Как составить наследование признака

Попытки скрещивать растения и изучать полученное потомство предпринимались исследователями и раньше. Но определенные выводы ученые сделать не смогли из-за большого разнообразия признаков среди потомков. И, поскольку, основы гибридологического анализа отсутствовали, а статистику для исследования наследственности никто не применял, ни один из исследователей не смог определить точные формулы наследования.

Для своих опытов Мендель выбрал горох не случайно:

  • Это неприхотливое растение легко выращивать, и в условиях теплой погоды в Чехии за один год можно получить несколько поколений.
  • Потомство одного семени довольно многочисленно: вспомните, сколько стручков на растении, выросшем из одной горошины.
  • Сорта гороха разнообразны в своих фенотипических проявлениях, а отличительные признаки наследуются.
  • Горох — самоопыляющееся растение. Это значит, что опыление происходит внутри одного цветка. Пыльца с другого растения в дикой природе попасть в другой цветок не может, поскольку органы размножения гороха защищены от проникновения пыльцы с других растений.
  • И вместе с тем, у исследователя есть возможность после удаления тычинок материнского растения искусственно перенести пыльцу с другого растения с помощью инструментов для получения растений-гибридов.
  • Гибриды, полученные в результате искусственного оплодотворения, способны давать свое потомство, что важно для прослеживания наследования признаков в поколениях.

Для того, чтобы оценить масштабы проделанной ученым работы, представьте, что на всех семеноводческих хозяйствах Чехии ученый заказал сорта выращиваемого там гороха. В результате ему прислали 34 образца, из которых для исследований он отобрал 22 варианта.

Условием отбора было то, что все растения, выращенные из семян одного сорта, при самоопылении походили на родительские растения как две капли воды, т.е. не давали расщепления по исследуемым качествам или принадлежали к «чистым линиям».

Стручки гороха

Исследуемый Менделем горох отличался по следующим признакам:

  • цвет семян (желтый или зеленый);
  • вид кожуры семян (гладкая или сморщенная);
  • высота стебля (высокое растение или низкое);
  • оттенок цветков (белые или розовые);
  • форма бобов (простые или членистые);
  • расположение цветов (верхушечные или пазушные).

В своих опытах Мендель учел ошибки предшественников, которые пытались сравнивать растения одновременно по разным признакам и потерпели фиаско.

Исследователь решил начать с изучения наследования лишь одного признака — цвета горошин. Именно благодаря тому, что ученый сознательно сузил задачу, его ждал успех и он смог четко установить определенные закономерности наследования.

Грегори Мендель начал анализ со скрещивания родителей, у которых отличались лишь одна пара признаков, такой тип скрещивания естествоиспытатель назвал моногибридным. 

Мендель вручную оплодотворил растения, семена которых имели желтый цвет кожуры, пыльцой с растений с зеленой кожурой. Когда ученый собрал урожай высаженных растений, то обнаружил, что кожура у всех потомков желтая.

Повторив эксперименты с морщинистыми и гладкими горошинами, с кустами гороха разной высоты, растениями с разной окраской цветков и стручков и т.д., Мендель отметил, что все потомки в первом поколении унаследовали признак одного из родительских организмов, т.е. по фенотипу не отличаются друг от друга.

Ведущее свойство, характерное для всех семян, полученных в первом поколении, Мендель обозначил как доминантное. Свойство другого родителя, которое не проявилось у гибридов первого поколения, ученый определил как рецессивное. Закономерность получила название первого закона Менделя, или закона единообразия гибридов I-го поколения, или закона доминирования.

Все выращенные образцы нужно было собрать, сосчитать и выделить определенные закономерности. Одним из первых Мендель использовал и применил конкретные количественные методы для обработки данных. Зная о теории вероятности, он понимал необходимость исследования большого числа семян гороха, полученных в результате скрещиваний, чтобы избежать статистической ошибки из-за случайных отклонений.

Для выведения законов наследования Мендель изучил более двадцати тысяч семян — гибридов второго поколения. Согласитесь, для обычного монаха, который жил в конце XIX века, без доступа к современным исследовательским инструментам, с лупой и микроскопом, в перерывах между молитвами и проповедями — это ли не подвиг!

Горох – самоопыляющееся растение, поэтому в следующем поколении ученый предоставил работу по опылению матушке-природе, чем облегчил себе задачу исследовательскую, но не статистическую. Учитывая, что способ размножения гороха – половой, неопыленные цветки просто-напросто не дадут потомство, и случайные отклонения не искажали итоги экспериментов с растениями.

Мендель продолжил опыты с одинаково желтыми гибридами первого поколения. И для исследователя было большим сюрпризом увидеть примерно треть зеленых горошин в корзинке семян с новым урожаем.

Когда ученый проанализировал результаты экспериментов с гибридами второго поколения, он увидел следующую закономерность: гибриды разделились на два различных по внешнему виду, т.е. фенотипу, класса. Бо´льшая часть унаследовала доминантные признаки, меньшая — рецессивные.

Генетические законы Менделя

При точном подсчете соотношение между семенами гороха с доминантными и рецессивными признаками составило 3 к 1 соответственно. Что позволило Менделю вывести второй закон Менделя, или закон расщепления, который звучит так: «При скрещивании двух гетерозиготных гибридов первого поколения во втором поколении отмечается расщепление в соотношении 3:1 по фенотипу, и 1:2:1 по генотипу».

Чтобы ответить на вопрос, почему происходит расщепление признака именно в таком соотношении, Мендель выдвинул гипотезу о «чистоте гамет», согласно которой аллельные гены не смешиваются у потомка, а остаются в неизмененном виде. А в размножении следующего поколения в фазе мейоза в гамету попадает только одна хромосома из пары гомологичных. Т.е. гаметы условно чисты относительно другого гена из аллельной пары.

Далее ученый начал проводить опыты с растениями, у которых отличались две пары признаков, и использовал гомозиготные семена гороха, отличающиеся цветом и формой семян. Такой тип скрещивания ученый назвал дигибридным. Для определения гомозиготности растений он использовал анализирующее скрещивание

У потомков во втором поколении треть горошин имеет проявления доминантного фенотипа, однако при этом отличается по генотипу (Аа и АА). И чтобы определить генотип, Мендель использовал семена с проявлениями рецессивного признака. Поскольку рецессивные свойства проявляются только в гомозиготном состоянии генов (аа), потомки, в зависимости от генотипа исходной особи, будут иметь единый фенотип, если родительская особь гомозиготна, согласно 1 закону Менделя, либо произойдет расщепление в соотношении 1:1.

В результате искусственного опыления гладких (B) и желтых (A) растений с морщинистыми (b) и зелеными(a), в первом поколении все растения дали потомство с желтыми гладкими горошинами, что подтвердило первый закон Менделя о единообразии гибридов первого поколения при дигибридном скрещивании.

Генетические законы Менделя

Замеченные Менделем закономерности о наследовании генов подтвердились при анализе итогов экспериментов со всеми семью парами признаков. В ходе анализа результатов ученый пришел к выводу об универсальности закономерностей наследования и вывел Третий закон Менделя, или закон независимого распределения признаков.

Под этим подразумевается, что каждый ген одной аллельной пары может оказаться в гамете с любым другим геном из другой аллельной пары. В опытах по скрещиванию организмов с гомозиготным набором генов, при анализе по двум и более парам отличающихся качеств, у гибридов в третьем поколении (получены при скрещивании гибридов второго поколения) наблюдается независимое комбинирование свойств и кодирующих их генов разных аллельных пар.

Выращивание гороха

Опыты ученого, проведенные с тысячами гороховых зерен в монастырском саду, и тщательная статистическая работа по анализу признаков, проявившихся у потомков, позволили ученому доложить на заседании Общества естествоиспытателей в г. Брно в 1865 году о своих выводах.

Мендель утверждал, что:

  • при размножении семян передается не само качество, а так называемые «факторы», ответственные за эти признаки (понятие ген в биологии в то время еще не существовало);
  • организм наследует по одному «фактору» от каждого родителя;
  • «фактор» может быть доминантным по отношению к другому, рецессивному;
  • свойство, соответствующее «фактору» не смешивается с другими свойствами, как об этом в то время думали учёные. Признак может проявляться или не проявляться, но нет промежуточной ситуации.

Хотя в последнем пункте Мендель был не прав, и последующие опыты с окраской цветков ночной красавицы показали существование неполного доминирования.

Научный труд монаха-исследователя опубликовали в «Трудах общества естествоиспытателей» под заголовком «Опыты над растительными гибридами». Но современники не оценили исследование Грегора Менделя и долгие 35 лет «Опыты» пролежали на пыльной полке библиотеки аббатства.

Из-за неудачи с другими растениями и пчелами сам Мендель разочаровался в своем открытии. А с 1868 года, после того, как получил сан аббата монастыря, биологией больше не занимался.

И только в начале XX века, благодаря пересмотру законов Менделя, генетика смогла сделать огромный шаг вперед.

Составление и анализ родословных 

Задача 1
Болезнь наследуется по аутосомно-рецессивному типу. Пробанд болен, и его родословная имеет следующий вид:

родословная по аутосомно-рецессивному типу наследования признака

Рис. 1. Графическое изображение родословной по аутосомно-рецессивному типу наследования признака.

Жена пробанда здорова и не содержит в своем генотипе патологических аллелей. Чему равна вероятность рождения у пробанда здорового ребенка?
Решение:

Генная запись скрещивания:

родословная

Вероятность рождения здорового ребенка (генотип Аа):
Р = 1/1 = 1 (100%).


Ответ:
Вероятность рождения у пробанда здорового ребенка равна 1 (100%).


Задача 2
Определить тип наследования признака. Установить возможные генотипы всех членов родословной.

 Графическое изображение родословной по голандрическому типу наследования признака

Рис. 2. Графическое изображение родословной по голандрическому типу наследования признака.

Решение:
Изучаемый признак встречается только у особей мужского пола в каждом поколении и передаётся от отца к сыну, при этом все мальчики рождаются с этим признаком, то можно думать, что изучаемый ген находится в Y-хромосоме (голандрическое наследование).
Возможные генотипы всех членов родословной:
Ya – наличие данной аномалии;
YB – нормальное развитие организма (отсутствие данной аномалии).
Все мужчины, страдающие данной аномалией, имеют генотип: XYa;
Все мужчины, у которых отсутствует данная аномалия, имеют генотип: XYB.
У женщин данная аномалия отсутствует, их генотип – ХХ.


Задача 3
Составить родословную, состоящую из пяти поколений по аутосомно-доминантному типу наследования.
Решение:
Аутосомно-доминантное наследование:
1. признак встречается часто, в каждом поколении;
2. признак встречается у детей, у которых хотя бы один из родителей имеет изучаемый признак;
3. мужчины и женщины с изучаемым признаком встречаются с приблизительно одинаковой частотой.

родословная по аутосомно-доминантному типу наследованию признака

Рис. 3. Графическое изображение родословной по аутосомно-доминантному типу наследованию признака, состоящей из пяти поколений.

 Люди с изучаемым признаком встречаются часто, в каждом поколении; человек, имеющий изучаемый признак, рождается в семье, где обязательно хотя бы один из родителей имеет изучаемый признак. Поэтому можно сделать первый предварительный вывод: изучаемый признак является доминантным. В родословной 7 женщин и 6 мужчин имеют изучаемый признак. Можно считать, что изучаемый признак с приблизительно равной частотой встречается и среди мужчин, и среди женщин. Это характерно для признаков, гены которых расположены не в половых хромосомах, а в аутосомах. Поэтому можно сделать второй предварительный вывод: изучаемый признак является аутосомным.
Таким образом, по основным особенностям наследование изучаемого признака в этой родословной можно отнести к аутосомно-доминантному типу. Кроме того, эта родословная не обладает набором особенностей, характерных для других типов наследования.
Символы, используемые при составлении графического изображения родословной:
особь мужского пола– особь мужского пола, не имеющая изучаемого признака;
особь женского пола– особь женского пола, не имеющая изучаемого признака;
особь мужского пола– особь мужского пола, имеющая изучаемый признак;
особь женского пола– особь женского пола, имеющая изучаемый признак;
брак мужчины и женщины– брак мужчины и женщины;
близкородственный брак– близкородственный брак;
сибсы– дети одной родительской пары (сибсы);
бездетный брак– бездетный брак;
пробанд– пробанд.


Задача 4
Составить родословную, состоящую из пяти поколений по аутосомно-рецессивному типу наследования.
Решение:
Аутосомно-рецессивное наследование:
1. признак встречается относительно редко, не в каждом поколении;
2. если признак имеется у обоих родителей, то этот признак имеют все их дети;
3. признак встречается и у детей, родители которых не имеют изучаемого признака;
4. мужчины и женщины с изучаемым признаком встречаются с приблизительно одинаковой частотой.

