Как составить параметрическое уравнение пространства по общему

Параметрические уравнения прямой на плоскости: описание, примеры, решение задач

Одним из подпунктов темы «Уравнение прямой на плоскости» является вопрос составления параметрических уравнений прямой на плоскости в прямоугольной системе координат. В статье ниже рассматривается принцип составления подобных уравнений при определенных известных данных. Покажем, как от параметрических уравнений переходить к уравнениям иного вида; разберем решение типовых задач.

Вывод параметрических уравнений прямой на плоскости

Конкретная прямая может быть определена, если задать точку, которая принадлежит этой прямой, и направляющий вектор прямой.

Допустим, нам задана прямоугольная система координат O x y . А также заданы прямая а с указанием лежащей на ней точки М 1 ( x 1 , y 1 ) и направляющий вектор заданной прямой a → = ( a x , a y ) . Дадим описание заданной прямой a , используя уравнения.

Используем произвольную точку М ( x , y ) и получим вектор М 1 М → ; вычислим его координаты по координатам точек начала и конца: M 1 M → = ( x – x 1 , y – y 1 ) . Опишем полученное: прямая задана множеством точек М ( x , y ) , проходит через точку М 1 ( x 1 , y 1 ) и имеет направляющий вектор a → = ( a x , a y ) . Указанное множество задает прямую только тогда, когда векторы M 1 M → = ( x – x 1 , y – y 1 ) и a → = ( a x , a y ) являются коллинеарными.

Существует необходимое и достаточное условие коллинеарности векторов, которое в данном случае для векторов M 1 M → = ( x – x 1 , y – y 1 ) и a → = ( a x , a y ) возможно записать в виде уравнения:

M 1 M → = λ · a → , где λ – некоторое действительное число.

Уравнение M 1 M → = λ · a → называют векторно-параметрическим уравнением прямой.

В координатной форме оно имеет вид:

M 1 M → = λ · a → ⇔ x – x 1 = λ · a x y – y 1 = λ · a y ⇔ x = x 1 + a x · λ y = y 1 + a y · λ

Уравнения полученной системы x = x 1 + a x · λ y = y 1 + a y · λ носят название параметрических уравнений прямой на плоскости в прямоугольной системе координат. Суть названия в следующем: координаты всех точек прямой возможно определить по параметрическим уравнениям на плоскости вида x = x 1 + a x · λ y = y 1 + a y · λ при переборе всех действительных значений параметра λ

Составление параметрических уравнений прямой на плоскости

Согласно вышесказанному, параметрические уравнения прямой на плоскости x = x 1 + a x · λ y = y 1 + a y · λ определяют прямую линию, которая задана в прямоугольной системе координат, проходит через точку М 1 ( x 1 , y 1 ) и имеет направляющий вектор a → = ( a x , a y ) . Следовательно, если заданы координаты некоторой точки прямой и координаты ее направляющего вектора, то возможно сразу записать параметрические уравнения заданной прямой.

Необходимо составить параметрические уравнения прямой на плоскости в прямоугольной системе координат, если заданы принадлежащая ей точка М 1 ( 2 , 3 ) и ее направляющий вектор a → = ( 3 , 1 ) .

Решение

На основе исходных данных получим: x 1 = 2 , y 1 = 3 , a x = 3 , a y = 1 . Параметрические уравнения будут иметь вид:

x = x 1 + a x · λ y = y 1 + a y · λ ⇔ x = 2 + 3 · λ y = 3 + 1 · λ ⇔ x = 2 + 3 · λ y = 3 + λ

Ответ: x = 2 + 3 · λ y = 3 + λ

Необходимо отметить: если вектор a → = ( a x , a y ) служит направляющим вектором прямой а, а точки М 1 ( x 1 , y 1 ) и М 2 ( x 2 , y 2 ) принадлежат этой прямой, то ее возможно определить, задав параметрическими уравнениями вида: x = x 1 + a x · λ y = y 1 + a y · λ , а также и таким вариантом: x = x 2 + a x · λ y = y 2 + a y · λ .

К примеру, нам заданы направляющий вектор прямой a → = ( 2 , – 1 ) , а также точки М 1 ( 1 , – 2 ) и М 2 ( 3 , – 3 ) , принадлежащие этой прямой. Тогда прямую определяют параметрические уравнения: x = 1 + 2 · λ y = – 2 – λ или x = 3 + 2 · λ y = – 3 – λ .

Следует обратить внимание и на такой факт: если a → = ( a x , a y ) – направляющий вектор прямой a , то ее направляющим вектором будет и любой из векторов μ · a → = ( μ · a x , μ · a y ) , где μ ϵ R , μ ≠ 0 .

Таким образом, прямая а на плоскости в прямоугольной системе координат может быть определена параметрическими уравнениями: x = x 1 + μ · a x · λ y = y 1 + μ · a y · λ при любом значении μ , отличном от нуля.

Допустим, прямая а задана параметрическими уравнениями x = 3 + 2 · λ y = – 2 – 5 · λ . Тогда a → = ( 2 , – 5 ) направляющий вектор этой прямой. А также любой из векторов μ · a → = ( μ · 2 , μ · – 5 ) = 2 μ , – 5 μ , μ ∈ R , μ ≠ 0 станет направляющим вектором для заданной прямой. Для наглядности рассмотрим конкретный вектор – 2 · a → = ( – 4 , 10 ) , ему соответствует значение μ = – 2 . В таком случае заданную прямую можно также определить параметрическими уравнениями x = 3 – 4 · λ y = – 2 + 10 · λ .

Переход от параметрических уравнений прямой на плоскости к прочим уравнениям заданной прямой и обратно

В решении некоторых задач применение параметрических уравнений является не самым оптимальным вариантом, тогда возникает необходимость перевода параметрических уравнений прямой в уравнения прямой другого вида. Рассмотрим, как же это сделать.

Параметрическим уравнениям прямой вида x = x 1 + a x · λ y = y 1 + a y · λ будет соответствовать каноническое уравнение прямой на плоскости x – x 1 a x = y – y 1 a y .

Разрешим каждое из параметрических уравнений относительно параметра λ , приравняем правые части полученных равенств и получим каноническое уравнение заданной прямой:

x = x 1 + a x · λ y = y 1 + a y · λ ⇔ λ = x – x 1 a x λ = y – y 1 a y ⇔ x – x 1 a x = y – y 1 a y

При этом не должно смущать, если a x или a y будут равны нулю.

Необходимо осуществить переход от параметрических уравнений прямой x = 3 y = – 2 – 4 · λ к каноническому уравнению.

