Как составить обратную пропорцию 6 класс

Математика

6 класс

Урок № 7

Прямая и обратная пропорциональность. Решение задач

Перечень рассматриваемых вопросов:

  • Понятия прямой и обратной пропорциональной зависимости.
  • Краткая запись условия задачи.
  • Составление и решение пропорций по условию задачи.
  • Решение задач на прямую и обратную пропорциональную зависимость.

Тезаурус

Равенство двух отношений называют пропорцией.

Две величины называются прямо пропорциональными, если при увеличении одной из них в несколько раз другая увеличивается во столько же раз.

Две величины называются обратно пропорциональными, если при увеличении одной из них в несколько раз другая уменьшается во столько же раз.

Основная литература

  1. Никольский С. М. Математика. 6 класс. Учебник для общеобразовательных учреждений // С. М. Никольский, М. К. Потапов, Н. Н. Решетников и др. — М.: Просвещение, 2017. — 258 с.

Дополнительная литература

  1. Чулков П. В. Математика: тематические тесты. 5-6 кл. // П. В. Чулков, Е. Ф. Шершнёв, О. Ф. Зарапина — М.: Просвещение, 2009. — 142 с.
  2. Шарыгин И. Ф. Задачи на смекалку: 5-6 кл. // И. Ф. Шарыгин, А. В. Шевкин — М.: Просвещение, 2014. — 95 с.

Теоретический материал для самостоятельного изучения

Прямая пропорциональность.

Две величины называются прямо пропорциональными, если при увеличении одной из них в несколько раз другая увеличивается во столько же раз.

Обратная пропорциональность.

Две величины называются обратно пропорциональными, если при увеличении одной из них в несколько раз другая уменьшается во столько же раз.

Для решения задач на пропорциональную зависимость, удобно составить таблицу или сделать краткую запись условия.

Столбцы таблицы соответствуют наименованиям зависимых величин.

Строки таблицы соответствуют значениям величин при первом и втором измерении.

Одинаково направленные стрелки показывают прямо пропорциональную зависимость, противоположно направленные – обратно пропорциональную.

Задача.

Поезд, скорость которого 55 км/ч, был в пути 5 часов. За сколько часов пройдёт этот же участок пути товарный поезд, скорость которого 45 км/ч?

Решение.

При постоянном пути скорость и время движения обратно пропорциональны.

Допустим, товарный поезд пройдёт этот же путь со скоростью 45 км/ч за x ч.

Сделаем краткую запись условия.

Задача.

Двигаясь с постоянной скоростью, велогонщик проезжает 40 метров за 3 с. Какой путь проедет велогонщик за 45 с?

Решение.

При постоянной скорости путь прямо пропорционален времени движения.

Пусть х м проедет велогонщик за 45 с.

Сделаем краткую запись условия.

Задача.

Усилие при восхождении на высоту 600 м равно усилию, требуемому для перехода 25 км по равнине. Турист поднялся в горы на 792 м. Какому расстоянию на равнине соответствует этот подъём?

Решение:

Решение.

Задача.

Четыре программиста могут написать игру за 12 месяцев. За сколько месяцев эту работу могут выполнить три программиста?

Решение.

Количество программистов и скорость написания игры – это обратно пропорциональная зависимость.

Разбор заданий тренировочного модуля

№ 1. Подстановка элементов в пропуски в тексте.

Подставьте нужные элементы в пропуски.

Пешеход шёл 3 часа со скоростью 8 км/ч. За сколько часов он пройдёт то же расстояние со скоростью 6 км/ч?

Решение:

При фиксированном расстоянии время в пути и скорость – ______ пропорциональны.

Пусть _____ часов – пешеход идёт со скоростью 6 км/ч.

Составим пропорцию:

_________

х=_______

х=_______(ч).

Правильный ответ.

Решение:

При фиксированном расстоянии время в пути и скорость – обратно пропорциональны.

Пусть х часов – пешеход идёт со скоростью 6 км/ч.

№ 2. Подстановка элементов в пропуски в таблице.

Заполните таблицу.

Поезд движется со скоростью 45 км/ч. Какое расстояние он пройдёт, если будет в пути 3 ч; 4 ч; 5 ч; 6 ч.

Варианты ответов:

135 км;

180 км;

225 км;

270 км.

Решение.