родословная по аутосомно-рецессивному типу наследования признака

Рис. 4. Графическое изображение родословной по аутосомно-рецессивному типу наследованию признака, состоящей из пяти поколений.

Признак встречается у детей, родители которых не имеют данный признак. Признак встречается относительно редко не в каждом поколении. Мужчины и женщины имеют этот признак в равной степени, что указывает на то, что ген этого признака локализован в аутосоме и передаётся по аутосомно-рецессивному типу.
Символы, используемые при составлении графического изображения родословной:
особь мужского пола– особь мужского пола, не имеющая изучаемого признака;
особь женского пола– особь женского пола, не имеющая изучаемого признака;
особь мужского пола– особь мужского пола, имеющая изучаемый признак;
особь женского пола– особь женского пола, имеющая изучаемый признак;
брак мужчины и женщины– брак мужчины и женщины;
близкородственный брак– близкородственный брак;
сибсы– дети одной родительской пары (сибсы);
бездетный брак– бездетный брак;
пробанд– пробанд.


Задача 5
Определить тип наследования признака. Установить возможные генотипы всех членов родословной.

родословная по рецессивному сцепленному с Х-хромосомой типу наследования признака

Рис. 5. Графическое изображение родословной по рецессивному сцепленному с Х-хромосомой типу наследования признака.

Решение:
Признак встречается относительно редко. Признак проявляется у детей, родители которых не имеют этого признака. Изучаемый признак, встречаются у представителей мужского пола примерно в равной степени и очень редко у представителей женского пола (в родословной 5 мужчин и 1 женщина), поэтому можно думать, что изучаемый признак рецессивный и сцеплен с полом: обусловливающий его ген расположен в половой Х- хромосоме. Тип наследования: рецессивное сцепленное с Х-хромосомой наследование.
Возможные генотипы всех членов родословной:
Наличие признака – Хa;
Отсутствие признака – ХA;
Генотип представителей мужского пола с данным признаком – ХaY. Генотип мужчин с отсутствием данного признака – ХAY. Генотип больной женщины – ХаХа. Генотип женщины с наличием данного признака – ХaХa. Возможные генотипы женщин, у которых отсутствует признак – ХAХA или ХAХa. Генотипы основателей рода:
женский организмХAХa; мужской организмХAY.
Генотип пробанда – ХAY.


Задача 6
Составить родословную, состоящую из пяти поколений по доминантному, сцепленному с Х-хромосомой типу наследования.
Решение:
Доминантное сцепленное с Х-хромосомой наследование:

доминантное сцепленное с Х-хромосомой наследование

Рис. 6. Графическое изображение родословной по доминантному признаку, сцеплённому с Х-хромосой.

Признак встречается в каждом поколении. Признак встречается у детей, у которых хотя бы один из родителей имеет данный признак. Признак встречается и у мужчин и у женщин, но у женщин приблизительно в два раза больше, чем у мужчин. Если изучаемый признак имеет мужчина, то все его дочери будут иметь этот признак, а у всех его сыновей этот признак будет отсутствовать.
Символы, используемые при составлении графического изображения родословной:
особь мужского пола– особь мужского пола, не имеющая изучаемого признака;
особь женского пола– особь женского пола, не имеющая изучаемого признака;
особь мужского пола– особь мужского пола, имеющая изучаемый признак;
особь женского пола– особь женского пола, имеющая изучаемый признак;
брак мужчины и женщины– брак мужчины и женщины;
близкородственный брак– близкородственный брак;
сибсы– дети одной родительской пары (сибсы);
бездетный брак– бездетный брак;
пробанд– пробанд.


Задача 7
Определить тип наследования признака. Установить возможные генотипы всех членов родословной.

родословная по аутосомно-рецессивному типу наследования признака

Решение:
Определение типа наследования признака:
Люди с изучаемым признаком встречаются в родословной редко, не в каждом поколении, признак встречается у человека, родители которого не имеют изучаемого признака, значит,данный признак рецессивный. При близкородственном скрещивании наблюдается рождение большого количества детей с данным признаком. Признак встречается приблизительно одинаково редко у мужчин и у женщин (у женщин – 3, у мужчин – 2), то можно предположить, что изучаемый признак является аутосомным, т. е. обусловливающий его ген расположен в аутосоме.
Таким образом, по основным особенностям наследование изучаемого признака в этой родословной можно отнести к аутосомно-рецессивному типу. Кроме того, эта родословная не обладает набором особенностей, характерных для других типов наследования.
Возможные генотипы всех членов родословной:
А – аллель доминантного гена;
а – аллель рецессивного гена.
Генотипы особей, имеющих данный признак: (аа).
Генотипы основателей рода (особь №1 и особь №2) –Аа.
Генотипы остальных особей можно представить так: (А_).


 Задача 8
Составить родословную, состоящую из пяти поколений по рецессивному, сцепленному с Х-хромосомой типу наследования.
Решение:
Рецессивное сцепленное с Х-хромосомой наследование:
1) признак встречается относительно редко, не в каждом поколении;
2) признак встречается преимущественно у мужчин, причем у их отцов признак, обычно отсутствует, но имеется у дедов (прадедов) по материнской линии;
3) у женщин признак встречается только тогда, когда он имеется и у их отца.

родословная по рецессивному сцепленному с Х-хромосомой типу наследования признака

Рис. 8. Графическое изображение родословной с рецессивным сцепленным с Х-хромосомой типом наследования признака.

Символы, используемые при составлении графического изображения родословной:
особь мужского пола– особь мужского пола, не имеющая изучаемого признака;
особь женского пола– особь женского пола, не имеющая изучаемого признака;
особь мужского пола– особь мужского пола, имеющая изучаемый признак;
особь женского пола– особь женского пола, имеющая изучаемый признак;
брак мужчины и женщины– брак мужчины и женщины;
близкородственный брак– близкородственный брак;
сибсы– дети одной родительской пары (сибсы);
бездетный брак– бездетный брак;
пробанд– пробанд.


Задача 9
Определить тип наследования признака. Установить возможные генотипы всех членов родословной.

родословная с аутосомно-рецессивным типом ядерного наследования признака

Рис. 9. Графическое изображение родословной с аутосомно-рецессивным типом ядерного наследования признака.

Решение:
Определение типа наследования признака:
Признак встречается относительно редко, не в каждом поколении; признак встречается и у детей, родители которых не имеют изучаемого признака; мужчины и женщины с изучаемым признаком встречаются с приблизительно одинаковой частотой (2 женщины и 3 мужчины). Если люди с изучаемым признаком встречаются в родословной редко, не в каждом поколении, и если признак встречается у человека, родители которого не имеют изучаемого признака, то можно думать, что изучаемый признак является рецессивным. Если особи разного пола, имеющие изучаемый признак, встречаются приблизительно с одинаковой частотой, например, одинаково часто или одинаково редко, то можно думать, что изучаемый признак является аутосомным, то есть обусловливающий его ген расположен в аутосоме.
Таким образом, можно предположить, что данное графическое изображение родословной принадлежит к аутосомно-рецессивному типу ядерного наследования признака.
Возможные генотипы всех членов родословной:
А – аллель доминантного гена;
а – аллель рецессивного гена.
Генотипа особей, имеющих данный признак – (аа).
Генотипы основателей рода – особь №1(аа) и особь №2 (АА).
Генотипы особей – особи №3, №4, №6 (АА).
Генотип особи №5 – (Аа).
Генотипы остальных особей можно представить так – (А_).


Задача 10
Определите тип наследования, генотип пробанда в следующей родословной:

сцепленное с Y-хромосомой, голандрическое наследование признака

Решение:
Изучаемый признак встречается только у особей мужского пола в каждом поколении и передаётся от отца к сыну (если отец болен, то все сыновья тоже страдают данным заболеванием), то можно думать, что изучаемый ген находится в У-хромосоме. У женщин данный признак отсутствует, так как по родословной видно, что признак по женской линии не передаётся. Поэтому тип наследования признака: сцепленное с Y-хромосомой, или голандрическое наследование признака. Сцепленное с Y-хромосомой, или голандрическое наследование, характеризуется следующими признаками:
1. признак встречается часто, в каждом поколении;
2. признак встречается только у мужчин;
3. признак передается по мужской линии: от отца к сыну и т.д.
Возможные генотипы всех членов родословной:
Ya – наличие данной аномалии;
YB – нормальное развитие организма (отсутствие данной аномалии).
Все мужчины, страдающие данной аномалией (и пробанд тоже), имеют генотип: XYa;
Все мужчины, у которых отсутствует данная аномалия, имеют генотип: XYB.


Ответ:
Сцепленное с Y-хромосомой, или голандрическое наследование.
Генотип прбанда: XYa .


Задача 11
Определите тип наследования, генотип пробанда в следующей родословной:

аутосомно-рецессивный тип наследования признака

Решение:
Люди с изучаемым признаком встречаются в родословной редко, не в каждом поколении (только в четвёртом поколении), признак встречается у человека, родители которого не имеют изучаемого признака, то можно думать, что изучаемый признак является рецессивным. В родословной 1 женщина и 1 мужчина имеют изучаемый признак. Можно считать, что изучаемый признак с приблизительно равной частотой встречается и среди мужчин, и среди женщин. Это характерно для признаков, гены которых расположены не в половых хромосомах, а в аутосомах. Поэтому можно сделать второй предварительный вывод: изучаемый признак является аутосомным. А – доминантный ген (организм здоров); а – рецессивный ген (организм болен). Генотип пробанда (женский организм) будет иметь вид: «аа». Все организмы, страдающие данной аномалией, имеют генотип «аа», все организмы, у которых отсутствует аномальный признак, имеют генотип «А_».


Ответ:
Аутосомно-рецессивный тип наследования признака.
Генотип пробанда: аа.


  Задача 12
Определите тип наследования, генотип пробанда в следующей родословной:

родословная по аутосомно-доминантному типу наследованию признака

Решение:
Люди с изучаемым признаком встречаются часто, в каждом поколении; чело-век, имеющий изучаемый признак, рождается в семье, где обязательно хотя бы один из родителей имеет изучаемый признак. Поэтому можно сделать первый предварительный вывод: изучаемый признак является доминантным.
В родословной 5 женщин и 5 мужчин имеют изучаемый признак. Можно считать, что изучаемый признак с приблизительно равной частотой встречается и среди мужчин, и среди женщин. Это характерно для признаков, гены которых расположены не в половых хромосомах, а в аутосомах. Поэтому можно сделать второй предварительный вывод: изучаемый признак является аутосомным.
Таким образом, по основным особенностям наследование изучаемого признака в этой родословной можно отнести к аутосомно-доминантному типу. Кроме того, эта родословная не обладает набором особенностей, характерных для других типов наследования.
Определение генотипа пробанда:
А – доминантный ген (аномалия организма);
а – рецессивный ген (нормальное развитие организма).
Для изучаемого признака характерен аутосомно-доминантный тип наследования. Мальчик имеет изучаемый признак, признак имеется у сестры и у матери, а отсутствует у отца и у второй сестры, значит, мальчик гетерозиготен по данному признаку, ген «А» он получил от отца, а ген «а» – от матери. Генотип пробанда: «Аа».


Ответ:
Аутосомно-доминантный тип наследования признака.
Генотип пробандпробанда: Aа.



Управление образования
администрации города Шахтёрска

Методический кабинет

Муниципальное
общеобразовательное учреждение

«Шахтёрская гимназия»

УЧЕБНОЕ ПОСОБИЕ

«ТЕХНОЛОГИЯ РЕШЕНИЯ
ГЕНЕТИЧЕСКИХ ЗАДАЧ»

Кобелева
Елена Владимировна,

учитель  
биологии                                             Муниципального
общеобразовательного учреждения  «Шахтёрская  
гимназия»                                                      

Шахтёрск – 2018

Автор-составитель Кобелева Е.В., учитель
биологии Муниципального общеобразовательного учреждения «Шахтёрская гимназия»,
специалист высшей квалификационной категории.

Рецензенты:

1.           
Гагулина В.В., методист методического кабинета Управления
образования города Шахтёрска

2.           
Ямковая О.Б, МОУ заместитель директора по УВР         «СШ №1»,
учитель биологии специалист высшей квалификационной категории.

3.           
Фуникова О.А., учитель биологии УВК№1, специалист

Методическое пособие представляет собой 
сборник   школьного курса биологии 11класса, тематически соответствует
программе обучения и  учебнику.

В пособии представлены  алгоритмы
решения задач по изучаемым темам раздела «Генетика»,   краткий теоретический
материал, необходимый для решения задач  в виде карты-памяти, образец решения
задачи по предложенному алгоритму и задачи для самостоятельного решения.