Решение

Запишем заданные параметрические уравнения в следующем виде: x = 3 + 0 · λ y = – 2 – 4 · λ

Выразим параметр λ в каждом из уравнений: x = 3 + 0 · λ y = – 2 – 4 · λ ⇔ λ = x – 3 0 λ = y + 2 – 4

Приравняем правые части системы уравнений и получим требуемое каноническое уравнение прямой на плоскости:

x – 3 0 = y + 2 – 4

Ответ: x – 3 0 = y + 2 – 4

В случае, когда необходимо записать уравнение прямой вида A x + B y + C = 0 , при этом заданы параметрические уравнения прямой на плоскости, необходимо сначала осуществить переход к каноническому уравнению, а затем к общему уравнению прямой. Запишем всю последовательность действий:

x = x 1 + a x · λ y = y 1 + a y · λ ⇔ λ = x – x 1 a x λ = y – y 1 a y ⇔ x – x 1 a x = y – y 1 a y ⇔ ⇔ a y · ( x – x 1 ) = a x · ( y – y 1 ) ⇔ A x + B y + C = 0

Необходимо записать общее уравнение прямой, если заданы определяющие ее параметрические уравнения: x = – 1 + 2 · λ y = – 3 · λ

Решение

Для начала осуществим переход к каноническому уравнению:

x = – 1 + 2 · λ y = – 3 · λ ⇔ λ = x + 1 2 λ = y – 3 ⇔ x + 1 2 = y – 3

Полученная пропорция идентична равенству – 3 · ( x + 1 ) = 2 · y . Раскроем скобки и получим общее уравнение прямой: – 3 · x + 1 = 2 · y ⇔ 3 x + 2 y + 3 = 0 .

Ответ: 3 x + 2 y + 3 = 0

Следуя вышеуказанной логике действий, для получения уравнения прямой с угловым коэффициентом, уравнения прямой в отрезках или нормального уравнения прямой необходимо получить общее уравнение прямой, а от него осуществлять дальнейший переход.

Теперь рассмотрим обратное действие: запись параметрических уравнений прямой при другом заданном виде уравнений этой прямой.

Самый простой переход: от канонического уравнения к параметрическим. Пусть задано каноническое уравнение вида: x – x 1 a x = y – y 1 a y . Каждое из отношений этого равенства примем равным параметру λ :

x – x 1 a x = y – y 1 a y = λ ⇔ λ = x – x 1 a x λ = y – y 1 a y

Разрешим полученные уравнения относительно переменных x и y :

x = x 1 + a x · λ y = y 1 + a y · λ

Необходимо записать параметрические уравнения прямой, если известно каноническое уравнение прямой на плоскости: x – 2 5 = y – 2 2

Решение

Приравняем части известного уравнения к параметру λ : x – 2 5 = y – 2 2 = λ . Из полученного равенства получим параметрические уравнения прямой: x – 2 5 = y – 2 2 = λ ⇔ λ = x – 2 5 λ = y – 2 5 ⇔ x = 2 + 5 · λ y = 2 + 2 · λ

Ответ: x = 2 + 5 · λ y = 2 + 2 · λ

Когда необходимо осуществить переход к параметрическим уравнениям от заданного общего уравнения прямой, уравнения прямой с угловым коэффициентом или уравнения прямой в отрезках, необходимо исходное уравнение привести к каноническому, а после осуществлять переход к параметрическим уравнениям.

Необходимо записать параметрические уравнения прямой при известном общем уравнении этой прямой: 4 x – 3 y – 3 = 0 .

Решение

Заданное общее уравнение преобразуем в уравнение канонического вида:

4 x – 3 y – 3 = 0 ⇔ 4 x = 3 y + 3 ⇔ ⇔ 4 x = 3 y + 1 3 ⇔ x 3 = y + 1 3 4

Приравняем обе части равенства к параметру λ и получим требуемые параметрические уравнения прямой:

x 3 = y + 1 3 4 = λ ⇔ x 3 = λ y + 1 3 4 = λ ⇔ x = 3 · λ y = – 1 3 + 4 · λ

Ответ: x = 3 · λ y = – 1 3 + 4 · λ

Примеры и задачи с параметрическими уравнениями прямой на плоскости

Рассмотрим чаще всего встречаемые типы задач с использованием параметрических уравнений прямой на плоскости в прямоугольной системе координат.

  1. В задачах первого типа заданы координаты точек, принадлежащих или нет прямой, описанной параметрическими уравнениями.

Решение таких задач опирается на следующий факт: числа ( x , y ) , определяемые из параметрических уравнений x = x 1 + a x · λ y = y 1 + a y · λ при некотором действительном значении λ , являются координатами точки, принадлежащей прямой, которая описывается этими параметрическими уравнениями.

Необходимо определить координаты точки, которая лежит на прямой, заданной параметрическими уравнениями x = 2 – 1 6 · λ y = – 1 + 2 · λ при λ = 3 .

Решение

Подставим в заданные параметрические уравнения известное значение λ = 3 и осуществим вычисление искомых координат: x = 2 – 1 6 · 3 y = – 1 + 2 · 3 ⇔ x = 1 1 2 y = 5

Ответ: 1 1 2 , 5

Также возможна следующая задача: пусть задана некоторая точка M 0 ( x 0 , y 0 ) на плоскости в прямоугольной системе координат и нужно определить, принадлежит ли эта точка прямой, описываемой параметрическими уравнениями x = x 1 + a x · λ y = y 1 + a y · λ .

Чтобы решить подобную задачу, необходимо подставить координаты заданной точки в известные параметрические уравнения прямой. Если будет определено, что возможно такое значение параметра λ = λ 0 , при котором будут верными оба параметрических уравнения, тогда заданная точка является принадлежащей заданной прямой.

Заданы точки М 0 ( 4 , – 2 ) и N 0 ( – 2 , 1 ) . Необходимо определить, являются ли они принадлежащими прямой, определенной параметрическими уравнениями x = 2 · λ y = – 1 – 1 2 · λ .

Решение

Подставим координаты точки М 0 ( 4 , – 2 ) в заданные параметрические уравнения:

4 = 2 · λ – 2 = – 1 – 1 2 · λ ⇔ λ = 2 λ = 2 ⇔ λ = 2

Делаем вывод, что точка М 0 принадлежит заданной прямой, т.к. соответствует значению λ = 2 .

Далее по аналогии проверим заданную точку N 0 ( – 2 , 1 ) , подставив ее координаты в заданные параметрические уравнения:

– 2 = 2 · λ 1 = – 1 – 1 2 · λ ⇔ λ = – 1 λ = – 4

Очевидно, что не существует такого параметра λ , которому будет соответствовать точка N 0 . Другими словами, заданная прямая не проходит через точку N 0 ( – 2 , 1 ) .

Ответ: точка М 0 принадлежит заданной прямой; точка N 0 не принадлежит заданной прямой.

  1. В задачах второго типа требуется составить параметрические уравнения прямой на плоскости в прямоугольной системе координат. Самый простой пример такой задачи (при известных координатах точки прямой и направляющего вектора) был рассмотрен выше. Теперь разберем примеры, в которых сначала нужно найти координаты направляющего вектора, а потом записать параметрические уравнения.

Пример 8

Задана точка M 1 1 2 , 2 3 . Необходимо составить параметрические уравнения прямой, проходящей через эту точку и параллельной прямой x 2 = y – 3 – 1 .