При постоянной скорости пройденный путь и время прямо пропорциональны. Скорость движения поезда 45 км/ч означает, что за 1 час поезд преодолевает расстояние в 45 км. Обозначим за x км – расстояние, которое поезд пройдёт за 3, 4, 5 и 6 часов.

Таким же способом находим расстояние, которое пройдёт поезд за 4, 5 и 6 часов, и подставляем соответствующие варианты в таблицу.

Ответ:

Прямая и обратная пропорциональность


Прямая и обратная пропорциональность

4.1

Средняя оценка: 4.1

Всего получено оценок: 545.

4.1

Средняя оценка: 4.1

Всего получено оценок: 545.

Прямая и обратная пропорциональность – это одна из основ математики и геометрии 6 класса. Причем, это та основа, знания которой пригодятся не только при решении задач, но и в реальной жизни: пропорциональны друг другу бывают физические величины, заработные платы и конфеты, купленные в магазине.

Опыт работы учителем математики – более 33 лет.

Что такое пропорция?

Пропорция – это взаимосвязь двух величин. То есть, если меняется одна величина, меняется и другая. Если одна величина пропорциональна другой, а друга пропорциональна третьей, то все эти величины связаны между собой. Разделяют прямую и обратную пропорцию. Дадим им определения и приведем наглядные примеры.

Прямая пропорция

Прямая пропорция – это взаимоотношение величин, при котором, увеличивая одну величину, мы автоматически увеличим другую. Самый простой пример это булочки в магазине и цена на них. Булочка в любом случае стоит 30 руб. Покупая одну штуку мы платим 30 руб.

Если увеличим размер покупки, то соразмерно возрастет и цена. Она не может не возрасти, ведь булочник не будет отдавать свой товар просто так. За 2 булочки мы заплатим 60 рублей, за 3 – 90 и так далее.

Если устанавливать зависимость между количеством булочек и ценой на них, то получится следующее отношение:

Цена булочек/количество=30/1=60/2 и так далее. Заметим, что всегда это отношение равно одному и тому же числу. В данном примере это число 30. Оно будет постоянным для любого варианта данной пропорции. Конкретно в данном примере это число является одновременно и ценой одной булочки.

Иными словами, для приведенного примера пропорциональность можно объяснить так: сколько бы булочек мы ни купили, все равно цена одной будет 30 рублей. Вот и все. В рамках математики говорят, что если коэффициент пропорциональности не меняется, то числа пропорциональны.

Для того, чтобы понять, изменяется коэффициент или нет, нужно просто поделить друг на друга числа этой пропорции и сравнить результат. То есть, взять сначала отношение цены одной булочки к ее количеству, а затем цены 30 булочек к их количеству. Коэффициент сохранит свое значение, значит эти числа прямопропорциональны.

Обратная пропорция

Существует также понятие обратной пропорции. Часто бывает так, что одна величина зависит от другой, но не прямопропорционально. Сравним две взаимосвязанные между собой величины. Например, мотоциклист залил в бак бензин. Чем меньше бензина остается в баке мотоциклиста, тем больше проехал водитель. Здесь на лицо обратная зависимость количества бензина и пройденного расстояния.

Как просто запомнить?

Есть 4 простые схемы запоминания темы, по две для каждого вида пропорциональности.

Для прямой пропорции всегда работает схема: «больше-больше» или «меньше-меньше». То есть при увеличении одной величины, увеличится и другая, или при уменьшении одной величины уменьшится другая.

Соответственно, для обратной пропорциональности наоборот: «больше-меньше» или «меньше-больше». То есть, чем больше одна величина, тем меньше другая и наоборот.

Заключение

Что мы узнали?

Мы привели объяснение прямой и обратной пропорциональности. Вывели простые схемы для запоминания темы и обговорили понятные примеры.

Тест по теме

Доска почёта

Доска почёта

Чтобы попасть сюда – пройдите тест.

  • Лариса Раднаева

    5/5

  • Валентина Макарова

    5/5

Оценка статьи

4.1

Средняя оценка: 4.1

Всего получено оценок: 545.


А какая ваша оценка?

Сегодня на уроке мы продолжим работать с
пропорциями, а точнее познакомимся с прямой и обратной
пропорциональными зависимостями
.

Задача

Сколько нужно сахара, чтобы сварить варенье из 5 кг черешни, если по рецепту на 2 кг ягод нужно 3 кг
сахара?