Работа со сборником позволит
учащимся усвоить основные понятия, термины и законы генетики, разобраться в
генетической символике, применять теоретические знания на практике, объяснять
жизненные ситуации с точки зрения генетики, подготовиться к сдаче ГИА.

Содержание

Введение

Основные
термины и понятия генетики

Глава
1. Общие рекомендации по решению генетических задач

1.1.         
Техника решения задач

1.2.         
Оформление задач по генетике

1.3.         
Законы Менделя

1.4.         
Закон Моргана

1.5.         
Правила при решении задач по
генетике

1.6.         
Список доминантных и рецессивных
признаков человека

Глава 2. Алгоритм решения
задач

2.1.    Решение прямых задач

2.2.    Алгоритм решения обратных задач

2.3.    Алгоритм решения задач «Моногибридное скрещивание»

2.4.    Алгоритм решения задач «Дигибридное скрещивание»

2.5. Алгоритм решения задач «Анализирующее скрещивание»

2.6. Алгоритм решения задач «Сцепленное наследование»

2.7. Алгоритм решения задач «Генетика пола»

2.8. Алгоритм решения задач «Наследование признаков, сцепленных с
полом»

Глава 3. Примеры решения задач по генетике

Заключение

Литература

Введение

Разделы «Основы генетики» и
«Молекулярная биология» являются одними из самых сложных для понимания в
школьном курсе общей биологии. Облегчению усвоения этих разделов может
способствовать решение задач по генетике разных уровней сложности.

Решение задач, как
учебно-методический прием изучения генетики, имеет важное значение. Его
применение способствует качественному усвоению знаний, получаемых теоретически,
повышая их образность, развивает умение рассуждать и обосновывать выводы,
существенно расширяет кругозор изучающего генетику, т.к. задачи, как правило,
построены на основании документальных данных, привлеченных из области частной
генетики растений, животных, человека. Использование таких задач развивает у
школьников логическое мышление и позволяет им глубже понять учебный материал, а
преподаватель имеет возможность осуществлять эффективный контроль уровня
усвоенных учащимися знаний. Несмотря на это школьные учебники содержат минимум
информации о закономерностях наследования, а составлению схем скрещивания и
решению генетических задач в школьной программе по общей биологии отводится
очень мало времени. Поэтому возникла необходимость в создании данного сборника. Учебное пособие составлено согласно обновленным ГОС, программе основного
общего и среднего общего образования по биологии

Метопредметные связи, реализуемые
при составлении данного сборника:

·       
Математика –
умение производить простейшие вычисления, анализировать и прогнозировать
результаты.

·       
История –
знание родословных основных персон мира для составления генеалогических древ
при выполнении различных творческих работ.

·       
Биология –
основы цитологии, молекулярной биологии, строения клетки.

·       
Органическая
химия – строение углеводов, белков, аминокислот, нуклеиновых кислот.

Цель: развитие у учащихся умения и навыков
решения задач по основным разделам классической генетики.

Задачи:

1.                
Развивать
познавательный интерес к предмету;

2.                
Показать
практическую значимость общей биологии для различных отраслей производства,
селекции, медицины;

3.                
Создать
условия для формирования и развития у учащихся УУД, интеллектуальных и
практических умений в области генетики.

4.                
Ликвидировать 
пробелы в знаниях учащихся;

Результат работы со сборником

Учащиеся  знают:

·       
основные
понятия, термины и законы генетики;

·       
генетическую
символику.

Учащиеся умеют:

·       
правильно
оформлять условия, решения и ответы генетических задач;

·       
решать
типичные задачи;

·       
логически
рассуждать и обосновывать выводы.

Учащиеся  умеют характеризовать:

·       
причины
биологической индивидуальности на разных уровнях;

·       
модификационную,
мутационную и комбинативную изменчивость, ее причины;

·       
норму реакции;

·       
значение
генотипа и условий среды в формировании фенотипа;

·       
значение
мутаций в эволюции, генетике, здравоохранении и экологической безопасности
населения.

Учащиеся  умеют  характеризовать
основные положения:

·       
мутационной
теории;

·       
закона
гомологических рядов наследственной изменчивости;

·       
закономерностей
модификационной изменчивости;

·       
Закона Харди –
Вайнберга;

·       
Вклад Н.И.
Вавилова, И.А. Рапопорта, В.В. Сахарова, А.С. Серебровского, С.С.
Четверикова, Н.П. Дубинина в развитие науки генетики, синтетической теории
эволюции, селекции.

Описание: 669Основные термины и
понятия генетики.

Ген (с современных позиций) – это участок
молекулы ДНК, содержащий информацию о  первичной структуре одного белка. Гены
находятся в хромосомах, где они расположены линейно, образуя «группы
сцепления».

Аллельные
гены
– это пара генов, определяющих контрастные (альтернативные)
признаки организма. Каждый ген этой пары называется аллелью. Аллельные гены
расположены в одних и тех же участках локусах гомологичных  (парных) хромосом.

Альтернативные
признаки
– это взаимоисключающие, контрастные признаки
(например, жёлтые и зелёные семена гороха). Часто один из альтернативных
признаков является доминантным, а другой – рецессивным.

Доминантный признак – это признак, проявляющийся у гибридов первого
поколения при скрещивании представителей чистых линий. Например, у гороха
доминантными признаками являются жёлтая окраска семян, гладкая поверхность
семян, пурпурная окраска цветков

Рецессивный признак не проявляется у гибридов первого поколения при
скрещивании представителей чистых линий.

Гомозигота
– клетка или организм, содержащие одинаковые аллели одного и того же гена (АА
или аа).

Гетерозигота
– клетка или организм, содержащие разные аллели одного и того же
гена (Аа).

Генотип
совокупность всех генов организма.

Фенотип
совокупность признаков организма, формирующихся при взаимодействии
генотипа с окружающей средой.

Гибридологический метод – изучение признаков родительских форм, проявляющихся в
ряду поколений у потомства, полученного путём гибридизации (скрещивания).

Моногибридное скрещивание – это скрещивание форм, отличающихся друг от друга по
одной паре изучаемых контрастных (альтернативных) признаков, которые передаются
по наследству.

Дигибридное скрещивание – это скрещивание форм, отличающихся друг от друга по
двум парам изучаемых альтернативных признаков.

Полигибридное скрещивание – это сложное скрещивание, при котором родительские
организмы отличаются по трём, четырём, и более парам контрастных
(альтернативных) признаков.

https://www.oncotrust.ru/news-images/Genler-icin-de-Egitim-Sart-Kanserde-Epigenetik-Tedaviler-620x420-245760.jpgРаздел 1 . Общие рекомендации по решению генетических
задач
.

1.1.         
Техника решения задач

Алгоритм

Символика

1. Краткая запись условий задачи. Введение
буквенных обозначений генов, обычно А и В. Определение типа наследования
(доминантность, рецессивность), если это не указано.

2. Запись фенотипов и схемы скрещивания
словами.

3.Определение фенотипов в соответствии с
условиями. Запись генотипов символам генов под фенотипами.

4. Определение гамет. Выяснение их числа и
находящихся в них генов на основе установленных генотипов.

5. Составление решетки Пеннета.

6. Анализ решетки согласно поставленным
вопросам.

7. Краткая запись ответов

1. Р – перента – родители.
Родительские организмы, взятые для скрещивания, отличающиеся наследственными
задатками.

2.F – филис – дети.
Гибридное потомство.

3. F1 –гибриды I
поколения, F2 – гибриды
II поколения.

4. G
гаметы А а ….

5. А, В – доминантные гены,
отвечающие за доминантные признаки (например, желтую окраску и гладкую
поверхность семян гороха).

6. а, в – рецессивные  гены,
отвечающие за развитие рецессивных признаков (например, зелёной окраски семян
гороха и морщинистой поверхности семян гороха).

7. А, а – аллельные гены,
определяющие конкретный признак.

8. АА, ВВ – доминантные
гомозиготы, аа, вв – рецессивные гомозиготы.

9. Х – знак скрещивания.

10. ♀ – символ, обозначающий
женский пол особи (символ Венеры – зеркальце с ручкой).

11.♂ – символ, обозначающий мужской пол особи (символ Марса –
копьё и щит).

1.2.         
Оформление задач по генетике.

2.                  
Первым  принято записывать генотип женской особи, а затем –
мужской (верная запись – ♀ААВВ  х  ♂аавв;  неверная
запись – ♂аавв  х  ♀ААВВ).

3.                  
Гены одной аллельной пары всегда пишутся рядом (верная запись
– ♀ААВВ; неверная запись ♀АВАВ).

4.                  
При записи генотипа, буквы, обозначающие признаки, всегда пишутся
в алфавитном порядке, независимо, от того, какой признак – доминантный или
рецессивный – они обозначают (верная запись – ♀ааВВ; неверная запись
-♀ ВВаа).

5.                  
Если известен только фенотип особи, то при записи её генотипа
пишут лишь те гены, наличие которых бесспорно.  Ген, который невозможно
определить по фенотипу, обозначают значком «_» (например, если жёлтая окраска
(А) и гладкая форма  (В) семян гороха –  доминантные признаки, а
зелёная окраска (а) и морщинистая форма (в) – рецессивные, то генотип особи с
жёлтыми морщинистыми семенами записывают А_вв).

6.                  
Под генотипом всегда пишут фенотип.

7.                  
У особей определяют и записывают типы гамет, а не их количество:

               верная запись      
                     
                     
   неверная запись

                     ♀
АА             
                                                        ♀ АА

                        
 А          
                                                              А
     А

8.                  
Фенотипы и типы  гамет пишутся строго под соответствующим
   генотипом.

9.                  
Записывается ход решения задачи с обоснованием каждого вывода
 и полученных результатов.

10.              
При решении задач на ди- и полигибридное скрещивание для
определения генотипов потомства рекомендуется пользоваться решёткой Пеннета. По
вертикали записываются типы гаметы от материнской особи, а по горизонтали –
отцовской. На пересечении записываются сочетание гамет, соответствующие
генотипу образующейся  дочерней особ
и.

1.3.         
Законы Г.
Менделя

Первый закон Менделя — закон
единообразия гибридов F1

Этот закон выведен
на основании результатов моногибридного скрещивания. Для опытов было взято
два сорта гороха, отличающихся друг от друга одной парой признаков —
цветом семян: один сорт имел желтую окраску, второй — зеленую.
Скрещивающиеся растения были гомозиготными.

Для записи результатов скрещивания
Менделем была предложена следующая схема:

А —желтая окраска семян
а — зеленая окраска семян

Р (родители)

АА

аа

Г (гаметы)

А

а

F1 (первое поколение)

Аа
(все растения имели желтые семена)

Формулировка закона: при скрещивании организмов,
различающихся по одной паре альтернативных признаков, первое поколение единообразно
по фенотипу и генотипу
.

Второй закон Менделя — закон
расщепления

Из семян, полученных при
скрещивании гомозиготного растения с желтой окраской семян
с растением с зеленой окраской семян, были выращены растения,
и путем самоопыления было получено F2.

Р (F1)

Aa

Aa

Г

А; a

А; a

F2

АА; Аа; Аа; аа 
(75% растений
имеют доминантный признак,25% — рецессивный)

Формулировка закона: у потомства, полученного
от скрещивания гибридов первого поколения, наблюдается расщепление
по фенотипу в соотношении
 3:1, а по генотипу — 1:2:1.

Третий закон Менделя — закон
независимого наследования

Этот закон был выведен
на основании данных, полученных при дигибридном скрещивании. Мендель
рассматривал наследование двух пар признаков у гороха: окраски
и формы семян.

В качестве родительских форм
Мендель использовал гомозиготные по обоим парам признаков растения: один
сорт имел желтые семена с гладкой кожицей, другой — зеленые
и морщинистые.

А — желтая окраска семян, а — зеленая окраска семян,
В — гладкая форма, в — морщинистая форма.

Р

ААВВ

аавв

Г

АВ

ав

F1

АаВв
100% (желтые
гладкие).

Затем Мендель из семян F1 вырастил растения и путем
самоопыления получил гибриды второго поколения.

Р

АаВв

АаВв

Г

АВ, Ав, аВ, ав

АВ, Ав, аВ, ав

F2

Для записи и определения генотипов используется решетка
Пеннета

Гаметы

АВ

Ав

аВ

ав

АВ

ААВВ

ААВв

АаВВ

АаВв

Ав

ААВв

Аавв

АаВв

Аавв

аВ

АаВВ

АаВв

ааВВ

ааВв

ав

АаВв

Аавв

ааВв

аавв

В F2 произошло расщепление на 4 фенотипических класса в соотношении 9:3:3:1. 9/16 всех семян имели оба доминантных
признака (желтые и гладкие), 3/16 — первый доминантный и второй рецессивный
(желтые и морщинистые), 3/16 — первый рецессивный и второй доминантный
(зеленые и гладкие), 1/16 — оба рецессивных признака (зеленые
и морщинистые).