Решение

По условию задачи прямая, уравнение которой нам предстоит опередить, параллельна прямой x 2 = y – 3 – 1 . Тогда в качестве направляющего вектора прямой, проходящей через заданную точку, возможно использовать направляющий вектор прямой x 2 = y – 3 – 1 , который запишем в виде: a → = ( 2 , – 1 ) . Теперь известны все необходимые данные для того, чтобы составить искомые параметрические уравнения:

x = x 1 + a x · λ y = y 1 + a y · λ ⇔ x = 1 2 + 2 · λ y = 2 3 + ( – 1 ) · λ ⇔ x = 1 2 + x · λ y = 2 3 – λ

Ответ: x = 1 2 + x · λ y = 2 3 – λ .

Задана точка М 1 ( 0 , – 7 ) . Необходимо записать параметрические уравнения прямой, проходящей через эту точку перпендикулярно прямой 3 x – 2 y – 5 = 0 .

Решение

В качестве направляющего вектора прямой, уравнение которой надо составить, возможно взять нормальный вектор прямой 3 x – 2 y – 5 = 0 . Его координаты ( 3 , – 2 ) . Запишем требуемые параметрические уравнения прямой:

x = x 1 + a x · λ y = y 1 + a y · λ ⇔ x = 0 + 3 · λ y = – 7 + ( – 2 ) · λ ⇔ x = 3 · λ y = – 7 – 2 · λ

Ответ: x = 3 · λ y = – 7 – 2 · λ

  1. В задачах третьего типа требуется осуществить переход от параметрических уравнений заданной прямой к прочим видам уравнений, которые ее определяют. Решение подобных примеров мы рассматривали выше, приведем еще один.

Пример 10

Дана прямая на плоскости в прямоугольной системе координат, определяемая параметрическими уравнениями x = 1 – 3 4 · λ y = – 1 + λ . Необходимо найти координаты какого-либо нормального вектора этой прямой.

Решение

Чтобы определить искомые координаты нормального вектора, осуществим переход от параметрических уравнений к общему уравнению:

x = 1 – 3 4 · λ y = – 1 + λ ⇔ λ = x – 1 – 3 4 λ = y + 1 1 ⇔ x – 1 – 3 4 = y + 1 1 ⇔ ⇔ 1 · x – 1 = – 3 4 · y + 1 ⇔ x + 3 4 y – 1 4 = 0

Коэффициенты переменных x и y дают нам требуемые координаты нормального вектора. Таким образом, нормальный вектор прямой x = 1 – 3 4 · λ y = – 1 + λ имеет координаты 1 , 3 4 .

Параметрическое уравнение прямой на плоскости

В данной статье мы рассмотрим параметрическое уравнение прямой на плоскости. Приведем примеры построения параметрического уравнения прямой, если известны две точки этой прямой или если известна одна точка и направляющий вектор этой прямой. Представим методы преобразования уравнения в параметрическом виде в канонический и общий виды.

Параметрическое уравнение прямой L на плоскости представляется следующей формулой:

(1)

Отметим что при записи уравнения прямой в параметрическом виде, направляющий вектор прямой не должен быть нулевым вектором, т.е хотя бы один координат направляющего вектора q должен быть отличным от нуля.

Для построения прямой на плоскости в декартовой прямоугольной системе координат, заданной параметрическим уравнением (1), достаточно задать параметру t две разные значения, вычислить x и y и провести через эти точки прямую линию. При t=0 имеем точку M1(x1, y1) при t=1, получим точку M2(x1+m, y1+p).

Для составления параметрического уравнения прямой на плоскости L достаточно иметь точку на прямой L и направляющий вектор прямой или две точки, принадлежащие прямой L. В первом случае, для построения параметрического уравнения прямой нужно координаты точки и направляющего вектора вставить в уравнение (1). Во втором случае сначала нужно найти направляющий вектор прямой q=<m, p>, вычисляя разности соответствующих координатов точек M1 и M2: m=x2x1, p=y2y1(Рис.1). Далее, аналогично первому случаю, подставить координаты одной из точек (не имеет значение какой именно) и направляющего вектора q прямой в (1).

Можно также вывести формулу параметрического уравнения прямой, проходящей через две точки. Для этого подставим значения m=x2x1, p=y2y1 в (1), получим параметрическое уравнение прямой на плоскости, проходящей через точки M1(x1, y1) и M2(x2, y2):

(2)

Пример 1. Прямая проходит через точку M=(3,−1) и имеет направляющий вектор q=<−3, 5>. Построить параметрическое уравнение прямой.

Решение. Для построения параметрического уравнения прямой, подставим координаты точки и направляющего вектора в уравнение (1):

Пример 2. Прямая проходит через точки M1=(−5, 2) и M2=(−2, 3). Построить параметрическое уравнение прямой.

Решение. Воспользуемся формулой (2). Подставим координаты точек M1 и M2 в уравнение (2):

Упростим полученное уравнение:

Приведение параметрического уравнения на плоскости к каноническому виду

Выразим параметр t в (1) через переменные x и y:

(3)

Из выражений (3), можем записать каноническое уравнение прямой на плоскости:

. (4)

Обратное преобразование смотрите здесь.

Пример 3. Прямая на плоскости представлена следующим параметрческим уравнением:

Привести данное уравнение прямой к каноническому виду.

Решение: Выразим параметр t через переменные x и y:

(5)

Из выражений (5), можем записать:

Приведение параметрического уравнения на плоскости к общему виду

Для приведения параметрического уравнения прямой на плоскости к общему виду, в формулах (1) выразим из второго уравнения параметр t через переменную y и подставим в первое уравнение:

(6)

Умножим обе части уравнения (6) на p и группируем элементы уравнения:

. (7)

Сделаем обозначения: A=p, B=−m, C=−px1+my1. Тогда получим общее уравнение прямой:

Обратное преобразование смотрите здесь.

Пример 4. Прямая на плоскости представлена следующим параметрческим уравнением:

(9)

Привести данное уравнение прямой к общему виду.

Решение: В уравнении (9) имеем: x1=−5, y1=0, m=4, p=−2. Подставим эти значения в формулу (7):

(10)

Упростив выражение (10) получим общее уравнение прямой (9):

Параметрическое уравнение прямой. Параметрическое уравнение прямой в пространстве

Прямая вместе с точкой являются важными элементами геометрии, с помощью которых строятся многие фигуры в пространстве и на плоскости. В данной статье подробно рассматривается параметрическое уравнение прямой, а также его связь с другими типами уравнений для этого геометрического элемента.

Прямая и уравнения для ее описания

Прямая в геометрии представляет собой совокупность точек, которые соединяют произвольные две точки пространства отрезком с наименьшей длиной. Этот отрезок является частью прямой. Любые другие кривые, соединяющие зафиксированные две точки в пространстве, будут иметь большую длину, поэтому прямыми не являются.

Вам будет интересно: Тайны “Аненербе”: история, артефакты, архивы

На рисунке выше показаны две черные точки. Синяя линия, соединяющая их, является прямой, а красная – кривой. Очевидно, что длина красной линии между черными точками больше, чем синей.