Решение:

Из решения видно, что во сколько раз больше имеется
черешни
, во столько раз больше понадобится сахара

Эту же задачу можно решить и при помощи пропорции.
Запишем кратко условие задачи в виде таблицы, обозначив за неизвестную нам
массу сахара буквой х. Смотрите, у нас есть столбик, где мы будем
записывать массу ягод, и столбик, где мы укажем соответствующую массу сахара на
массу ягод. Итак, по условию задачи известно, что по рецепту на 2 кг ягод нужно 3 кг сахара. Нам нужно узнать,
сколько кг сахара потребуется на 5 кг ягод.

Такая зависимость между массой ягод и массой сахара
условно обозначается в таблице одинаково направленными стрелками. Их
направление говорит о том, что если первая величина возрастает (стрелка вверх),
то и вторая тоже возрастает (стрелка тоже вверх).

Задача

Велосипедист, двигаясь с постоянной скоростью,
проехал 10 км за 20
минут. Какой путь проедет велосипедист за 50
минут?

Решение: для наглядности
запишем кратко условие задачи в виде таблицы.

Понятно, что путь увеличится во столько раз, во
сколько раз увеличится время
. Ставим стрелки в одном направлении.

Такие величины, как масса ягод для варенья и масса
сахара, время и пройденный за это время при постоянной скорости путь, и т.д.
называют прямо пропорциональными величинами.

Определение

Две величины называются прямо
пропорциональными, если при увеличении (уменьшении) одной из них в несколько
раз другая увеличивается (уменьшается) во столько же раз
.

Задача

Автомобиль ехал 3 часа
со скоростью 60 км/ч. За какое время он
продет это же расстояние, если будет ехать со скоростью 90 км/ч?

Решение:

Из решения видно, что во сколько раз скорость
автомобиля больше
, во столько раз меньше времени тратится на этот же
путь

Эту же задачу решим при помощи пропорции. Запишем в
таблицу кратко условие задачи. За х обозначим неизвестное нам
время.

Понятно, что чем больше скорость автомобиля, тем
меньше времени ему понадобится на преодоление этого же пути
. Такая
зависимость между скоростью и временем, затраченным на пройденный путь, условно
обозначается в таблице противоположно направленными стрелками. Их
направление говорит о том, что если первая величина возрастает (стрелка вверх),
то вторая убывает (стрелка вниз). Составим пропорцию. Т.к. стрелки направлены в
разные стороны, то второе отношение перевернём.

Задача

5 рабочих выполнили заказ
за 132 часа. За какое время этот же заказ
смогут выполнить 12 рабочих?

Решение:

Понятно, что чем больше будет задействовано
рабочих
, тем быстрее выполнится заказ. Значит, ставим стрелки в
противоположном направлении. Составим пропорцию:

Такие величины, как скорость автомобиля и время, за
которое он проедет определённый путь, число работников и время, за которое они
выполняют заказ, и т.д. называют обратно пропорциональными величинами.

Определение

Две величины называются обратно
пропорциональными, если при увеличении (уменьшении) одной из них в несколько
раз другая уменьшается (увеличивается) во столько же раз
.

Не всякие две величины являются прямо пропорциональными
или обратно пропорциональными.

Например,
возраст человека и размер его обуви не связаны пропорциональной
зависимостью. Зависимость между величинами есть. Размер обуви с возрастом
увеличивается, но не во столько же раз.

Возраст дерева и его высота не связаны
пропорциональной зависимостью. В этом случае зависимость между величинами есть.
Действительно, высота дерева с возрастом увеличивается, но не во столько же
раз.

       

Сегодня мы рассмотрим, какие величины называются обратно пропорциональными, как выглядит график обратной пропорциональности и как все это может вам пригодится не только на уроках математики, но и вне школьных стен.

Такие разные пропорциональности

Пропорциональностью называют две  величины, которые взаимно зависимы друг от друга.

Зависимость может быть прямой и обратной. Следовательно, отношения между величинами описывают прямая и обратная пропорциональность.

Прямая пропорциональность – это такая зависимость двух величин, при которой увеличение либо уменьшение одной из них ведет к увеличению либо уменьшению другой. Т.е. их отношение не изменяется.

Например, чем больше усилий вы прилагаете для подготовки к экзаменам, тем выше ваши оценки.  Или чем больше вещей вы берете с собой в поход, тем тяжелее нести ваш рюкзак. Т.е. количество затраченных на подготовку к экзаменам усилий прямо пропорционально полученным оценкам. И количество запакованных в рюкзак вещей прямо пропорционально его весу.