При анализе наследования каждой
пары признаков получаются следующие результаты. В F2 12 частей
желтых семян и 4 части зеленых семян, т.е.
соотношение 3:1.
Точно такое же соотношение будет и по второй паре признаков
(форме семян).

Формулировка закона: при скрещивании организмов,
отличающихся друг от друга двумя и более парами альтернативных
признаков, гены и соответствующие им признаки наследуются независимо
друг от друга и комбинируются во всевозможных сочетаниях
.

Третий закон Менделя выполняется
только в том случае, если гены находятся в разных парах гомологичных
хромосом.

Закон (гипотеза) «чистоты» гамет

При анализе признаков гибридов
первого и второго поколений Мендель установил, что рецессивный ген
не исчезает и не смешивается с доминантным. В F2 проявляются оба гена, что возможно
только в том случае, если гибриды F1 образуют два типа гамет: одни несут доминантный
ген, другие — рецессивный. Это явление и получило название гипотезы
чистоты гамет: каждая гамета несет только один ген из каждой аллельной
пары. Гипотеза чистоты гамет была доказана после изучения процессов,
происходящих в мейозе.

Гипотеза «чистоты» гамет — это
цитологическая основа первого и второго законов Менделя.
С ее помощью можно объяснить расщепление по фенотипу
и генотипу.

Анализирующее скрещивание

Этот метод был предложен Менделем
для выяснения генотипов организмов с доминантным признаком, имеющих
одинаковый фенотип. Для этого их скрещивали с гомозиготными
рецессивными формами.

Если в результате скрещивания
все поколение оказывалось одинаковым и похожим на анализируемый
организм, то можно было сделать вывод: исходный организм является
гомозиготным по изучаемому признаку.

Если в результате скрещивания
в поколении наблюдалось расщепление в соотношении 1:1,
то исходный организм содержит гены в гетерозиготном состоянии.

Наследование групп крови (система АВ0)

Наследование групп крови
в этой системе является примером множественного аллелизма (это
существование у вида более двух аллелей одного гена). В человеческой
популяции имеется три гена (i0, IА, IВ),
кодирующие белки-антигены эритроцитов, которые определяют группы крови людей.
В генотипе каждого человека содержится только два гена, определяющих его
группу крови: первая группа i0i0; вторая IАi0 и IАIА;
третья IВIВ и IВi0 и четвертая IАIВ.

Наследование признаков, сцепленных
с полом

У большинства организмов пол
определяется во время оплодотворения и зависит от набора
хромосом. Такой способ называют хромосомным определением пола.
У организмов с таким типом определения пола есть аутосомы
и половые хромосомы — Y и Х.

У млекопитающих (в т.ч.
у человека) женский пол обладает набором половых хромосом ХХ, мужской
пол — ХY. Женский пол называют гомогаметным (образует один тип гамет);
а мужской — гетерогаметным (образует два типа гамет). У птиц
и бабочек гомогаметным полом являются самцы (ХХ), а гетерогаметным —
самки (ХY).

В  задания ГИА  включены
задачи только на признаки, сцепленные с Х-хромосомой. В основном
они касаются двух признаков человека: свертываемость крови (ХН —
норма; Xh — гемофилия), цветовое зрение (ХD —
норма, Xd — дальтонизм). Гораздо реже встречаются задачи
на наследование признаков, сцепленных с полом, у птиц.

У человека женский пол может быть
гомозиготным или гетерозиготным по отношению к этим генам. Рассмотрим
возможные генетические наборы у женщины на примере гемофилии (аналогичная
картина наблюдается при дальтонизме): ХНХН —
здорова; ХНXh — здорова, но является
носительницей; ХhХh — больна. Мужской пол
по этим генам является гомозиготным, т.к. Y-хромосома не имеет
аллелей этих генов: ХНY — здоров; XhY — болен.
Поэтому чаще всего этими заболеваниями страдают мужчины, а женщины
являются их носителями.

1.4.    
Закон Моргана

Число признаков организма многократно превышает число хромосом.
Следовательно, в одной хромосоме располагается множество генов. Наследование признаков,
гены которых находятся в одной паре гомологичных хромосом, называется сцепленным
наследованием
 (закон Моргана). Гены,
расположенные в одной хромосоме, образуют группу сцепления.
Число групп сцепления равно гаплоидному числу хромосом.

1.5.    
Правила при решении задач по генетике.

  Правило первое. Если при
скрещивании двух фенотипически одинаковых особей в их потомстве наблюдается
расщепление признаков, то эти особи гетерозиготны.

  Правило второе.
Если в результате скрещивания особей, отличающихся фенотипически по одной паре
признаков, получается потомство, у которого наблюдается расщепление по этой же
паре признаков, то одна из родительских особей гетерозиготна, а другая –
гомозиготна по рецессивному признаку.

 Правило третье. Если при скрещивании
фенотипически одинаковых особей (по одной паре признаков) в первом поколении
гибридов происходит расщепление признаков на три фенотипические группы в
отношениях 1:2:1 , то это свидетельствует о неполном доминировании и о том, что
родительские особи гетерозиготны.

  Правило четвертое.
Если при скрещивании двух фенотипически одинаковых особей в потомстве
происходит расщепление признаков в соотношении 9:3:3:1, то исходные особи были
дигетерозиготны.

  Правило пятое.
Если при скрещивании двух фенотипически одинаковых особей в потомстве
происходит расщепление признаков в соотношении 9:3:4  9:6:1 , 9:7 , 12:3:1, то
это свидетельствует о взаимодействии генов, а расщепление в отношениях 12:3:1,
13:3 и 15:1 – об эпистатическом взаимодействии генов.

1.6.         
Список доминантных и рецессивных признаков человека

в этом списке приведены основные признаки человека и их доминантность/рецессивность.

Доминантный

Рецессивный

Кожа

Нормальная
пигментация кожи, глаз, волос

Альбинизм

Смуглая
кожа

Светлая
кожа

Нормальный
цвет кожи

Пегая
пятнистость (белопегость)

Пигментированное пятно в области крестца

Отсутствует

Кожа
толстая

Кожа
тонкая

Зрение

Близорукость

Нормальное зрение

Дальнозоркость

нормальное зрение

Нормальное зрение

Ночная слепота

Цветовое зрение

Дальтонизм

Отсутствие катаракты

Катаракта

Отсутствие косоглазия

Косоглазие

Рост

Низкий
рост (ниже 165 см)

Нормальный
рост

Руки

Нормальное
число пальцев

Полидактилия
(добавочные пальцы)

Нормальная
длина пальцев

Брахидактилия (короткие пальцы)

Праворукость

Леворукость

Нормальное
строение пальца

Большой
палец руки толстый и короткий (расплющенный)

Ногти
тонкие и плоские

Нормальные

Ногти
очень твердые

Нормальные

Узоры
на коже пальцев эллиптические

Узоры
на коже пальцев циркулярные

Ноги

Норма

Предрасположенность
к варикозному расширению вен

Второй
палец ноги длиннее большого

Второй
палец ноги короче

Повышенная
подвижность большого пальца

Норма

Слух

Нормальный
слух

Врожденная
глухота

Процессы в организме

Нормальное
усвоение глюкозы

Сахарный диабет

Нормальная
свёртываемость крови

Гемофилия

Черты лица

Веснушки

Отсутствие
веснушек

Круглая
форма лица (R–)

Квадратная
форма лица (rr)

Круглый
подбородок (K–)

Квадратный
подбородок (kk)

Ямочка
на подбородке (А–)

Отсутствие
ямочки (аа)

Ямочки на щеках (D–)

Отсутствие
ямочек (dd)

Густые
брови (B–)

Тонкие
брови (bb)

Брови
не соединяются (N–)

Брови
соединяются (nn)

Длинные
ресницы (L–)

Короткие
ресницы (ll)

Волосы

Тёмные

Светлые

Не
рыжие

Рыжие

Кучерявые

Волнистые

Волнистые
(???)

Прямые

Облысение
(у мужчин)

Норма

Норма

Облысение
(у женщин)

Норма

Белая
прядь

Преждевременное
поседение

Норма

Обильная
волосатость тела

Мало
волос на теле

Норма

Широкие
пушистые брови

Нос

Круглый
нос (G–)

Заострённый
нос (gg)

Круглые
ноздри (Q–)

Узкие
ноздри (qq)

Высокая
и узкая переносица

Низкая
и широкая переносица

Нос
с горбинкой

Прямая
или согнутая переносица

Кончик
носа направлен прямо

Курносый
нос

Рот

Способность
загибать язык назад

Нет

Способность
свертывать язык трубочкой

Нет

Отсутствие
зубов при рождении

Зубы при рождении

Выступающие
вперед зубы и челюсти

Зубы и челюсти не выступают

Щель
между резцами

Отсутствует

Предрасположенность
к кариесу зубов

Норма

Полные
губы

Тонкие губы

Норма

Габсбургская губа

Уши

Острая
верхушка уха (дарвиновский бугорок имеется)

Отсутствует

Свободная
мочка уха (S–)

Сросшаяся
мочка уха (ss)

Кровь

Группы крови А, В и O

Группа
крови AB

Наличие резус-фактора (Rh+)

Отсутствие
резус-фактора (Rh-)

Раздел  2. Алгоритм решения  задач.

2.1. Решение прямых задач

Под прямой задачей подразумевается такая,
в которой известны генотипы родителей, необходимо определить возможные генотипы
и фенотипы потомства в первом и втором поколениях.

Для решения задачи следует составить
схему, аналогичную той, что использовалась для записи результатов
моногибридного скрещивания.

Алгоритм действий

Пример решения задачи.

1. Чтение условия задачи.

1. Задача. При скрещивании двух сортов томатов с гладкой и
опушенной кожицей в первом поколении все плоды оказались с гладкой кожицей.
Определите генотипы исходных родительских форм и гибридов первого поколения.
Какова вероятность получения в  потомстве плодов с гладкой кожицей? Плодов с
опушенной кожицей?

2. Введение буквенного обозначения доминантного и рецессивного
признаков.

2. Решение. Если в результате скрещивания все потомство имело
гладкую кожицу, то этот признак  – доминантный (А), а опушенная кожица –
рецессивный признак (а).

3. Составление схемы 1-го скрещивания, запись фенотипов, а затем
генотипов родительских особей.

3. Так как скрещивались чистые линии томатов, родительские особи
были гомозиготными.

Р   фенотип        ♀ гладкая                х             
♂опушенная 

                               
кожица                                кожица

Р    генотип             ♂  АА                  х             ♀
аа

4. Запись типов гамет, которые могут образовываться во время
мейоза.

4.                                    
↓                                       ↓

G                                    
А                                       а

(Гомозиготные особи дают только один тип гамет.)

5. Определение генотипов и фенотипов потомков, образующихся в
результате оплодотворения.

5.

F генотип                                         
Аа

      фенотип                                 гладкая кожица 

6. Составляем схему второго скрещивания.

6.

Р  фенотип                ♀гладкая            х             
♂гладкая

                                   
кожица                              кожица    

Р  генотип                      ♂Аа               
х                ♀Аа 

7. Определяем гаметы, которые дает каждая особь.

7.                                   ↓        
↓                             ↓         ↓

G                                   А        
а                            А         а

(Гетерозиготные особи дают два типа гамет).

8. Составляем решетку Пеннета и определяем генотипы и фенотипы
потомков.

8.              

F2                                            Генотип

                            Аа     
Аа      Аа       аа

                        гл.       гл.      гл.      опуш.

9. Отвечаем на вопросы задачи полными предложениями, записывая
все вычисления.

Вероятность появления в F2 плодов с гладкой кожицей:

4  –  100%

3  –   х                х = (3х100):4 =75%

Вероятность появления в F2 плодов с опушенной кожицей:

100%-75% =25%.

10. Записываем ответ по образцу:

Ответ: АА, аа, Аа /
75%, 25%.

2.2.  Алгоритм решения обратных задач.

Под обратной задачей имеется в виду такая задача, в которой даны
результаты скрещивания, фенотипы родителей и полученного потомства; необходимо определить
генотипы родителей и потомства.

1. Читаем условие задачи.

1. Задача. При скрещивании двух дрозофил с нормальными крыльями
у 32 потомков были укороченные крылья, а у 88 потомков – нормальные крылья.
Определите доминантный и рецессивный признаки. Каковы генотипы родителей и
потомства?

2. По результатам скрещивания F1 или F2 определяем доминантный и рецессивный признаки и вводим
обозначение.

2. Решение. Скрещивались мухи с нормальными крыльями, а в
потомстве оказались мухи с редуцированными крыльями. Следовательно,
нормальные крылья – доминантный признак (А), а редуцированные крылья –
рецессивный признак (а).