Существуют несколько видов уравнений прямой, с помощью которых можно описать прямую в трехмерном пространстве или в двумерном. Ниже приведены названия этих уравнений:

  • векторное;
  • параметрическое;
  • в отрезках;
  • симметричное или каноническое;
  • общего типа.

Вам будет интересно: Нейтральная лексика – это. Определение, понятие, значение и примеры

В данной статье рассмотрим параметрическое уравнение прямой, однако выведем его из векторного. Также покажем связь параметрического и симметричного или канонического уравнений.

Уравнение векторное

Понятно, что все приведенные типы уравнений для рассматриваемого геометрического элемента связаны между собой. Тем не менее векторное уравнение является базовым для всех них, поскольку оно непосредственно следует из определения прямой. Рассмотрим, как оно вводится в геометрию.

Допустим, дана точка в пространстве P(x0; y0; z0). Известно, что эта точка принадлежит прямой. Сколько прямых можно провести через нее? Бесконечное множество. Поэтому для того, чтобы можно было провести единственную прямую, необходимо задать направление последней. Направление, как известно, определяется вектором. Обозначим его v¯(a; b; c), где символы в скобках – это его координаты. Для каждой точки Q(x; y; z), которая находится на рассматриваемой прямой, можно записать равенство:

(x; y; z) = (x0; y0; z0) + α × (a; b; c)

Здесь символ α является параметром, принимающим абсолютно любое действительное значение (умножение вектора на число может изменить только его модуль или направление на противоположное). Это равенство называется векторным уравнением для прямой в трехмерном пространстве. Изменяя параметр α, мы получаем все точки (x; y; z), которые образуют эту прямую.

Вам будет интересно: А. Пушкин “Песнь о вещем Олеге”: жанр и идея

Стоящий в уравнении вектор v¯(a; b; c) называется направляющим. Прямая не имеет конкретного направления, а ее длина является бесконечной. Эти факты означают, что любой вектор, полученный из v¯ с помощью умножения на действительное число, также будет направляющим для прямой.

Что касается точки P(x0; y0; z0), то вместо нее в уравнение можно подставить произвольную точку, которая лежит на прямой, и последняя при этом не изменится.

Рисунок выше демонстрирует прямую (синяя линия), которая задана в пространстве через направляющий вектор (красный направленный отрезок).

Не представляет никакого труда получить подобное равенство для двумерного случая. Используя аналогичные рассуждения приходим к выражению:

(x; y) = (x0; y0) + α × (a; b)

Видим, что оно полностью такое же, как и предыдущее, только используются две координаты вместо трех для задания точек и векторов.

Уравнение параметрическое

Сначала получим в пространстве параметрическое уравнение прямой. Выше, когда записывалось векторное равенство, уже упоминалось о параметре, который в нем присутствует. Чтобы получить параметрическое уравнение, достаточно раскрыть векторное. Получаем:

Совокупность этих трех линейных равенств, в каждом из которых имеется одна переменная координата и параметр α, принято называть параметрическим уравнением прямой в пространстве. По сути, мы не сделали ничего нового, а просто явно записали смысл соответствующего векторного выражения. Отметим лишь один момент: число α, хотя и является произвольным, но оно для всех трех равенств одинаковое. Например, если α = -1,5 для 1-го равенства, то такое же его значение следует подставить во второе и в третье равенства при определении координат точки.

Параметрическое уравнение прямой на плоскости подобно таковому для пространственного случая. Оно записывается в виде:

Таким образом, чтобы составить параметрическое уравнение прямой, следует записать в явном виде векторное уравнение для нее.

Получение уравнения канонического

Как выше было отмечено, все уравнения, задающие прямую в пространстве и на плоскости, получаются одно из другого. Покажем, как получить из параметрического уравнения прямой каноническое. Для пространственного случая имеем:

Выразим параметр в каждом равенстве:

Поскольку левые части являются одинаковыми, тогда правые части равенств тоже равны друг другу:

(x – x0) / a = (y – y0) / b = (z – z0) / c

Это и есть каноническое уравнение для прямой в пространстве. Значение знаменателя в каждом выражении является соответствующей координатой направляющего вектора. Значения в числителе, которые вычитаются из каждой переменной, представляют собой координаты точки, принадлежащей этой прямой.

Соответствующее уравнение для случая на плоскости примет вид:

(x – x0) / a = (y – y0) / b

Дальше в статье решим несколько задач, используя полученные знания.

Уравнение прямой через 2 точки

Известно, что две фиксированные точки как на плоскости, так и в пространстве однозначно задают прямую. Предположим, что заданы две следующие точки на плоскости:

Как составить уравнение прямой через них? Для начала следует определить направляющий вектор. Его координаты имеют следующие значения:

PQ¯(x2 – x1; y2 – y1)

Теперь можно записать уравнение в любом из трех видов, которые были рассмотрены в пунктах выше. Например, параметрическое уравнение прямой принимает вид:

x = x1 + α × (x2 – x1);

y = y1 + α × (y2 – y1)

В канонической форме можно переписать его так:

(x – x1 ) / (x2 – x1) = (y – y1) / (y2 – y1)

Видно, что в каноническое уравнение входят координаты обеих точек, причем в числителе можно менять эти точки. Так, последнее уравнение можно переписать следующим образом:

(x – x2) / (x2 – x1) = (y – y2) / (y2 – y1)

Все записанные выражения называются уравнениями прямой через 2 точки.

Задача с тремя точками

Даны координаты следующих трех точек:

Необходимо определить, лежат эти точки на одной прямой или нет.

Решать эту задачу следует так: сначала составить уравнение прямой для любых двух точек, а затем подставить в него координаты третьей и проверить, удовлетворяют ли они полученному равенству.

Составляем уравнение через M и N в параметрической форме. Для этого применим полученную в пункте выше формулу, которую обобщим на трехмерный случай. Имеем:

Теперь подставим в эти выражения координаты точки K и найдем значение параметра альфа, который им соответствует. Получаем:

1 = 5 + α × (-3) => α = 4/3;

-1 = 3 + α × (-1) => α = 4;

-5 = -1 + α × 1 => α = -4

Мы выяснили, что все три равенства будут справедливы, если каждое из них примет отличающееся от других значение параметра α. Последний факт противоречит условию параметрического уравнения прямой, в котором α должны быть равны для всех уравнений. Это означает, что точка K прямой MN не принадлежит, а значит, все три точки на одной прямой не лежат.

Задача на параллельность прямых

Даны два уравнения прямых в параметрическом виде. Они представлены ниже:

Необходимо определить, являются ли прямые параллельными. Проще всего определить параллельность двух прямых с использованием координат направляющих векторов. Обращаясь к общей формуле параметрического уравнения в двумерном пространстве, получаем, что направляющие вектора каждой прямой будут иметь координаты:

Два вектора являются параллельными, если один из них можно получить путем умножения другого на некоторое число. Разделим попарно координаты векторов, получим:

Это означает что:

Направляющие вектора v2¯ и v1¯ параллельны, значит, прямые в условии задачи тоже являются параллельными.