Обратная пропорциональность – это функциональная зависимость, при которой уменьшение либо увеличение в несколько раз независимой величины (ее называют аргументом) вызывает пропорциональное (т.е. во столько же раз) увеличение либо уменьшение зависимой величины (ее называют функцией).

Проиллюстрируем простым примером. Вы хотите купить на рынке яблок. Яблоки на прилавке и количество денег в вашем кошельке находятся в обратной пропорциональности. Т.е. чем больше вы купите яблок, тем меньше денег у вас останется.

Функция и ее график

Функцию обратной пропорциональности можно описать как y = k/x. В котором x ≠ 0 и k ≠ 0.

Эта функция обладает следующими свойствами:

  1. Областью ее определения является множество всех действительных чисел, кроме x = 0. D(y): (-∞; 0) U (0; +∞).
  2. Областью значений являются все действительные числа, кроме y = 0. Е(у): (-∞; 0) U (0; +∞).
  3. Не имеет наибольших и наименьших значений.
  4. Является нечетной и ее график симметричен относительно начала координат.
  5. Непериодическая.
  6. Ее график не пересекает оси координат.
  7. Не имеет нулей.
  8. Если k > 0 (т.е. аргумент возрастает), функция пропорционально убывает на каждом из своих промежутков. Если k < 0 (т.е. аргумент убывает), функция пропорционально возрастает на каждом из своих промежутков.
  9. При возрастании аргумента (k > 0) отрицательные значения функции находятся в промежутке (-∞; 0), а положительные – (0; +∞). При убывании аргумента (k < 0) отрицательные значения расположены на промежутке (0; +∞), положительные – (-∞; 0).

График функции обратной пропорциональности называется гиперболой. Изображается следующим образом:

График Функции Обратной Пропорциональности

Задачи на обратную пропорциональность

Чтобы стало понятнее, давайте разберем несколько задач. Они не слишком сложные, а их решение поможет вам наглядно представить, что такое обратная пропорциональность и как эти знания могут пригодиться в вашей обычной жизни.

Задача №1. Автомобиль движется со скоростью 60 км/ч. Чтобы доехать до места назначения, ему потребовалось 6 часов. Сколько времени ему потребуется, чтобы преодолеть такое же расстояние, если он будет двигаться со скоростью в 2 раза выше?

Можем начать с того, что запишем формулу, которая описывает отношения времени, расстояния и скорости: t = S/V. Согласитесь, она очень напоминает нам функцию обратной пропорциональности. И свидетельствует о том, что время, которое автомобиль проводит в пути, и скорость, с которой он движется, находятся в обратной пропорциональности.

Чтобы убедиться в этом, давайте найдем V2, которая по условию выше в 2 раза: V2 = 60 * 2 = 120 км/ч. Затем рассчитаем расстояние по формуле S = V * t = 60 * 6 = 360 км. Теперь совсем несложно узнать время t2, которое требуется от нас по условию задачи: t2 = 360/120 = 3 ч.

Как видите время в пути и скорость движения действительно обратно пропорциональны: со скоростью в 2 раза выше изначальной автомобиль потратит в 2 раза меньше времени на дорогу.

Решение этой задачи можно записать и в виде пропорции. Для чего сначала составим такую схему:

↓ 60 км/ч – 6 ч ↑

↓120 км/ч – х ч ↑

Стрелки обозначают обратно пропорциональную зависимость. А также подсказывают, что при составлении пропорции правую часть записи надо перевернуть: 60/120 = х/6. Откуда получаем х = 60 * 6/120 = 3 ч.

Задача №2. В мастерской трудятся 6 рабочих, которые с заданным объемом работы справляются за 4 часа. Если количество рабочих сократить в 2 раза, сколько времени потребуется оставшимся, чтобы выполнить тот же объем работы?

Запишем условия задачи в виде наглядной схемы:

↓ 6 рабочих – 4 ч ↑

↓ 3 рабочих – х ч ↑

Запишем это в виде пропорции: 6/3 = х/4. И получим х = 6 * 4/3 = 8 ч. Если рабочих станет в 2 раза меньше, оставшиеся затратят на выполнение всей работы в 2 раза больше времени.

Задача №3. В бассейн ведут две трубы. Через одну трубу вода поступает со скоростью 2 л/с и наполняет бассейн за 45 минут. Через другую трубу бассейн наполнится за 75 минут. С какой скоростью вода поступает в бассейн через эту трубу?