3. Составляем схему скрещивания и записываем генотип особи с
рецессивными признаком или особи с известным по условию задачи генотипом.

3.

Р   фенотип      ♀норм.                х                  ♂норм.

                            
крылья                                    крылья

Р    генотип           ♂А_                х                 ♀ А_

F фенотип        88 норм.
крылья           32 редуц. крылья

      генотип                 
А_                                       аа
                         

4. Определяем типы гамет, которые может образовать каждая
родительская особь.

4. Родительские особи обязательно образуют гаметы с доминантным
геном. Так как в потомстве появляются особи с рецессивным признаком, значит у
каждого из родителей есть один ген с рецессивным признаком. Отсюда:

Р   фенотип           норм. крылья        х   норм. крылья

Р   генотип                   Аа                  
х              Аа

                                 ↓          
↓                        ↓           ↓

G                              А         
а                        А           а
 

5. Определяем генотип и фенотип потомства, полученного в
результате оплодотворения, записываем схему.

5.

Fгенотип              
АА           Аа            Аа            аа       

    фенотип         88 (норм.       норм.       норм.      
редуц.)

6.Записываем ответ задачи.

Ответ: доминантный признак – нормальные крылья/ Аа и Аа/ АА,
2Аа, аа.

2.3.
Алгоритм решения задач  «Моногибридное
скрещивание».

·       
Определите доминантный и рецессивный признак по результатам
скрещивания первого поколения (F1) и второго (F2) (по условию задачи). Введите
буквенные обозначения: А – доминантный а – рецессивный.

·       
Запишите генотип особи с рецессивным признаком или особи с
известным по условию задачи генотипом и гаметы.

·       
Запишите генотип гибридов F1.

·       
Составьте схему второго скрещивания. Запишите гаметы гибридов F1 в
решетку Пеннета по горизонтали и по вертикали.

·       
Запишите генотипы потомства в клетках пересечения гамет.
Определите соотношения фенотипов в F1

 ТИП
СКРЕЩИВАНИЯ

СХЕМА СКРЕЩИВАНИЯ

ЗАКОН. АВТОР

  Моногибридное скрещивание по одной паре
признаков.

1. При полном доминировании проявляется только доминантный признак.

2. При неполном доминировании признак имеет среднее (промежуточное) значение
между доминантным и рецессивным

Скрещивание гибридов при полном доминировании.

 

при неполном доминировании.

I.
Закон единообразия первого
поколения.         (Г. Мендель).

При скрещивании двух особей с противоположными
признаками в первом поколении все гибриды одинаковы и похожи на одного из
родителей.

II. Закон расщепления. (Г.Мендель).
При скрещивании гибридов I поколения во втором
поколении наблюдается расщепление в соотношении 3:1 по фенотипу.

2.4.
Алгоритм решения задач  «Дигибридное
скрещивание».

·       
Определите доминантный и рецессивный признак по результатам
скрещивания первого поколения (F1) и второго (F2) (по условию задачи). Введите буквенные
обозначения: А – доминантный а – рецессивный.

·       
Запишите генотип особи с рецессивным признаком или особи с
известным по условию задачи генотипом и гаметы.

·       
Запишите генотип гибридов F1.

·       
Составьте схему второго скрещивания. Запишите гаметы гибридов F1 в
решетку Пеннета по горизонтали и по вертикали.

·       
Запишите генотипы потомства в клетках пересечения гамет.
Определите соотношения фенотипов в F1

Тип скрещивания

Схема скрещивания

Закон. автор

Скрещивание
гибридов

Закон единообразия I поколения соблюдается.

Дигибридное – это скрещивание по двум парам признаков

II. Закон независимого наследования признаков 

(Г. Мендель).

При скрещивании гибридов

I поколения по двум парам признаков
наследование по каждой паре признаков идет независимо друг от друга и
образуются четыре фенотипические группы с новыми сочетаниями.
Расщепление по фенотипу 9:3:3:1

2.5.
Алгоритм решения задач  «Анализирующее
скрещивание».

·       
Определите доминантный и рецессивный признак по результатам
скрещивания первого поколения (F1) и второго (F2) (по условию задачи). Введите
буквенные обозначения: А – доминантный а – рецессивный.

·       
Запишите генотип особи с рецессивным признаком или особи с
известным по условию задачи генотипом и гаметы.

·       
Запишите генотип гибридов F1.

·       
Составьте схему второго скрещивания. Запишите гаметы гибридов F1 в
решетку Пеннета по горизонтали и по вертикали.

·       
Запишите генотипы потомства в клетках пересечения гамет.
Определите соотношения фенотипов в F1.

Тип скрещивания

Схема скрещивания

Закон. автор

Анализирующее – это скрещивание особи с доминантным фенотипом
с
особью с
рециссивными признаками (гомозиготой)
для определения генотипа особи с доминантным
признаком

I
вариант

Если при скрещивании
особи с
доминантным
признаком с рецессивной гомозиготной особью полученное
потомство единообразно,
то анализируемая особь с доминантным признаком гомозиготна (АА).

II
вариант

Если при скрещивании
особи с доминантным признаком с рецессивной гомозиготой полученное потомство
дает
расщепление
1 : 1 , то анализируемая особь с доминантным признаком гетерозиготна (Аа).

2.6. Алгоритм решения задач  «Сцепленное наследование».

·       
Определите доминантный и рецессивный признак по результатам
скрещивания первого поколения (F1) и второго (F2) (по условию задачи). Введите
буквенные обозначения: А – доминантный а – рецессивный.

·       
Запишите генотип особи с рецессивным признаком или особи с
известным по условию задачи генотипом и гаметы.

·       
Запишите генотип гибридов F1.

·       
Составьте схему второго скрещивания. Запишите гаметы гибридов F1 в
решетку Пеннета по горизонтали и по вертикали.

·       
Запишите генотипы потомства в клетках пересечения гамет.
Определите соотношения фенотипов в F1.

Тип скрещивания

Схема скрещивания

Закон. автор

Сцепленное наследование – это наследование признаков, расположенных в одной
хромосоме

Без
кроссинговера

При кроссинговере

Закон сцепленного наследования генов, находящихся в одной хромосоме (Т. Морган).

Гены,
находящиеся в одной хромосоме, наследуются совместно, сцеплено
.

Сцепление
генов может нарушаться в результате кроссинговера. Количество кроссверных
особей всегда значительно меньше, чем количество основных особей (Т. Морган).

1. Полное сцепление

Перед решением задач на сцепленное
наследование
 целесообразно сравнить результаты анализирующего
скрещивания при независимом и сцепленном
наследовании
:

Независимое
наследование

А – желтая окраска, а – зеленая окраска,
В – гладкие семена, b – морщинистые семена.

 Сцепленное
наследование
 (кроссинговер отсутствует)

А – серое тело, а – черное тело,
В – нормальные крылья, b – короткие крылья.

2. Определение типов гамет

Количество
гамет равно 2n, где n – не число гетерозиготных пар генов, а
количество пар разнородных хромосом, содержащих гетерозиготные гены. Например,
тригетерозигота АаВbСс будет давать
8 типов гамет, если гены расположены в разных парах хромосом (n = 3) и только 2
типа, если гены находятся в одной паре (n = 1).

 3. Неполное сцепление

При неполном
сцеплении гомологичные хромосомы могут обмениваться аллельными генами. Причиной
этого является кроссинговер, который, в свою очередь, является результатом
того, что при мейозе гомологичные хромосомы конъюгируют и могут обмениваться
участками.

В результате этого
при скрещивании дигетерозигот с генотипом ab-ab     
с гомозиготами по рецессиву, имеющими генотип ab-ab , в
потомстве, наряду с обычными, появляется некоторое количество особей,
образовавшихся в результате слияния кроссоверных гамет (рекомбинантов), имеющих
генотип ab-ab     
или ab-ab     .

4.Составление схем кроссинговера

При
составлении схем кроссинговера следует помнить, что основное количество гамет
будут составлять некроссоверные, а кроссоверные гаметы будут встречаться в
небольших количествах. Образование кроссоверных гамет можно легко определить,
воспользовавшись схемой:

 Напишите  возможные варианты
кроссинговера между генами в группе сцепления ABC-abc  .

 Решение

1) Одиночный кроссинговер между
генами А и В:

Схема кроссинговера-1

2) Одиночный кроссинговер между
генами В и С:

Схема кроссинговера-2

3) Двойной кроссинговер между генами А и С:

Схема кроссинговера-3

5.Определение типа наследования (сцепленное или независимое) и
расстояния между генами

Для
определения типа наследования необходимо выяснить
количество особей, получающихся при анализирующем скрещивании.

Соотношение
фенотипических классов в F1, близкое к 1:1:1:1, позволяет с большой
вероятностью предположить наличие независимого наследования,
а присутствие в потомстве двух фенотипов в пропорции, близкой к 1:1, указывает
на сцепленное наследование. Наличие небольшого количества
рекомбинантов является результатом кроссинговера.

Количество таких организмов
пропорционально вероятности кроссинговера между сцепленными генами и,
следовательно, расстоянию между ними в хромосоме. Это расстояние измеряется
в морганидах (М) и может быть определено по формуле:

где x –расстояние
между генами (в морганидах),
а и с –количество кроссоверных особей,
n – общее число особей.

Таким образом,
одна морганида равна 1% кроссинговера.

Если
число кроссоверных особей дано в процентах, то расстояние между
генами
 равно сумме процентного состава.

Определение числа кроссоверных гамет или
полученного соотношения особей в потомстве в зависимости от расстояния между
генами в хромосомах

Число кроссоверных гамет определяется
по формуле (3), выведенной из 
формулы (2) для определения расстояния между
генами в хромосоме
:

где а и с –
количество рекомбинантов каждого вида,
n – общее количество потомства,
x – расстояние между генами в морганидах.

Картирование хромосом

Для
составления карт хромосом рассчитывают
взаимное 
расстояние между отдельными парами генов и
затем определяют расположение этих генов относительно друг друга.

Так, например,
если три гена расположены в следующем порядке: А
В С
, то расстояние между генами А и С (процент рекомбинаций) будет равно сумме
расстояний (процентов рекомбинаций) между парами генов АВ и ВС.

Если
гены расположены в порядке: А С В,
то расстояние между генами А и С будет равно разности расстояний между парами
генов АВ и СВ.

ABC – 47,5%
abc – 47,5%
Abc – 1,7%
aBC – 1,7%
ABc – 0,8%
abC –          0,8%

Построить
карту этого участка хромосомы.

 Решение

1.                
Расщепление при анализирующем скрещивании, близкое к 1:1,
указывает на то, что все три пары генов находятся в одной хромосоме.

2.                
Расстояние между генами А и В равно:
1,7 + 1,7 = 3,4 М.

3.                
Расстояние между генами В и С равно:
0,8 + 0,8 = 1,6 М.

Ген В находится между
генами А и С. Расстояние между генами А и С равно:
1,7 + 1,7 + 0,8 + 0,8 = 5,0 М.

Задача 1

Гены АВ и С находятся
в одной группе сцепления. Между генами А и В кроссинговер
происходит с частотой 7,4%, а между генами В и С –
с частотой 2,9%. Определить взаиморасположение генов АВ и С,
если расстояние между генами А и С равняется
10,3% единиц кроссинговера. Как изменится взаиморасположение этих генов, если
частота кроссинговера между генами А и С будет
составлять 4,5%?

 Решение

1.                
По условию задачи расстояние от гена А до
гена С (10,3 М) равно сумме расстояний между генами А и В (2,9
М) и генами В и С(7,4 М), следовательно, ген В располагается
между генами А и С и расположение генов
следующее: А В С.

2.                
Если бы расстояние от гена А до гена С равнялось
разности расстояний между парами генов АВ и ВС (4,5 = 7,4 – 2,9),
то гены располагались бы в следующей последовательности: А С В.
И в этом случае расстояние между крайними генами было бы равно сумме расстояний
между промежуточными: АВ = АС + СВ.

Задача 2

При анализирующем скрещивании
тригетерозиготы АаВbСс были получены организмы,
соответствующие следующим типам гамет:

ABC – 47,5%
abc – 47,5%
Abc – 1,7%
aBC – 1,7%
ABc – 0,8%
abC –            0,8%

Построить карту этого участка хромосомы.

 Решение

1.                
Расщепление при анализирующем скрещивании, близкое к 1:1,
указывает на то, что все три пары генов находятся в одной хромосоме.

2.                
Расстояние между генами А и В равно:
1,7 + 1,7 = 3,4 М.

3.                
Расстояние между генами В и С равно:
0,8 + 0,8 = 1,6 М.