Проверим, не являются ли они одной и той же прямой. Для этого нужно подставить координаты любой точки в уравнение для другой. Возьмем точку (-1; 3), подставим ее в уравнение для второй прямой:

-1 = 2 – 6 × λ => λ = 1/2;

3 = 4 – 3,6 × λ => λ ≈ 0,28

То есть прямые являются разными.

Задача на перпендикулярность прямых

Даны уравнения двух прямых:

Перпендикулярны ли эти прямые?

Две прямые будут перпендикулярны, если скалярное произведение их направляющих векторов равно нулю. Выпишем эти вектора:

Найдем их скалярное произведение:

(v1¯ × v2¯) = 2 × 6 + 3 × (-4) = 12 – 12 = 0

Таким образом, мы выяснили, что рассмотренные прямые перпендикулярны. Они изображены на рисунке выше.

[spoiler title=”источники:”]

http://matworld.ru/analytic-geometry/parametricheskoe-uravnenie-prjamoj.php

http://1ku.ru/obrazovanie/39797-parametricheskoe-uravnenie-prjamoj-parametricheskoe-uravnenie-prjamoj-v-prostranstve/

[/spoiler]

Уравнения плоскости, компланарной двум неколлинеарным векторам

Напомним, что три или более векторов называются компланарными, если существует плоскость, которой они параллельны. Эту плоскость будем называть компланарной заданным векторам.

Направляющими векторами плоскости называются два неколлинеарных вектора, компланарных этой плоскости, т.е. принадлежащих плоскости или параллельных ей.

Пусть в координатном пространстве Oxyz заданы:

а) точка M_{0}(x_{0},y_{0},z_{0});

Направляющие векторы плоскости

б) два неколлинеарных вектора vec{p}_{1}=a_{1}vec{i}+b_{1}vec{j}+c_{1}vec{k},~vec{p}_{2}=a_{2}vec{i}+b_{2}vec{j}+c_{2}vec{k} (рис.4.15).

Требуется составить уравнение плоскости, компланарной векторам vec{p}_{1},,vec{p}_{2} и проходящей через точку M_{0}(x_{0},y_{0},z_{0}).

Выберем на плоскости произвольную точку M(x,y,z). Обозначим vec{r}=overrightarrow{OM}, vec{r}_{0}=overrightarrow{OM_{0}}, — радиус-векторы точек M(x,y,z) и M_{0}(x_{0},y_{0},z_{0}) (рис.4.16).

Условие компланарности векторов overrightarrow{M_{0}M},,vec{p}_{1},,vec{p}_{2} (рис.4.16) можно записать, используя свойства смешанного произведения langleoverrightarrow{M_{0}M},vec{p}_{1},vec{p}_{2}rangle=0. Применяя формулу (1.17), получаем уравнение плоскости, проходящей через заданную точку и компланарной двум неколлинеарным векторам:

begin{vmatrix}x-x_{0}&y-y_{0}&z-z_{0}\a_{1}&b_{1}&c_{1}\a_{2}&b_{2}&c_{2}end{vmatrix}=0,.

(4.18)


Параметрическое уравнение плоскости

Параметрическое уравнение плоскости

Пусть в координатном пространстве Oxyz заданы:

а) точка M_{0}(x_{0},y_{0},z_{0});

б) два неколлинеарных вектора vec{p}_{1}=a_{1}vec{i}+b_{1}vec{j}+c_{1}vec{k},~vec{p}_{2}=a_{2}vec{i}+b_{2}vec{j}+c_{2}vec{k} (рис.4.15).

Требуется составить параметрическое уравнение вида (4.10) плоскости, компланарной векторам vec{p}_{1},,vec{p}_{2} и проходящей через точку M_{0}(x_{0},y_{0},z_{0}).

Выберем на плоскости произвольную точку M(x,y,z). Обозначим vec{r}=overrightarrow{OM}, vec{r}_{0}=overrightarrow{OM_{0}} -радиус-векторы точек M(x,y,z) и M_{0}(x_{0},y_{0},z_{0}) (рис.4.16).

Точка M принадлежит заданной плоскости тогда и только тогда, когда векторы overrightarrow{M_{0}M}, vec{p}_{1} и vec{p}_{2} компланарны (см. разд. 1.3.2). Запишем условие компланарности: overrightarrow{M_{0}M}=t_{1}vec{p}_{1}+t_{2}vec{p}_{2}, где t_{1},,t_{2} — некоторые действительные числа (параметры). Учитывая, что overrightarrow{M_{0}M}=vec{r}-vec{r}_{0}, получим векторное параметрическое уравнение плоскости:

vec{r}=vec{r}_{0}+t_{1}cdotvec{p}_{1}+t_{2}vec{p}_{2}, quad t_{1},t_{2}inmathbb{R},,

(4.19)

где vec{p}_{1},,vec{p}_{2} — направляющие векторы плоскости, а vec{r}_{0} — радиус-вектор точки, принадлежащей плоскости.

Координатная форма записи уравнения (4.19) называется параметрическим уравнением плоскости:

begin{cases} x= x_{0}+a_{1}cdot t_{1}+a_{2}cdot t_{2},\ y= y_{0}+b_{1}cdot t_{1}+b_{2}cdot t_{2},\ z= z_{0}+c_{1}cdot t_{1}+c_{2}cdot t_{2}, end{cases}t_{1},t_{2}inmathbb{R},,

(4.20)

где a_{1},b_{1},c_{1} и a_{2},b_{2},c_{2} — координаты направляющих векторов vec{p}_{1} и vec{p}_{2} соответственно. Параметры t_{1},,t_{2} в уравнениях (4.19),(4.20) имеют следующий геометрический смысл: величины t_{1},,t_{2} пропорциональны расстоянию от заданной точки M_{0}(x_{0},y_{0},z_{0}) до точки M(x,y,z), принадлежащей плоскости. При t_{1}=t_{2}=0 точка M(x,y,z) совпадает с заданной точкой M_{0}. При возрастании t_{1} (или t_{2}) точка M(x,y,z) перемещается в направлении вектора vec{p}_{1} (или vec{p}_{2}), а при убывании t_{1} (или t_{2}) — в противоположном направлении.


Замечания 4.4.

1. Поскольку направляющие векторы плоскости неколлинеарны, то они ненулевые.

2. Любой вектор vec{p}=avec{i}+bvec{j}+cvec{k}, коллинеарный плоскости, ортогонален нормальному вектору vec{n}=Avec{i}+Bvec{j}+Cvec{k} для этой плоскости. Поэтому их скалярное произведение равно нулю:

langlevec{p},vec{n}rangle=acdot A+bcdot B+ccdot C=0.

Следовательно, координаты a_{1},b_{1},c_{1} и a_{2},b_{2},c_{2} направляющих векторов vec{p}_{1} и vec{p}_{2} плоскости и ее нормали связаны однородными уравнениями:

a_{1}cdot A+b_{1}cdot B+c_{1}cdot C=0, quad a_{2}cdot A+b_{2}cdot B+c_{2}cdot C=0.

