения, которые принимает ДСВ Х, со всеми значениями ДСВ Y.

Предлагаю сделать это так, первое значение ДСВ Х сложить  последовательно с каждым значением ДСВ Y, потом то же самое проделать со вторым значением ДСВ Х и с третьим. Все операции показаны в таблице ниже.

0+2=2 1+2=3 2+2=4
0+3=3 1+3=4 2+3=5
0+4=4 1+4=5 2+4=6

Т. е. случайная величина Z принимает значения:

    [z_1=2, quad z_2=3, quad z_3=4, quad z_4=5, quad z_5=6]

Найдем вероятности этих значений:

    [p_1=P{Z=2}=P{X=0,Y=2}]

Запись вида P{X=0,Y=2} означает вероятность наступления 2-х независимых событий {X=0} и {Y=2}, т. е.

p_1=P{X=0,Y=2}=P{{X=0}cdot {Y=2}}=P{X=0}cdot P{Y=2}=0,2cdot 0,3=0,06

Для нахождения вероятностей p_2, quad p_3, quad p_4 воспользуемся правилом сложения несовместных событий:

p_2=P{Z=3}=P{X=0,Y=3}+P{X=1,Y=2}=0,2cdot 0,3+0,4cdot 0,3=0,06+0,12=0,18;

p_3=P{Z=4}=P{X=0,Y=4}+P{X=1,Y=3}+P{X=2,Y=2}=0,2cdot 0,4+ \ +0,4cdot 0,3+0,4cdot 0,3=0,08+0,12+0,12=0,32;

p_4=P{Z=5}=P{X=1,Y=4}+P{X=2,Y=3}=0,4cdot 0,4+0,4cdot 0,3=0,16+0,12=0,28;

p_5=P{Z=6}=P{X=2,Y=4}=0,4cdot 0,4=0,16

Запишем ряд распределения ДСВ Z

z_i 2 3 4 5 6
p_i 0,06 0,18 0,32 0,28 0,16

Сделаем проверку:

sum_{i=1}^{5} p_{i}=0,06+0,18+0,32+0,28+0,16=1.

Многоугольник распределения СВ Z представлен ниже:

Дискретные случайные величины

Далее рассмотрим ДСВ W=X-Y

Найдем всевозможные значения w_{ij}=x_{i}-y_{j}.

Все вычисления сведены в  таблицу ниже.

0-2=-2 1-2=-1 2-2=0
0-3=-3 1-3=-2 2-3=-1
0-4=-4 1-4=-3 2-4=-2

Таким образом случайная величина W принимает значения:

    [w_1=-4, quad w_2=-3, quad w_3=-2, quad w_4=-1, quad w_5=0]

Замечание. Как вы видите, я выписал для удобства все значения СДВ W в порядке возрастания, так как при составления ряда распределения их (значения случайной величины) нужно располагать по возрастанию.

Найдем вероятности этих значений:

p_1=P{W=-4}=P{X=0,Y=4}=0,2cdot 0,4=0,08

p_2=P{W=-3}=P{X=0,Y=3}+P{X=1,Y=4}=0,2cdot 0,3+0,4cdot 0,4=0,06+0,16=0,22;

p_3=P{W=-2}=P{X=0,Y=2}+P{X=1,Y=3}+P{X=2,Y=4}=0,2cdot 0,3+ \ +0,4cdot 0,3+0,4cdot 0,4=0,06+0,12+0,16=0,34;

p_4=P{W=-1}=P{X=1,Y=2}+P{X=2,Y=3}=0,4cdot 0,3+0,4cdot 0,3=0,12+0,12=0,24;

p_5=P{W=0}=P{X=2,Y=4}=0,4cdot 0,3=0,12

Запишем ряд распределения ДСВ W

w_i -4 -3 -2 -1 0
p_i 0,08 0,22 0,34 0,24 0,12

Сделаем проверку: sum_{i=1}^{5} p_{i}=0,08+0,22+0,34+0,24+0,12=1

Многоугольник распределения СВ W представлен ниже:

Дискретные случайные величины

По аналогии с предыдущими пунктами найдем все значения ДСВ V :  v_{ij}=x_{i}cdot y_{j}.  Все вычисления сведены в  таблицу ниже.

0·2=0 1·2=2 2·2=4
0·3=0 1·3=3 2·3=6
0·4=0 1·4=4 2·4=8

Таким образом случайная величина V принимает значения: 

    [v_1=0, quad v_2=2, quad v_3=3, quad v_4=4, quad v_5=6 quad v_6=8]

Найдем вероятности этих значений:

p_1=P{V=0}=P{X=0,Y=2}+P{X=0,Y=3}+P{X=0,Y=4}=0,2cdot 0,3+0,2cdot 0,3+0,2cdot 0,4=0,06+0,06+0,08=0,2;

p_2=P{V=2}=P{X=1,Y=2}=0,4cdot 0,3=0,12

p_3=P{V=3}=P{X=1,Y=3}=0,4cdot 0,3=0,12

p_4=P{V=4}=P{X=1,Y=4}+P{X=2,Y=2}=0,4cdot 0,4+0,4cdot 0,3=0,16+0,12=0,28;

p_5=P{V=6}=P{X=2,Y=3}=0,4cdot 0,3=0,12

p_6=P{V=8}=P{X=2,Y=4}=0,4cdot 0,4=0,16

Запишем ряд распределения ДСВ V

v_i 0 2 3 4 6 8
p_i 0,2 0,12 0,12 0,28 0,12 0,16

Сделаем проверку: sum_{i=1}^{5} p_{i}=0,2+0,12+0,12+0,28+0,12+0,16=1

Многоугольник распределения СВ V представлен ниже:

Дискретные случайные величины

в) Найдем  P{|X-Y| le 2}. Пусть M=|X-Y|.

Построим ряд распределения ДСВ М, используя абсолютные величины значений ДСВ W=X-Y, иными словами возьмем по модулю все значения ДСВ W, например, m_1=|w_1|=|-4|=4.

Получим ряд

m_i 0 1 2 3 4
p_i 0,12 0,24 0,34 0,22 0,08

Найдем вероятности всех значений ДСВ М, которые меньше, либо равны 2

P{|X-Y| le 2}=P{M le 2}=P{M =0}+P{M=1}+P{M=2}=0,12+0,24+0,34=0,7.

Список использованной литературы:

  1. Лунгу, К. Н. Сборник задач по высшей математике, 2 курс [Текст]/ К.Н. Лунгу, В.П. Норин, Д.Т. Письменный, Ю.А. Шевченко, Е.Д. Куланин; под редакцией С.Н. Федина.7-е изд. — М.: Айрис-пресс, 2009. — 592с.
  2. Гмурман, В.Е. Теория вероятностей и математическая статистика [Текст]/ В.Е. Гмурман, 12-е изд., перераб. — М.: Высшее образование, Юрайт-Издат, 2009. — 479с.

Добавить комментарий