4.                
Ген В находится между генами А и С.
Расстояние между генами А и С равно:
1,7 + 1,7 + 0,8 + 0,8 = 5,0 М.

5.                
Карта участка хромосомы:

карта участка хромосомы

2.7.
Алгоритм решения задач  «Генетика пола».

·               
Определите доминантный и рецессивный признак по результатам
скрещивания первого поколения (F1) и второго (F2) (по условию задачи). Введите
буквенные обозначения: А – доминантный а – рецессивный.

·               
Запишите генотип особи с рецессивным признаком или особи с
известным по условию задачи генотипом и гаметы.

·               
Запишите генотип гибридов F1.

·               
Составьте схему второго скрещивания. Запишите гаметы гибридов F1 в
решетку Пеннета по горизонтали и по вертикали.

·               
Запишите генотипы потомства в клетках пересечения гамет.
Определите соотношения фенотипов в F1.

Тип скрещивания

Схема скрещивания

Закон. автор

Генетика пола

Пол определяется наличием пары половых
хромосом. Все остальные пары хромосом в кариотипе называются аутосомами.

I
вариант

Соотношение полов 1:1

Пол организма
определяется сочетанием половых хромосом.

Пол, содержащий одинаковые половые хромосомы
(XX), называется гомогаметным, а различные половые хромосомы (XY) –
гетерогаметным.

Гетерогаметные особи образуют два типа гамет.
У большинства организмов (млекопитающих, амфибий, рептилий, многих
беспозвоночных) женский пол гомогаметный, а мужской – гетерогаметный (I
вариант)

II
вариант
Соотношение полов 1:1

У птиц, некоторых рыб, бабочек гетерогаметны
самки, а гомогаметны самцы (II вариант)

III
вариант
Соотношение полов 1:1

У прямокрылых, пауков,
жуков самцы не имеют Y хромосому из пары. Тип ХО.

2.8. Алгоритм решения задач «Наследование
признаков, сцепленных с полом».

·               
Определите доминантный и рецессивный признак по результатам
скрещивания первого поколения (F1) и второго (F2) (по условию задачи). Введите
буквенные обозначения: А – доминантный а – рецессивный.

·               
Запишите генотип особи с рецессивным признаком или особи с
известным по условию задачи генотипом и гаметы.

·               
Запишите генотип гибридов F1.

·               
Составьте схему второго скрещивания. Запишите гаметы гибридов F1 в
решетку Пеннета по горизонтали и по вертикали.

·               
Запишите генотипы потомства в клетках пересечения гамет.
Определите соотношения фенотипов в F1.

Тип скрещивания

Схема скрещивания

Закон. автор

Наследование признаков, сцепленных с полом.

Признаки, гены которых локализованы в половых
хромосомах, называются сцепленными с полом

Если одна из X хромосом
содержит рецессивный ген, определяющий проявления аномального признака, то
носителем признака является женщина, а признак проявляется у мужчин.

Рецессивный признак от матерей передается
сыновьям и проявляется, а от отцов передается дочерям
.

Примером наследования признаков, сцепленных с
полом у человека, является гемофилия и дальтонизм.

Раздел 3. Примеры решения задач по генетике

1.    
У дрозофилы доминантный ген
красной окраски глаз (
W) и рецессивный ген белой окраски (w) находятся в Х –
хромосамах. Белоглазая самка скрещивалась с красноглазым самцом. Какой цвет
глаз будет у самцов и самок в первом и втором поколении?

               Р ♀ Хw Xw  × ♂  XWY
гаметы     
Xw              XW, Y
F
XW Xw
– красноглазая самка- 50%
XwY
белоглазый самец – 50%
            Р ♀ Х
W Xw  × ♂  XwY
гаметы     
Xw, XW        XW, Y
F
XW Xw
– красноглазая самка –  25%
 
XwXw
– белоглазая самка – 25%
XWY
– красноглазый самец – 25%
XwY
– белоглазый самец – 25%

 

Дано:
W – красный окрас глаз
w – белый окрас глаз
Х
W Х W – самки красной
Х
W Х w – самка крас.
Х
w Х w – самки белые глаза

Ответ: Среди потомства F1 50% будет красноглазых самок и 50% белоглазых самцов. Во втором
поколении 25% – красноглазая самка, 25% – белоглазая самка, 25% – красноглазый
самец, 25% – белоглазый самец.

2.    
У домашних кур сцепленный с
Х-хромосомой ген d имеет летальное действие. Какая часть потомства погибнет,
если скрестить курицу с гетерозиготным петухом?

Дано:

А   
ген, сцепленный с Х-хромосомой d имимеет летальное действие

        

F1 гибель-?

                   
Решение:

1) Р ♀ XA
x  ♂ XAXa 

          G   XA Y       
XA Xa 

        F1  XAXYXA  
XAXa   YXa 

  XAXA – норм.петух

   YXнорм.курица

   XAXa   норм. петух

   YXa гибель 

Ответ: 25% погибнет потомства

3.    
У человека рецессивный ген гемофилии (h) и рецессивный ген
дальтонизма (d) локализованы в X-хромосоме на расстоянии 9,8 морганид.
Известно, что женщина гетерозиготна по обоим признакам, аномальные гены
локализованы в разных X-хромосомах. Определите, какие дети у нее могут быть от
брака со здоровым мужчиной, и какова вероятность их рождения.

Дано:

Xh
гемофилия

XH
норма

Xd
дальтонизм

XD
норма

L(hd) = 9,8 мн = 9,8% кроссинговера

Решение

1) Проанализировав условие задачи, определим
генотипы родителей:

 P:                         
                
×            ♂

2) В результате кроссинговера с общей
вероятностью 9,8% у матери образуется два новых типа гамет – кроссоверные
гаметы. Вероятность появления каждого из типов кроссоверных гамет –
 = 4,9%. На долю
некроссоверных гамет остается 100 – 9,8 = 90,2%, на каждый тип некроссоверных
гамет по
 = 45,1%. Вероятность
проявления каждой из гамет отца – 50%.

G:

некроссоверные,

вероятность – 90,2%

 = 45,1%

 = 50%

 = 45,1%

Y = 50%

кроссоверные,

вероятность – 9,8%

 = 4,9%

 = 4,9%

3) Определим вероятность появления детей
с различными сочетаниями исследуемых признаков. Для этого по теореме
умножения вероятностей вычислим произведение вероятностей материнской и
отцовской гамет.

F1:  =  = 22,55% – здоровая девочка

       =  = 22,55%  – мальчик с
гемофилией

       =  = 22,55% – здоровая девочка

       =  = 22,55% –
мальчик-дальтоник

      =  = 2,45% – здоровая девочка

       = = 2,45%  – здоровый мальчик

       =  = 2,45% – здоровая девочка

       =  = 2,45% – мальчик-дальтоник
с гемофилией

 F1 – ?

Ответ:
вероятность рождения здоровой девочки в данном браке – 50%; вероятность
рождения здорового мальчика – 2,45%; вероятность рождения мальчика с гемофилией
– 22,55%; вероятность рождения мальчика-дальтоника – 22,55%; вероятность
рождения мальчика-дальтоника с гемофилией – 2,45%.

4.    
У коров гены A и B расположены в одной хромосоме на расстоянии 24
морганиды. Определите генотипические группы потомков и вероятности их появления
при скрещивании двух дигетерозигот с генотипом
.

Дано:

L(AB) = 24 мн = 24% кроссинговера

Решение

1) P:           ♀                        
×                  ♂

2) В результате кроссинговера с общей
вероятностью 24% у матери и отца образуется два новых типа гамет –
кроссоверные гаметы. Вероятность появления каждого из типов кроссоверных
гамет –
 = 12%. На долю
некроссоверных гамет остается 100 – 24 = 76%, на каждый тип некроссоверных
гамет по
 38%.

G:

некросс.,

76%

 = 38%

некросс.,

76%

 = 38%

 = 38%

 = 38%

кросс.,

24%

 = 12%

кросс.,

24%

 = 12%

ab = 12%

ab = 12%

3) Определим вероятность появления детей
с различными сочетаниями исследуемых признаков. Для этого по теореме
умножения вероятностей вычислим произведение вероятностей материнской и
отцовской гамет.

F1:

 =  = 14,44%

 =  = 4,56%

 =  = 14,44%

 =  = 4,56%

 =  = 4,56%

 =  = 1,44%

 =  = 4,56%

 =  = 1,44%

 =  = 14,44%

 =  = 4,56%

 =  = 14,44%

 =  = 4,56%

 =  = 4,56%

 =  = 1,44%

 =  = 4,56%

 =  = 1,44%

 F1 – ?

Ответ: в потомстве наблюдается 16 групп генотипов; вероятность проявления
генотипа
 = 14,44%,  = 14,44%,  = 4,56%,  = 4,56%,  = 14,44%, = 4,44%,
 = 4,56%,  = 4,56%,  = 4,56%,  = 4,56%,  = 1,44%,  = 1,44%,
 = 4,56%,  = 4,56%,  = 1,44%,  = 1,44%.

Заключение.

Дорогие ребята!

 Это пособие
создавалось в первую очередь для вас.

 Практика показывает, что именно  умение решать задачи вызывает у
вас наибольшие затруднения.

Если вы хотите научиться решать задачи по 
генетике, следуйте  советам:

1.                
Каждая гамета получает гаплоидный набор хромосом (генов). Все
хромосомы (гены) имеются в гаметах.

2.                
В каждую гамету попадает только одна гомологичная хромосома из
каждой пары (только один ген из каждой аллели).

3.                
Число возможных вариантов гамет равно 2n,
где n – число хромосом, содержащих гены в гетерозиготном
состоянии.

4.                
Одну гомологичную хромосому (один аллельный ген) из каждой пары
ребенок получает от отца, а другую (другой аллельный ген) – от матери.

5.                
Гетерозиготные организмы при полном доминировании всегда проявляют
доминантный признак. Организмы с рецессивным признаком всегда гомозиготны.

6.                
Решение задачи на дигибридное скрещивание при независимом
наследовании обычно сводится к последовательному решению двух задач на
моногибридное (это следует из закона независимого наследования).

Кроме того, для успешного решения
задач по генетике
 следует уметь выполнять некоторые несложные операции
и использовать методические приемы, которые приводятся ниже.

Прежде всего необходимо внимательно
изучить условие задачи. Даже те учащиеся, которые хорошо знают
закономерности наследования и успешно решают генетические задачи, часто
допускают грубые ошибки, причинами которых является невнимательное или
неправильное прочтение условия.

Следующим этапом является
определение типа задачи. Для этого необходимо выяснить, сколько пар
признаков рассматривается в задаче, сколько пар генов кодирует эти признаки, а
также число классов фенотипов, присутствующих в потомстве от скрещивания
гетерозигот или при анализирующем скрещивании, и количественное соотношение
этих классов. Кроме того, необходимо учитывать, связано ли наследование
признака с половыми хромосомами, а также сцепленно или независимо наследуется
пара признаков. Относительно последнего могут быть прямые указания в условии.
Также, свидетельством о сцепленном наследовании может являться соотношение
классов с разными фенотипами в потомстве.

Для облегчения решения можно
записать схему брака (скрещивания) на черновике, отмечая
фенотипы и генотипы особей, известных по условию задачи, а затем начать
выполнение операций по выяснению неизвестных генотипов. Для удобства
неизвестные гены на черновике можно обозначать значками *, _ или ?.

Выяснение генотипов особей,
неизвестных по условию, является основной методической операцией,
необходимой для решения генетических задач. При этом решение всегда надо
начинать с особей, несущих рецессивный признак, поскольку они гомозиготны и их
генотип по этому признаку однозначен – аа.

Выяснение генотипа организма, несущего
доминантный признак, является более сложной проблемой, потому что он может быть
гомозиготным (АА) или гетерозиготным (Аа).

Гомозиготными (АА) являются
представители «чистых линий», то есть такие организмы, все предки которых несли
тот же признак. Гомозиготными являются также особи, оба родителя которых были
гомозиготными по этому признаку, а также особи, в потомстве которых (F1)
не наблюдается расщепление.

Организм гетерозиготен (Аа), если
один из его родителей или потомков несет рецессивный признак, или если в его
потомстве наблюдается расщепление.

В некоторых задачах предлагается
выяснить, доминантным или рецессивным является
рассматриваемый признак. Следует учитывать, что доминантный признак во всех
случаях, кроме неполного доминирования, проявляется у гетерозиготных особей.
Его несут также фенотипически одинаковые родители, в потомстве которых
встречаются особи, отличные от них по фенотипу. При моногенном наследовании
доминантный признак всегда проявляется у потомства F1 при
скрещивании гомозиготных родителей (чистых линий) с разным фенотипом
(исключение – неполное доминирование).