Для начала приведем все данные нам по условию задачи величины к одинаковым единицам измерения. Для этого выразим скорость наполнения бассейна в литрах в минуту: 2 л/с = 2 * 60 = 120 л/мин.

Поскольку из условия следует, что через вторую трубу бассейн заполняется медленнее, значит, и скорость поступления воды ниже. На лицо обратная пропорциональность. Неизвестную нам скорость выразим через х и составим такую схему:

↓ 120 л/мин – 45 мин ↑

↓ х л/мин – 75 мин ↑

А затем составим пропорцию: 120/х = 75/45, откуда х = 120 * 45/75 = 72 л/мин.

В задаче скорость наполнения бассейна выражена в литрах в секунду, приведем полученный нами ответ к такому же виду: 72/60 = 1,2 л/с.

Задача №4. В небольшой частной типографии печатают визитки. Сотрудник типографии работает со скоростью 42 визитки в час и трудится полный рабочий день – 8 часов. Если бы он работал быстрее и печатал 48 визиток за час, насколько раньше он смог бы уйти домой?

Идем проверенным путем и составляем по условию задачи схему, обозначив искомую величину как х:

↓ 42 визитки/ч – 8 ч ↑

↓ 48 визитки/ч – х ч ↑

Перед нами обратно пропорциональная зависимость: во сколько раз больше визиток в час напечатает сотрудник типографии, во столько же раз меньше времени ему потребуется на выполнение одной и той же работы. Зная это, составим пропорцию:

42/48 = х/8, х = 42 * 8/48 = 7ч.

Таким образом, справившись с работой за 7 часов, сотрудник типографии смогу бы уйти домой на час раньше.

Заключение

Нам кажется, что эти задачи на обратную пропорциональность действительно несложные. Надеемся, что теперь вы тоже считаете их такими. А главное, что знание об обратно пропорциональной зависимости величин действительно может оказаться для вас полезным еще не раз.

Не только на уроках математики и экзаменах. Но и тогда, когда вы соберетесь отправиться в путешествие, пойдете за покупками, решите немного подработать в каникулы и т.п.

Расскажите нам в комментариях, какие примеры обратной и прямой пропорциональной зависимости вы замечаете вокруг себя. Пускай это будет такая игра. Вот увидите, как это увлекательно. Не забудьте «расшарить» эту статью в социальных сетях, чтобы ваши друзья и одноклассники тоже смогли поиграть.

© blog.tutoronline.ru,
при полном или частичном копировании материала ссылка на первоисточник обязательна.

Пропорциональность — это взаимосвязь между двумя величинами, при которой изменение одной из них влечет за собой изменение другой во столько же раз.

Пропорциональность бывает прямой и обратной. В данном уроке мы рассмотрим каждую из них.

Прямая пропорциональность

Предположим, что автомобиль двигается со скоростью 50 км/ч. Мы помним, что скорость это расстояние, пройденное за единицу времени (1 час, 1 минуту или 1 секунду). В нашем примере автомобиль двигается со скоростью 50 км/ч, то есть за один час он будет проезжать расстояние, равное пятидесяти километрам.

Изобразим на рисунке расстояние, пройденное автомобилем за 1 час

рисунок за один час машина проехала 50 км

Пусть автомобиль проехал еще один час с той же скоростью, равной пятидесяти километрам в час. Тогда получится, что автомобиль проедет 100 км

рисунок за два чаас машина проехала 100 км

Как видно из примера, увеличение времени в два раза привело к увеличению пройденного расстояния во столько же раз, то есть в два раза.

Такие величины, как время и расстояние называют прямо пропорциональными. А взаимосвязь между такими величинами называют прямой пропорциональностью.

Прямой пропорциональностью называют взаимосвязь между двумя величинами, при которой увеличение одной из них влечет за собой увеличение другой во столько же раз.

и наоборот, если одна величина уменьшается в определенное число раз, то другая уменьшается во столько же раз.

Предположим, что изначально планировалось проехать на автомобиле 100 км за 2 часа, но проехав 50 км, водитель решил отдохнуть. Тогда получится, что уменьшив расстояние в два раза, время уменьшится во столько же раз. Другими словами, уменьшение пройденного расстояния приведет к уменьшению времени во столько же раз.