3. Направляющие векторы плоскости определяются неоднозначно.

4. Для перехода от общего уравнения плоскости (4.15) Acdot x+Bcdot y+Ccdot z+D=0 к параметрическому (4.20) нужно выполнить следующие действия:

1) найти любое решение (x_{0},y_{0},z_{0}) уравнения Ax+By+Cz+D=0, определяя тем самым координаты точки M_{0}(x_{0},y_{0},z_{0}), принадлежащей плоскости;

2) найти любые два линейно независимых решения (a_{1},b_{1},c_{1}), (a_{2},b_{2},c_{2}) однородного уравнения Acdot a+Bcdot b+Ccdot c=0 определяя тем самым координаты решения (a_{1},b_{1},c_{1}) и (a_{2},b_{2},c_{2}) направляющих векторов vec{p}_{1} и vec{p}_{2} плоскости;

3) записать параметрическое уравнение (4.20).

5. Чтобы перейти от параметрического уравнения плоскости к общему, достаточно либо записать уравнение (4.18) и раскрыть определитель, либо найти нормаль как результат векторного произведения направляющих векторов:

vec{n}= Bigl[vec{p}_{1},vec{p}_{2}Bigr]= begin{vmatrix} vec{i}&vec{j}&vec{k}\a_{1}&b_{1}&c_{1}\a_{2}&b_{2}&c_{2} end{vmatrix}= underbrace{begin{vmatrix}b_{1}&c_{1}\b_{2}&c_{2}end{vmatrix}}_{A}cdot vec{i}- underbrace{begin{vmatrix}a_{1}&c_{1}\a_{2}&c_{2}end{vmatrix}}_{B}cdot vec{j}+ underbrace{begin{vmatrix}a_{1}&b_{1}\a_{2}&b_{2}end{vmatrix}}_{C}cdot vec{k},,

и записать общее уравнение плоскости в форме (4.14):

Acdot(x-x_{0})+Bcdot(y-y_{0})+Ccdot(z-z_{0})=0,.

6. Векторное параметрическое уравнение плоскости (4.19), полученное в прямоугольной системе координат, имеет тот же вид в любой другой аффинной системе координат. Геометрический смысл коэффициентов в уравнении остается прежним.


Пример 4.8. В координатном пространстве Oxyz (в прямоугольной системе координат) заданы точки K(1;2;3) и L(5;0;1) (см. рис.4.11). Требуется:

а) составить параметрическое уравнение плоскости, перпендикулярной отрезку KL и проходящей через его середину;

б) составить общее уравнение плоскости, проходящей через середину отрезка KL и компланарной радиус-векторам overrightarrow{OK} и overrightarrow{OL}.

Решение. а) Общее уравнение искомой плоскости было получено в примере 4.5: 2x-y-z-3=0. Составим параметрическое уравнение:

1) находим любое решение уравнения 2x-y-z-3=0, например, x_{0}=y_{0}=0, z_{0}=-3, следовательно, точка M_{0}(0;0;-3) принадлежит плоскости;

2) находим два линейно независимых (непропорциональных) решения однородного уравнения 2x-y-z=0 например (1;1;1) и (0;1;-1), следовательно, векторы vec{p}_{1}=vec{i}+vec{j}+vec{k}, vec{p}_{2}=vec{j}-vec{k}, являются направляющими для плоскости;

3) записываем параметрическое уравнение плоскости (4.20):

begin{cases}x=0+1cdot t_{1}+0cdot t_{2},\ y=0+1cdot t_{1}+1cdot t_{2},\ z=-3+1cdot t_{1}+(-1)cdot t_{2}, end{cases}Leftrightarrow quad! begin{cases}x=t_{1},\ y=t_{1}+t_{2},\ z=-3+t_{1}-t_{2},end{cases} t_{1},t_{2}inmathbb{R},.

б) Координаты середины M(3;1;2) отрезка KL были найдены в примере 4.5. Нормаль к искомой плоскости получим как векторное произведение ее направляющих векторов overrightarrow{OK}=vec{i}+2vec{j}+3vec{k}, и overrightarrow{OL}=5vec{i}+vec{k},:

vec{n}= begin{bmatrix}overrightarrow{OK},overrightarrow{OL}end{bmatrix}= begin{vmatrix}vec{i}&vec{j}&vec{k}\ 1&2&3\ 5&0&1end{vmatrix} = 2cdotvec{i}+14cdotvec{j}-10cdotvec{k},.

Составляем уравнение (4.14):

2cdot(x-3)+14cdot(y-1)-10cdot(z-2)=0 quad Leftrightarrow quad 2cdot x+14cdot y-10cdot z=0.

Тот же результат можно получить, записывая уравнение (4.18):

begin{vmatrix}x-3&y-1&z-2\ 1&2&3\ 5&0&1end{vmatrix}=0 quad Leftrightarrow quad 2cdot x+14cdot y-10cdot z=0.

Математический форум (помощь с решением задач, обсуждение вопросов по математике).

Кнопка "Поделиться"

Если заметили ошибку, опечатку или есть предложения, напишите в комментариях.

3.1. Канонические
уравнения прямой.

Пусть в системе
координат Oxyz
дана прямая, которая проходит через
точку

(см. рис.18).Обозначим через
вектор, параллельный данной прямой.
Векторназываетсянаправляющим
вектором прямой.

Возьмем на прямой точку и рассмотрим вектор
Векторыколлинеарны, следовательно, их
соответствующие координаты пропорциональны:

(3.3.1)

Эти уравнения
называются каноническими
уравнениями
прямой.

Пример: Написать
уравнения прямой, проходящей через
точку M(1,
2, –1) параллельно вектору

Решение:
Вектор
является направляющим вектором искомой
прямой. Применяя формулы (3.1.1), получим:

Это канонические
уравнения прямой.

Замечание:
Обращение в нуль одного из знаменателей
означает обращение в нуль соответствующего
числителя, то есть y
– 2 = 0; y
= 2. Данная прямая лежит в плоскости y
= 2, параллельной плоскости Oxz.

3.2.
Параметрические
уравнения прямой.

Пусть прямая
задана каноническими уравнениями

Обозначим тогдаВеличина t
называется параметром и может принимать
любые значения:
.

Выразим x,
y
и z
через t
:

(3.2.1)

Полученные уравнения
называются параметрическими
уравнениями прямой.

Пример 1:
Составить
параметрические уравнения прямой,
проходящей через точку M
(1, 2, –1) параллельно вектору

Решение:
Канонические уравнения этой прямой
получены в примере пункта 3.1:

Для нахождения
параметрических уравнений прямой
применим вывод формул (3.2.1):

Итак,
– параметрические уравнения данной
прямой.

Ответ:

Пример 2.
Составить
параметрические уравнения прямой,
проходящей через точку M
(–1, 0, 1) параллельно вектору
гдеA
(2, 1, –1), B
(–1, 3, 2).

Решение:
Вектор является направляющим
вектором искомой прямой.

Найдем вектор .

= (–3; 2; 3). По формулам
(3.2.1) запишем уравнения прямой:

– это искомые
параметрические уравнения прямой.