При определении возможных вариантов
распределения генов в гаметах следует помнить, что каждая гамета содержит
гаплоидный набор генов и что в нее попадает только один ген из каждой пары,
определяющей развитие признака. Число возможных вариантов гамет равно 2n,
где n – число рассматриваемых пар хромосом, содержащих
гены в гетерозиготном состоянии.

Распространенной ошибкой при определении
вариантов гамет является написание одинаковых типов гамет, то есть содержащих
одни и те же сочетания генов. Для определения возможных типов гамет более
целесообразным представляется запись генотипов в хромосомной форме.
Это упрощает определение всех возможных вариантов сочетания генов в гаметах
(особенно при полигибридном скрещивании). Кроме того, некоторые задачи
невозможно решить без использования такой формы записи.

Сочетания гамет, а также соответствующие
этим сочетаниям фенотипы потомства при дигибридном или полигибридном
скрещивании равновероятны, и поэтому их удобно определять с помощью решетки
Пеннета
. По вертикали откладываются типы гамет, продуцируемых матерью, а по
горизонтали – отцом. В точках пересечения вертикальных и горизонтальных линий
записываются соответствующие сочетания генов. Обычно выполнение операций,
связанных с использованием решетки Пеннета, не вызывает затруднений у учащихся.
Следует учитывать только то, что гены одной аллельной пары надо писать рядом
(например, ААВВ, а не АВАВ).

Конечным этапом решения является запись
схемы скрещивания (брака)
 в соответствии с требованиями по оформлению,
описанными ниже, а также максимально подробное изложение всего хода рассуждений
по решению задачи с обязательным логическим обоснованием каждого вывода.
Отсутствие объяснения даже очевидных, на первый взгляд, моментов может быть
основанием для снижения оценки на экзамене.

Список литературы

1.    
Биология. 11 класс: учеб. Для общеобразоват. организаций: базовый
уровень/ Д.К. Беляев, Г.М. Дымшиц, Л.Н. Кузнецова – М.: Просвещение, 2016. –
223с.

2.    
Капранова Г.В. Сборник задач по генетике. – Луганск: Янтарь, 2003.
– 68с.

3.    
Пепеляева О.А., Сунцова И.В. Поурочные разработки по общей
биологии: 11 класс.- М.: ВАКО, 2006. -464с.

Дополнительная литература

1.  
Анастасова Л.П. Самостоятельные работы учащихся по общей биологии:
Пособие для учителя. М.: Просвещение, 1989. – 175 с.

2.  
Борисова, Л.В. Тематическое и поурочное планирование по биологии:
11 кл.: к учебнику Мамонтова С.Г., Захарова В.Б, Сонина Н.И. «Биология. Общие
закономерности. 11 класс»: Методическое пособие/Борисова Л.В. – М.:
Издательство «Экзамен», 2006. – 159 с.

3.  
Донецкая Э.Г. Общая биология. Тетрадь с печатной основой для
учащихся 11кл. – Саратов, «Лицей», 1997.,80с.

4.  
Ловкова Т.А. Биология. Общие закономерности. 11 класс:
Методическое пособие к учебнику Мамонтова С.Г., Захарова В.Б, Сонина Н.И.
«Биология. Общие закономерности. 9 класс»/ Ловкова Т.А., Сонин Н.И. – М.;
Дрофа, 2003. – 128 с.

5.  
Сухова Т.С. Общая биология. 10-11 кл.: рабочая тетрадь к учебникам
«Общая биология. 10 класс» и «Общая биология. 11 класс»/Сухова Т.С, Козлова
Т.А, Сонин Н.И; под редакцией Захарова В.Б. – М.: Дрофа, 2006. -171 с.

Сцепленное наследование

02-Сен-2014 | Нет комментариев | Лолита Окольнова

Сцепленное наследование

 Автор статьи — Саид Лутфуллин.

После открытия законов наследственности Менделя стали замечать, что не всегда эти законы срабатывают.

Например: скрестили дигетерозиготную самку дрозофилы с серым телом и нормальными крыльями с самцом с черным телом и укороченными крыльями.

Серое тело и нормальные крылья – доминантные признаки.

По законам Менделя схема скрещивания такая:

сцепленное наследование

 

Но практический результат скрещивания отличается.

Как правило, в потомстве наблюдается расщепление 1:1,

фенотипы потомства: серое тело, нормальные крылья и черное тело, укороченные крылья.

Не срабатывает закон независимого наследования. Почему же так? Неужели законы Менделя действительно не работают? Конечно же, нет, законы природы, могут быть «нарушены», только если это позволяет другой закон (исключение из правила).

Давайте разберемся…

  • информацию о каждом признаке несет определенный ген;
  • гены находятся в хромосомах.

Естественно, что количество хромосом значительно меньше количества генов, поэтому в одной хромосоме закодировано несколько генов.

Гены, находящиеся в одной хромосоме наследуются вместе, то есть сцеплено.

А гены, находящиеся в разных хромосомах наследуются независимо,

так как при гаметогенезе хромосомы распределяются случайно, следовательно, два несцепленных гена могут попасть вместе в одну гамету гамете, а могут и нет.

Гены, находящиеся в одной хромосоме, обязательно окажутся в одной гамете.

В примере, который мы рассмотрели ранее, мы можем заметить: серое тело наследуется вместе с нормальные крыльями, а черное тело наследуется вместе с укороченными крыльями.

Гены цвета тела и длины крыльев находятся в одной хромосоме.

сцепленное наследование

 

Самка дигетерозиготна, есть две гомологичные хромосомы:

в одной из гомологичных хромосом закодированы гены серого тела и нормальных крыльев,

в другой — гены черного тела и укороченных крыльев

Но получается всего два вида гамет  — признаки цвета тела и размера крыльев «неделимы»

Отцовская особь по этим признакам дигомозиготная:

в одной гомологичной хромосоме гены черного тела и укороченных крыльев,

и в другой гомологичной хромосоме так же.

сцепленное наследование

Все признаки, закодированные в одной хромосоме, образуют так называемую группу сцепления.

Признаки из одной группы сцепления наследуются вместе.

 
И как можно догадаться,

количество групп сцепления равно количеству хромосом в гаплоидном наборе.


Примеры задач

Задача 1: 

Немного другое оформление: сцепленные признаки записываются на «палочках», например генотип самки из нашей задачи следует записать вот так:

сцепленное наследование

 

  • палочки означают гомологичные хромосомы, в которых локализованы гены
  • буквы по одну сторону от палочек обозначают сцепленные друг с другом гены.

То есть запись говорит:

признаки АВ сцеплены друг с другом; признаки ab так же сцеплены друг с другом

сцепленное наследование

 

  • положение генов в генотипе 1) называется цис-положением: AB \ ab (доминантные признаки на одной хромосоме, рецессивные на другой)
  • положение 2) называется транс-положением: Ab \ aB.

Разберем на примере: 

сцепленное наследование

1) В условии задачи сразу указаны все  признаки, заполним таблицу:

Ген

Признак

А

Гладкие семена

а

Морщинистые семена

B

Усики есть

b

Усиков нет

2) Первое растение дигетерозиготно, сказано, что доминантные признаки локализованы в одной хромосоме, то есть сцеплены. Причем доминантные признаки находятся на одной гомологичной хромосоме, следовательно на другой гомологичной хромосоме располагаются рецессивные признаки (цис-положение). Генотип первого растения: AB \ ab.

 
Получаем всего два вида гамет (так как признаки сцеплены):

AB и ab.
 

3) Так как у второго растения проявились рецессивные признаки, делаем вывод, что оно дигомозиготно. И его генотип:  ab\ab.  Образуется только один сорт гамет: ab.

4) Наконец, составим схему скрещивания:

сцепленное наследование

 
И ответим на последний вопрос задачи — про закон: 

проявляется закон сцепленного наследования, он гласит: гены, локализованные в одной хромосоме образуют группу сцепления и наследуются вместе.


Но случается, что даже гены из одной группы сцепления (локализованные в одной хромосоме) наследуются раздельно, то есть «расцепляются».

Для примера, возьмем скрещивание из предыдущей задачи.

При таком же скрещивании может получиться и 4 фенотипические группы (вместо положенных 2) в потомстве, как и при независимом наследовании. Это объясняется возможностью кроссинговера между гомологичными хромосомами (тем, кто не понимает о чем речь, советую прочитать статью кроссинговер).

Допустим если у особи признаки AB сцеплены, то при образовании гамет, если произойдет кроссинговер, есть вероятность, что участок хромосомы, в котором закодирован один из генов «перескочит» на другую гомологичную хромосому, и сцепление нарушится. На примере нашей задаче, в случае кроссинговера скрещивание будет следующим:

сцепленное наследование
 

У дигетерозиготного растения образуется еще два сорта гамет, за счет кроссинговера. Гаметы, при образовании которых, произошел кроссинговер (в данной задаче это Ab и aB) называются кроссоверными. Статистически процент кроссоверных гамет меньше некроссоверных.

Чем дальше друг от друга находятся гены в хромосоме, тем больше вероятность того, что сцепленные гены, будут «разлучены» при рекомбинации, происходящей во время кроссинговера.

И соответственно, чем ближе друг к другу расположены гены в хромосоме, тем вероятность их разъединения.

Эта зависимость вероятности разделения генов кроссинговером и расстояния между генами оказалась настолько «удобной», что расстояние между генами измеряют в процентах вероятности их разъединения при кроссинговере. По формуле:

формула

Где:
 

  • x – вероятность разъединения генов в процентах,
  • а – количество особей, образовавшихся из кроссоверных гамет, n – количество всех особей.
  • И 1% вероятности разъединения генов приняли за единицу расстояния между этими генами.

Единица эта называется морганида. Назвали единицу в честь известного генетика Томаса Моргана, который изучал это явление

1 морганида = 1% вероятности, что сцепленные гены, в результате кроссинговера, окажутся на разных гомологичных хромосомах


Задача 2:

сцепленное наследование

 
1) Составим таблицу признаков

Ген

Признак

А

Высокий рост

а

Низкий рост

B

Гладкий эндосперм

b

Шероховатый эндосперм

2) Раз в условии сказано, что провели анализирующее скрещивание, значит второе растение дигомозиготно по рецессивным признакам, его генотип: ab \ ab.

3) В потомстве получили 4 фенотипических группы. Так как спризнаки сцеплены, то очевидно имел место кроссинговер. Так же появление четырех фенотипических групп при анализирующем скрещивании указывает на дигетерозиготность первого растения. Значит, его генотип: либо AB \ ab, либо Ab \ aB.

Чтобы определить в каком положении гены — цис или транс, надо посмотреть на соотношение в потомстве. Процент кроссоверных гамет меньше некроссоверных, поэтому особей, получившихся из некроссоверных гамет больше.

Эти особи: 208 высоких растений с гладким эндоспермом, 195 – низких с шероховатым эндоспермом

У них доминантный признак унаследовался с доминантным, а рецессивный с рецессивным. Следовательно гены у родительской дигетерозиготной особи в цис-положении: AB \ ab.

4) Схема скрещивания:

сцепленное наследование

 

Красным отмечены кроссоверные гаметы и особи, полученные из них. Этих особей меньше, так как кроссоверных гамет образуется меньше. Если бы у родительской дигетерозиготной особи гены были бы в транс положении, в потомстве наоборот образовалось бы больше особей с признаками: высоких  шероховатых, и низких  гладких.

5) Определим расстояние между генами.

Для этого вычислим вероятность того, что признаки окажутся разделенными в результате кроссинговера.

По формуле:

формула 

x= 9 + 6208+ 195+ 9 + 6 ×100%= 15418 ×100%=3,59%

То есть расстояние между генами = 3,59 морганид.

Обсуждение: “Сцепленное наследование”

(Правила комментирования)

ЕГЭ по биологии

Наследование сцепленное с полом

Материал по биологии

  • Псевдоаутосомное наследование.
  • Решение задач на псевдоаутосомное наследование
  • Гены, сцепленные только с Х-хромосомой
  • Крисс кросс наследование у человека
  • Голандрические гены
  • Сноски

X и Y – хромосомы, как и аутосомные1 хромосомы, содержат гены, соответственно, определяют наши признаки. С одной стороны, эти две хромосомы можно отнести к гомологичным2, так как они содержат одинаковые участки, в которых располагаются аллельные3 гены. С другой стороны, обе эти хромосомы несут гены, которых нет в парной хромосоме, например, в Х-хромосоме лежат гены, которых нет в Y-хромосоме, а ряд генов Y-хромосомы отсутствуют в Х-хромосоме из-за чего мужчины и женщины достаточно сильно отличаются друг от друга.