Интересная особенность прямо пропорциональных величин заключается в том, что их отношение всегда постоянно. То есть при изменении значений прямо пропорциональных величин, их отношение остается неизменным.

В рассмотренном примере расстояние сначала было равно 50 км, а время одному часу. Отношение расстояния ко времени есть число 50.

отношение пятидесяти км к одному часу

Но мы увеличили время движения в 2 раза, сделав его равным двум часам. В результате пройденное расстояние увеличилось во столько же раза, то есть стало равно 100 км. Отношение ста километров к двум часам опять же есть число 50

отношение ста км к двум часам

Число 50 называют коэффициентом прямой пропорциональности. Он показывает сколько расстояния приходится на час движения. В данном случае коэффициент играет роль скорости движения, поскольку скорость это отношение пройденного расстояния ко времени.

Из прямо пропорциональных величин можно составлять пропорции. К примеру, отношения пятьдесят первых и сто вторых составляют пропорцию:

пять первых равно сто вторых

Это отношение можно прочитать следующим образом:

Пятьдесят километров так относятся к одному часу, как сто километров относятся к двум часам.


Пример 2. Стоимость и количество купленного товара являются прямо пропорциональными величинами. Если 1 кг конфет стоит 30 рублей, то 2 кг этих же конфет обойдутся в 60 рублей, 3 кг в 90 рублей. С увеличением стоимости купленного товара, его количество увеличивается во столько же раз.

Поскольку стоимость товара и его количество являются прямо пропорциональными величинами, то их отношение всегда постоянно.

Запишем чему равно отношение тридцати рублей к одному килограмму

тридвать первых равно тридцать

Теперь запишем чему равно отношение шестидесяти рублей к двум килограммам. Это отношение опять же будет равно тридцати:

шестьдесят вторых равно тридцать

Здесь коэффициентом прямой пропорциональности является число 30. Этот коэффициент показывает сколько рублей приходится на килограмм конфет. В данном примере коэффициент играет роль цены одного килограмма товара, поскольку цена это отношение стоимости товара на его количество.


Обратная пропорциональность

Рассмотрим следующий пример. Расстояние между двумя городами 80 км. Мотоциклист выехал из первого города, и со скоростью 20 км/ч доехал до второго города за 4 часа.

Если скорость мотоциклиста составила 20 км/ч это значит, что каждый час он проезжал расстояние равное двадцати километрам. Изобразим на рисунке расстояние, пройденное мотоциклистом, и время его движения:

расстояние 80 км время 4 ч скорость 20 км в час рисунок 1

На обратном пути скорость мотоциклиста была 40 км/ч, и на тот же путь он затратил 2 часа.

расстояние 80 км время 2 ч скорость 40 км в час рисунок 2

Легко заметить, что при изменении скорости, время движения изменилось во столько же раз. Причем изменилось в обратную сторону — то есть скорость увеличилась, а время наоборот уменьшилось.

Такие величины, как скорость и время называют обратно пропорциональными. А взаимосвязь между такими величинами называют обратной пропорциональностью.

Обратной пропорциональностью называют взаимосвязь между двумя величинами, при которой увеличение одной из них влечет за собой уменьшение другой во столько же раз.

и наоборот, если одна величина уменьшается в определенное число раз, то другая увеличивается во столько же раз.

К примеру, если на обратном пути скорость мотоциклиста составила бы 10 км/ч, то те же 80 км он преодолел бы за 8 часов:

расстояние 80 км время 8 ч скорость 20 км в час рисунок 3

Как видно из примера, уменьшение скорости привело к увеличению времени движения во столько же раз.

Особенность обратно пропорциональных величин заключается в том, что их произведение всегда постоянно. То есть при изменении значений обратно пропорциональных величин, их произведение остается неизменным.

В рассмотренном примере расстояние между городами было равно 80 км. При изменении скорости и времени движения мотоциклиста, это расстояние всегда оставалось неизменным

расстояние 80 км время и скорость все рисунки

Мотоциклист мог проехать это расстояние со скоростью 20 км/ч за 4 часа, и со скоростью 40 км/ч за 2 часа, и со скоростью 10 км/ч за 8 часов. Во всех случаях произведение скорости и времени было равно 80 км

80 км произведение скорости и времени рисунок 5


Понравился урок?
Вступай в нашу новую группу Вконтакте и начни получать уведомления о новых уроках

Возникло желание поддержать проект?
Используй кнопку ниже


Добавить комментарий