3.3. Уравнения
прямой, проходящей через две заданные
точки.

Через две заданные
точки в пространстве проходит единственная
прямая (см. рис.20). Пусть даны точки
Векторможно принять за направляющий вектор
данной прямой. Тогда уравнения прямой
находим
по формулам (3.1.1):).

(3.3.1)

Пример 1.
Составить канонические и параметрические
уравнения прямой, проходящей через
точки

Решение:

Применяем
формулу (3.3.1)

Получили канонические
уравнения прямой. Для получения
параметрических уравнений применим
вывод формул (3.2.1). Получим

– это параметрические
уравнения прямой.

Пример 2.
Составить канонические и параметрические
уравнения прямой, проходящей через
точки

Решение:

По формулам
(3.3.1) получим:

Это канонические
уравнения.

Переходим к
параметрическим уравнениям:

– параметрические
уравнения.

Полученная прямая
параллельна оси oz
(см. рис.21).

3.4. Прямая как
линия пересечения двух плоскостей.

Пусть в
пространстве даны две плоскости

и

Если эти плоскости
не совпадают и не параллельны, то они
пересекаются по прямой:

Эта система двух
линейных уравнений задает прямую как
линию пересечения двух плоскостей. От
уравнений (3.4.1) можно перейти к каноническим
уравнениям (3.1.1) или параметрическим
уравнениям (3.2.1). Для этого необходимо
найти точку
лежащую на прямой, и направляющий векторКоординаты точкиполучим из системы (3.4.1), придав одной
из координат произвольное значение
(например,z
= 0). За направляющий вектор
можно взять векторное произведение
векторовто есть

Пример 1.
Составить
канонические уравнения прямой

Решение: Пусть
z
= 0. Решим систему

Сложив эти уравнения,
получим: 3x
+ 6 = 0
x
= –2. Подставим найденное значение x
= –2 в первое уравнение системы и получим:
–2 + y
+ 1 = 0
y
= 1.

Итак, точка
лежит на искомой прямой.

Для нахождения
направляющего вектора прямой запишем
нормальные векторы плоскостей:
и найдем их векторное произведение:

Уравнения прямой
находим по формулам (3.1.1):

Ответ: .

Другой способ:
Канонические и параметрические
уравнения прямой (3.4.1) легко получить,
найдя две различные точки на прямой из
системы (3.4.1), а затем применив формулы
(3.3.1) и вывод формул (3.2.1).

Пример 2.
Составить канонические и параметрические
уравнения прямой

Решение:
Пусть y
= 0. Тогда система примет вид:

Сложив уравнения,
получим: 2x
+ 4 = 0; x
= –2. Подставим x
= –2 во второе уравнение системы и
получим: –2 –z
+1 = 0
z
= –1. Итак, нашли точку

Для нахождения
второй точки положим x
= 0. Будем иметь:

То есть

Далее применяем
формулы (3.3.1):

Получили канонические
уравнения прямой.

Составим
параметрические уравнения прямой:

Ответ:

; .

3.5. Взаимное
расположение двух прямых в пространстве.

Пусть прямые
заданы уравнениями:

:

;: .

Под углом между
этими прямыми понимают угол между их
направляющими векторами
(см. рис.22). Этот уголнаходим по формуле из векторной алгебры:

или

(3.5.1)

Если прямые перпендикулярны
(),то
Следовательно,

(3.5.2)

Это условие
перпендикулярности двух прямых в
пространстве.

Если прямые
параллельны (),то их направляющие
векторы коллинеарны (),
то есть

(3.5.3)

Это условие
параллельности двух прямых в пространстве.

Пример 1. Найти
угол между прямыми:

а).
и

б). и

Решение:
а). Запишем направляющий вектор прямой
Найдем направляющий векторвторой прямой. Для этого находим
нормальные векторыплоскостей, входящих в систему

Затем найдем их векторное произведение:

(см. пример 1
пункта 3.4).

По формуле (3.5.1)
получим:

Следовательно,

б). Запишем
направляющие векторы данных прямых:
Векторыколлинеарны, так как их соответствующие
координаты пропорциональны:

Значит прямые
параллельны (),
то есть

Ответ: а).
б).

Пример 2. Доказать
перпендикулярность прямых:

и

Решение:
Запишем направляющий вектор первой
прямой

Найдем направляющий
вектор
второй прямой. Для этого находим
нормальные векторыплоскостей, входящих в систему:

Вычислим их векторное произведение:

(См. пример 1пункта 3.4).

Применим условие
перпендикулярности прямых (3.5.2):

Условие выполнено;
следовательно, прямые перпендикулярны
().

Соседние файлы в предмете Математика

  • #
  • #
  • #
  • #
  • #
  • #
  • #
  • #
  • #

    03.03.20154.96 Кб8Содержание OneNote.onetoc2

  • #

Прямая в пространстве – это линия, которая проходит от одной точки к другой, а также за пределы этих точек в бесконечность. Есть несколько видов уравнения прямой в пространстве: каноническое, параметрическое, угол между двумя прямыми в пространстве и т. д. Про это расскажем в данной статье и для наглядности предоставим несколько примеров.

Параметрическое и каноническое уравнение прямой в пространстве

Параметрическое и каноническое уравнение прямой рассматривается практически так, как и для прямой на плоскости. Значит, нужно составить уравнение прямой L, которая проходит через данную точку M_{1} (x_{1}, y_{1}, z_{1}) параллельно направляющему вектору overline{S} = (l, m, p).

Пусть, M(x, y, z) in{L} – произвольная точка прямой, тогда векторы overline{M_{1}M} = (x - x_{1}, y - y_{1}, z - z_{1}) и overline{S} коллинеарные, а это значит, что координаты их пропорциональны, поэтому получаем:

{x - x_{1}over{l}} = {y - y_{1}over{m}} = {z - z_{1}over{p}}

(1)

это и есть канонические уравнения прямой.

Приравнивая каждую из дробей (1) к параметру t, запишем параметрические уравнения прямой:

left{ begin{aligned} x = lt + x_{0}\ y = mt + y_{0}\ z = pt + z_{0} end{aligned}

(2)

Уравнение прямой в пространстве, которая проходит через две заданные точки

Уравнение прямой в пространстве – тема очень лёгкая, так как здесь самое важное – знать нужную формулу. Тогда легко можно решить любую задачу.

Итак, через две точки M_{1}(x_{1}, y_{1}z_{1} и M_{2}(x_{2}, y_{2}, z_{2}) можно не только геометрично провести линию, но и сложить её уравнения.

За направляющий вектор возьмём overline{S} =  overline{M_{1}M} = (x_{2} - x_{1}, y_{2} - y_{1}, z_{2} - z_{1}), тогда по формуле (1) у нас получается:

{x - x_{1}over{x_{2} - x_{1}}} = {y - y_{1}over{y_{2} - y_{1}}} = {z - z_{1}over{z_{2} - z_{1}}}

(3)

 уравнение прямой в пространстве, которые проходят через две заданные точки.