Х и Y – гомологичные и негомологичные участки

Одинаковыми цветами на рисунке обозначены участки с аллельными генами, они определяют гомологичность Х и Y-хромосом, между этими участками в профазе I происходит кроссинговер, и они наследуются так же, как аутосомные (так называемое псевдоаутосомное наследование признаков). Розовым цветом на Х-хромосоме обозначен участок, содержащий гены, которых нет на Y-хромосоме. Красным цветом на Y-хромосоме обозначен участок, содержащий гены, которых нет на Х-хромосоме. Сцепленное с Y-хромосомой наследование называется голандрическим.

Задание в формате ЕГЭ с ответом:

Выберите верные суждения:

  1. Половые хромосомы отвечают только за половые признаки
  2. Только с Х-хромосомой сцеплены наследственные заболевания
  3. Голандрическое наследование сцеплено с Х-хромосомой
  4. На Х и Y-хромосоме есть гомологичные участки
  5. На Х и Y-хромосоме есть локусы разных генов
  6. Между некоторыми участками половых хромосом может происходить кроссинговер

Псевдоаутосомное наследование.

Это наследование, сцепленное как с Х, так и с Y-хромосомой. То есть участки, содержащие разновидности этого гена есть на обеих половых хромосомах. К таковым относят:

  1. Ген общей цветовой слепоты – рецессивный (альтернативный ген отвечает за нормальное зрение)
  2. Ген пигментной ксеродермы – рецессивный (альтернативный ген отвечает за нормальную пигментацию)

Почему такой тип наследования называют псевдоаутосомным? Потому что несмотря на то, что гены сцеплены с половыми хромосомами, в потомстве можно наблюдать расщепление, подобное обычному менделевскому. Сравним две аналогичные задачи. Первая рассматривает признак, не сцепленный с полом (цвет глаз), вторая на сцепленный с обеими половыми хромосомами признак.

Задача 1 (На Закон единообразия первого поколения)

Гомозиготная кареглазая женщина вышла замуж за сероглазого мужчину. Определите цвет глаз у их детей. Карий цвет глаз доминирует над голубым.

Задача 2 (Закон единообразия первого поколения при сцепленном с полом наследовании)

Пигментная ксеродерма – рецессивное заболевание, сцепленное как с Х, так и с Y-хромосомой. Здоровая женщина, в семье которой никогда не наблюдалась пигментная ксеродерма, вышла замуж за мужчину с пигментной ксеродермой. Определите фенотипы и генотипы возможных детей в этой паре.

Простая задача на псевдоаутосомное наследование

В обеих задачах все потомство единообразно, в их фенотипе проявляется доминантный признак.

В следующих двух задачах рассмотрим наследование псевдоатусомного признака в сравнение с наследованием аутосомных признаков. В обеих случаях возьмём гетерозиготных родителей.

Задача 3 (по Закону расщепления)

Установите расщепление по генотипу и фенотипу среди возможных детей от двух гетерозиготных кареглазых людей (карий цвет глаз доминирует над серым).

Задача 4 (на псевдоаутосомное наследование с расщеплением как во II законе Менделя)

Установите расщепление по генотипу и фенотипу среди возможных детей от пары, в которой женщина имела здоровую кожу (её мать имела пигментную ксеродерму), мужчина тоже имел здоровую кожу, но его отец страдал пигментной ксеродермой.

Наследование пигментной ксеродермы

Почему вдруг у мужчины в задаче 4 появилось не два сорта гамет, а четыре? Потому что между участками гомологичных хромосом может происходить кроссинговер. В случае гомогаметного пола (ХХ) кроссинговер не имеет смысла, хоть и все равно может происходить, однако это не приводит к появлению новых сортов гамет. В случае гетерогаметного пола (XY) кроссинговер имеет смысл, так как в результате этого процесса образуется еще два сорта гамет.

Кроссинговер между генами Х и Y-хромосомы

Пример задания из КИМ ЕГЭ:

Ген некоторого заболевания сцеплен как с Х, так и с Y-хромосомой и является рецессивным (отсутствие заболевания – доминантный признак). Отец и мать гетерозиготны по этому признаку, причем мужчина получил ген заболевания от своего отца. Возможно ли появление у этой пары дочери с этим заболеванием?

  1. да, если у мужчины при гаметогенезе произойдет кроссинговер
  2. да, если у женщины при гаметогенезе произойдет кроссинговер
  3. да, без кроссинговера у мужчины
  4. нет

Решение задач на псевдоаутосомное наследование

Задача 5

Ген, отвечающий за появление пигментной ксеродермы, может быть сцеплен как с X, так и с Y-хромосомой. Гетерозиготная женщина с нормальной пигментацией кожи вышла замуж за гетерозиготного мужчину, отец которого страдал пигментной ксеродермой. Определите вероятность рождения сына с пигментной ксеродермой в этой семье, если кроссинговера при сперматогенезе не произошло.

Решение задачи на наследование пигментной ксеродермы

Задача 6

Ген, отвечающий за появление пигментной ксеродермы, может быть сцеплен как с X, так и с Y-хромосомой. Гетерозиготная женщина с нормальной пигментацией кожи вышла замуж за гетерозиготного мужчину, мать которого страдала пигментной ксеродермой. Определите вероятность рождения сына с пигментной ксеродермой в этой семье, если кроссинговера при сперматогенезе не произошло.

Наследование пигментной ксеродермы сыновьями

Задача 7

Ген общей цветовой слепоты имеет локусы как на Х, так и на Y-хромосомах и является рецессивным геном. Гетерозиготная по этому признаку женщина вышла замуж за мужчину с нормальным цветовым зрением, мать которого страдала общей цветовой слепотой. В этой семье появился сын с общей цветовой слепотой. Составьте схему решения задачи, объясните полученный результат.

Наследование общей цветовой слепоты

У этой пары мог появиться сын с общей цветовой слепотой только в случае кроссинговера при образовании мужских гамет.

Задача 8

Женщина с пигментной ксеродермой вышла за нормального мужчину, отец которого тоже страдал пигментной ксеродермой. У этой пары родился здоровый сын. Определите возможные фенотипы и генотипы внуков первой пары, если их сын женился на гетерозиготной по изучаемому признаку женщине.

Задача на определение закономерностей наследования псевдоаутосомных признаков

В этой задаче здоровый сын мог появиться только благодаря кроссинговеру при образовании мужских гамет.

Расщепление по признаку наличия ксеродермы во втором поколении

У сына первой пары тоже может происходить кроссинговер, увеличивающий разнообразие признаков среди его детей. Из-за кроссинговера во втором поколении может появиться не только девочка с пигментной ксеродермой, но и мальчик.

Гены, сцепленные только с Х-хромосомой

Так как у женщин есть две Х-хромосомы, о генах, сцепленных с этими хромосомами, можно говорить как о доминантных и рецессивных.

Рецессивные признаки, сцепленные с Х-хромосомой:

  1. Гемофилия
  2. Дальтонизм
  3. Атрофия зрительного нерва
  4. Миопатия Дюшена
  5. Отсутствие потовых желёз

Альтернативные гены несут в себе информацию о нормальных признаках и являются доминантными.

Доминантные признаки, сцепленные с Х-хромосомой:

  1. Рахит, не поддающийся лечению витамином Д
  2. Темная эмаль зубов

Доминантные и рецессивные заболевания, сцепленные с Х-хромосомой

Задача 9

Между генами дальтонизма и гемофилии может происходить кроссинговер. Здоровая женщина, мать которой страдала гемофилией, а отец дальтонизмом, вышла замуж за здорового мужчину. У них появился сын с обеими аномалиями. Составьте схему решения задачи, объясните полученный результат.

Решение задачи на дальтонизм и гемофилию

Появление мальчика с обеими аномалиями – результат кроссинговера при образовании женских гамет.

Задача 10

Здоровая женщина, мать которой страдала цветовой слепотой и гемофилией, вышла замуж за мужчину с нормальной свертываемостью и дальтонизмом. У них появилась дочь с нормальной свертываемостью, но с дальтонизмом. Эта дочь вышла замуж за мужчину с гемофилией и нормальным цветовым зрением. У всех их детей была нормальная свертываемость крови, мальчики были дальтониками. Составьте схему решения задачи, объясните полученные результаты.

Решение задачи на кроссинговер между генами гемофилии и дальтонизма

У первой пары могут появиться две генотипически разные дочери, с первого взгляда удовлетворяющие условию задачи. Но во втором поколении все дети имели нормальную свертываемость крови, несмотря на отца гемофилика. Отсюда можно предположить, что нужно взять девочку, у которой обе Х-хромосомы несут доминантный признак нормальной свертываемости крови (почеркнута красной линией).

Расщепление во втором поколении при наследовании гемофилии и дальтонизма

Задача 11

Между генами атрофии зрительного нерва и миопатии Дюшена происходит кроссинговер. Дигомозиготная женщина с нормальным зрением и миопатией вышла замуж за мужчину с атрофией зрительного нерва и нормальным развитием мышечной ткани. У них появилась полностью здоровая дочь, которая в последствие вышла замуж за здорового мужчину. В каком случае у этой пары может появиться ребенок с обеими аномалиями? Какого пола будет этот ребенок?

Решение задачи, расщепление в первом поколении

Решение задачи, расщепление во втором поколении

Во втором поколении может появиться мальчик с обеими аномалиями в случае кроссинговера при овогенезе у матери.

Задание по образцу ФИПИ:

Какие признаки, сцепленные с Х-хромосомой являются доминантными?

  1. миопатия Дюшена
  2. гемофилия
  3. темная эмаль зубов
  4. витамин D резистентный рахит
  5. дальтонизм

Крисс кросс наследование у человека

При крисс кросс наследовании у дочерей появляется признак отца, а у сыновей – признак матери. Такой возможно, если у женщины обе Х-хромосомы несут рецессивную аллель изучаемого гена (гомозиготный рецессивный генотип), а отец несет на Х-хромосоме доминантный аллель этого гена. У человека крисс-кросс наследование ничем не отличается от такового у других организмов.

Как узнать характер наследования признака по крисс кросс наследованию?

Задача 12

В семье, где мать страдает заболеванием «1», а отец полностью здоров, появились здоровые дочери и больные сыновья. Определите характер наследования заболевания «1».

Наследование признака от отца к дочери и от матери к сыну

Голандрические гены

Так как в генотипе человека в норме присутствует только одна Y-хромосома, к тем генам, что сцеплены только с Y-хромосомой неприменимы термины «доминантный» и «рецессивный». Для того, чтобы какой-либо ген был доминантным, а какой-либо рецессивным нужно минимум два аллельных гена, тогда как у здорового мужчины всего одна У-хромосома. Он не может быть доминантным (не над чем доминировать, второго такого нет), соответственно не может быть и рецессивным.

Такие признаки передаются от отца ко всем сыновьям.

Примеры голандрических признаков:

  1. Оволосение (гипертрихоз) ушной раковины
  2. Перепонки между пальцами ног
  3. Одна из форм ихтиоза

Задача 13

Ген дальтонизма сцеплен с Х-хромосомой и является рецессивным, а ген перепонки между пальцами ног – с Y-хромосомой. Здоровая гомозиготная женщина вышла замуж за мужчину с дальтонизмом и перепонками между пальцами ног. Определите возможных детей этой пары.

Задача на наследование голандрических признаков

Задача 14

Гемофилия – рецессивный признак, сцепленный с Х-хромосомой, гипертрихоз сцеплен с Y-хромосомой. Здоровая гетерозиготная женщина вышла замуж за мужчину с гемофилией и гипертрихозом (повышенное оволосение ушной раковины). Определите генотипы и фенотипы возможных детей в этом браке.

Решение задачи на голандрический признак – гипертрихоз ушной раковины

Сноски:

1 – одним из способов классификации хромосом является разделение их на половые и аутосомные хромосомы (аутосомы). Разобраться в этих терминах довольно просто. Вы наверняка знаете, что пол человека и многих других животных определяется сочетанием половых хромосом. Например, у человека наличие двух икс-хромосом (ХХ или гомогаметный пол) определяет развитие женского организма, а сочетание Х и Y хромосомы (гетерогаметный пол) – определяет мужской пол. Все же остальные хромосомы, не участвующие в определении пола называются аутосомными хромосомами или аутосомами.

2 – гомологичные хромосомы имеют сходное строение (морфологию), на одинаковых участках этих хромосом расположены гены, отвечающие за проявление одного признака (например, за цвет глаз). То есть они несут сходные гены (не обязательно полностью одинаковые).

3 – аллельными генами называют гены, расположенные в одинаковых местах (локусах) гомологичных хромосом и отвечающих за проявление одного признака. Аллельные гены часто несут альтернативный характер, например, один ген на одной хромосоме отвечает за карий цвет глаз, на этом же участке второй хромосомы тоже расположен ген, отвечающий за цвет глаз, но только уже за серый.

Курсы ЕГЭ биология

Добавить комментарий