Нужна помощь в написании работы?

Мы – биржа профессиональных авторов (преподавателей и доцентов вузов). Наша система гарантирует сдачу работы к сроку без плагиата. Правки вносим бесплатно.

Цена работы

Общее уравнение прямой – переход к каноническому уравнению

Объяснение про общее уравнение прямой начнём с прямой, которая задана двумя плоскостями, что пересекаются по этой прямой.

Пусть известны их уравнения:

left{begin{aligned}A_{1}x + B_{1}y + C_{1}z + D_{1} = 0\A_{2}x + B_{2}y + C{2}z + D_{2} = 0 end{aligned}

(4)

Тогда система (4) называется общим уравнением прямой.

Чтобы перейти к каноническим уравнениям вида (1), необходимо найти вектор overline{S} и точку M_{0} этой прямой.

Точку M_{0} находим, как один из решений системы (4). Например, положив в (4) z = 0 находим x_{0}, y_{0}, тогда и точку M_{0} (x_{0}, y_{0}, 0). Направляющий вектор overline{S}, который параллелен к каждой из плоскостей P_{1} и P_{2} и перпендикулярен к их нормальным векторам overline{n_{1}} = (A_{1}, B_{1}, C_{1}) и overline{n_{2}} = (A_{2}, B_{2}, C_{2}), то есть overline{S}perp{overline{n_{1}}}, overline{S}perp{overline{n_{2}}}. (см. рис. 1). Поэтому вектор overline{S} можно найти при помощи векторного произведения overline{n_{1}} и overline{n_{2}}

overline{S} = overline{n}_{1} x overline{n}_{2} = begin{vmatrix} overline{i}&overline{j}&overline{k}\ A_{1}&B_{1}&C_{1}\ A_{2}&B_{2}&C_{2} end{vmatrix}

Найдены координаты M_{0} и overline{S} подставим в каноническое уравнение (1).

Например, от общих уравнений прямой:

left{begin{aligned} 2x + 7y - z - 4 = 0\ 4x - 9y - 2z - 8 = 0 end{aligned}

Перейдём к каноническим, положив в системе y = 0 (при нём относительно больше коэффициенты). найдём x = 2, z = 0, M_{0} (2, 0, 0). Нормальные векторы overline{n_{1}} = (2, 7, -1) и overline{n_{2}} = (4, -9, -2). Тогда направляющий вектор

Уравнение прямой

Рис. 1

 overline{S} = overline{n}_{1} x overline{n}_{2} = begin{vmatrix} overline{i}&overline{j}&overline{k}\ 2&7&-1\ 4&-9&-2 end{vmatrix} = -23overline{i} - 0overline{j} - 46overline{k},

и канонические уравнения станут:

{x - 2over{-23}} = {y - 0over{0}} = {z - 0over{-46}}arrowvert * (-23)to{x - 1over{1}} = {yover{0}} = {zover{2}}.

Угол между двумя прямыми в пространстве. Условия параллельности и перпендикулярности прямых

Угол между двумя прямыми (varphi):

{x - x_{1}over{l_{1}}} = {y - y_{1}over{m_{1}}} = {z - z_{1}over{p_{1}}} и {x - x_{2}over{l_{2}}} = {y - y_{2}over{m_{2}}} = {z - z_{2}over{p_{2}}}

равен углу между их направляющими векторами overline{S_{1}} = (l_{1}, m_{1}, p_{1}) и overline{S_{2}} = (l_{2}, m_{2}, p_{2}), поэтому

{cosvarphi = cos(overline{S}_{1}}, overline{S}_{2}}) = {l_{1}l_{2} + m_{1}m_{2} + p_{1}p_{2}}over{sqrt{l_{1}^2 + m_{1}^2 + p_{1}^2}} * {sqrt{l_{2}^2 + m_{2}^2 + p_{2}^2}}

(5)

Условия параллельности и перпендикулярности прямых соответственно запишутся:

{l_{1}over{l_{2}}} = {m_{1}over{m_{2}}} = {p_{1}over{p_{2}}} и l_{1}l_{2} + m_{1}m_{2} + p_{1}p_{2} = 0.

(6)

Примеры решения задач

Давайте рассмотрим первый пример, где можно двумя способами построить прямую:

Задача

При точке M (1, 5, 2) и направляющем векторе overline{S} = (3, 0, 4) необходимо:

  1. составить каноническое уравнение прямой;
  2. построить эту прямую.

Решение

1) По формуле (1) запишем каноническое уравнение прямой l:

{x - 1over{3}} = {y - 5over{0}} = {z - 2over{4}} = (t).

2) Рассмотрим два способа построения прямой l.

Первый способ

В системе координат XYZ строим вектор overline{S} = (3, 0, 4) и точку M (1, 5, 2) и проводим через точку M прямую параллельную вектору overline{S}.

Второй способ

По формуле (2) запишем каноническое уравнение прямой в параметрическом виде:

left{begin{aligned} x = 3t + 1\ y = 0 * t + 5\ z = 4t + 2 end{aligned} right

Уравнение прямой

На рисунке видно, что при произвольных значениях t из системы находим координаты соответствующих точек, которые принадлежат прямой l. Так при t = 1 находим координаты M_{1}(4, 5, 6).  Через две точки M и M_{1} проводим прямую l.

Очевидно, что найти острый угол между прямыми совершенно не сложно при знании темы и определённых формул. Давайте разберём такой пример:

Задача

Найти острый угол между прямыми:

{x - 4over{6}} = {y + 2over{-2}} = {zover{3}}, {x + {2}over{-2}} = {y - {5}over{-1}} = {z + 1over{-2}}

(7)

Решение

По формуле (7) получаем:

costheta = {6 * (-2) + (-2)(-1) + 3 * (-2)}over{sqrt{6^2 + (-2)^2 + 3^2} * sqrt{(-2)^2 + (-1)^2 + (-2)^2} = {-12 +2 -6over{7 * 3}} = -{16over21}.

Так как costheta = -{16over{21}} < 0, тогда угол theta тупой, theta = arccos (-{16over{21}}, а острый угол varphi = 180^0 - theta.

Ответ

varphi = arccos{16over{21}}.

Рассмотрим последний пример, где нужно составить уравнение. Здесь, как и в каждой задаче, важно знать и понимать, какой формулой нужно воспользоваться.

Задача

Составить уравнение прямой l,  которая проходит через точку M(2, -4, 3) и параллельна прямой x = -5t + 4, y = 2t, z = 8t - 5.

Решение

От параметрического уравнения  переходим к каноническому {x - 4over{(-5)}} = {yover{2}} = {z + 5over{8}}tooverline{S} = (-5, 2, 8) При условии параллельности прямых overline{S}||overline{S_{1}} то есть направляющим вектором новой прямой может служить известный вектор overline{S} = (-5, 2, 8) и по формуле (1) у нас получается:

{x - 2over{-5}} = {y - 4over{2}} = {z - 3over{8}}.

Ответ

{x - 2over{-5}} = {y - 4over{2}} = {z - 3over{8}}.

Добавить комментарий