Как составить подобие прямоугольных треугольников

Подобие прямоугольных треугольников обычно доказывают, используя не общие признаки, а специальные признаки подобия для прямоугольных треугольников.

Признаки подобия прямоугольных треугольников

1- й признак подобия прямоугольных треугольников

( подобие прямоугольных треугольников по острому углу)

Если прямоугольные треугольники имеют равный острый угол, то такие треугольники подобны.

podobie-pryamougolnyh-treugolnikov

    [Delta ABCuDelta {A_1}{B_1}{C_1}]

 — прямоугольные (∠C=90º, ∠C=90º).

Если

    [angle B = angle {B_1},]

то

    [Delta ABC sim Delta {A_1}{B_1}{C_1}]

(по острому углу).

2- й признак подобия прямоугольных треугольников

( подобие прямоугольных треугольников по двум катетам)

Если два катета одного прямоугольного треугольника пропорциональны двум катетам другого прямоугольного треугольника, то такие треугольники подобны.

priznaki-podobiya-pryamougolnyh-treugolnikov

    [Delta ABCuDelta {A_1}{B_1}{C_1}]

 — прямоугольные (∠C=90º, ∠C=90º).

Если

    [frac{{BC}}{{{B_1}{C_1}}} = frac{{AC}}{{{A_1}{C_1}}},]

то

    [Delta ABC sim Delta {A_1}{B_1}{C_1}]

(по двум катетам).

3- й признак подобия прямоугольных треугольников

( подобие прямоугольных треугольников по катету и гипотенузе)

Если катет и гипотенуза одного прямоугольного треугольника пропорциональны катету и гипотенузе другого прямоугольного треугольника, то такие треугольники подобны.

priznaki-podobiya-dlya-pryamougolnyh-treugolnikov

    [Delta ABCuDelta {A_1}{B_1}{C_1}]

 — прямоугольные (∠C=90º, ∠C=90º).

Если

    [frac{{BC}}{{{B_1}{C_1}}} = frac{{AB}}{{{A_1}{B_1}}},]

то

    [Delta ABC sim Delta {A_1}{B_1}{C_1}]

(по катету и гипотенузе).

Из подобия прямоугольных треугольников следуют соотношения между высотой, проведённой к гипотенузе, гипотенузой, катетами и проекциями катетов на гипотенузу, а также свойство биссектрисы треугольника.

Как определить подобие прямоугольных треугольников

Подобные треугольники. Признаки подобия треугольников

Подобные треугольники

Рассмотрим два треугольника KLM и TRP (рис.1) и введём следующие обозначения.

длины сторон треугольника KLM , расположенные в порядке возрастания.

длины сторон треугольника TRP , расположенные в порядке возрастания.

Переобозначим вершины треугольников KLM и TRP так, как показано на рисунке 2.

На рисунке 2 треугольник KLM обозначается как треугольник A1B1C1 , а треугольник TRP обозначается как треугольник A2B2C2 .

  • вершины A1 и A2 , B1 и B2 , C1 и C2 называют сходственными вершинами ,
  • стороны A1B1 и A2B2 , A1C1 и A2C2 , B1C1 и B2C2 называют сходственными сторонами ,
  • углы A1 и A2 , B1 и B2 , C1 и C2 называют сходственными углами

Определение 2 . Треугольники A1B1C1 и A2B2C2 называют подобными треугольниками, если их сходственные углы равны, а сходственные стороны пропорциональны.

а, во-вторых, существует положительное число k , такое, что справедливы равенства:

a1 = k a2 , b1 = k b2 , c1 = k c2 . (1)

Признаки подобия треугольников

Признак подобия треугольников по двум сторонам и углу между ними

Если две стороны одного треугольника пропорциональны двум сторонам другого треугольника, а углы, заключённые между этими сторонами равны, то такие треугольники подобны.

Признак подобия треугольников по двум углам

Если два угла одного треугольника равны двум углам другого треугольника, то такие треугольники подобны.

Признак подобия треугольников по трём сторонам

Если стороны одного треугольника пропорциональны сторонам другого треугольника, то такие треугольники подобны

Название признака Рисунок Формулировка признака

Формулировка признака подобия:

Если две стороны одного треугольника пропорциональны двум сторонам другого треугольника, а углы, заключённые между этими сторонами равны, то такие треугольники подобны.

Признак подобия треугольников по двум сторонам и углу между ними
Признак подобия треугольников по двум углам

Формулировка признака подобия:

Если два угла одного треугольника равны двум углам другого треугольника, то такие треугольники подобны.

Признак подобия треугольников по трём сторонам

Формулировка признака подобия:

Если стороны одного треугольника пропорциональны сторонам другого треугольника, то такие треугольники подобны

Признаки подобия прямоугольных треугольников

Признак подобия прямоугольных треугольников по двум катетам

Если два катета одного прямоугольного треугольника пропорциональны двум катетам другого прямоугольного треугольника, то такие прямоугольные треугольники подобны.

Признак подобия прямоугольных треугольников по острому углу

Если острый угол одного прямоугольного треугольника равен острому углу другого прямоугольного треугольника, то такие прямоугольные треугольники подобны.

Признак подобия прямоугольных треугольников по гипотенузе и катету

Если гипотенуза и катет одного прямоугольного треугольника пропорциональны гипотенузе и катету другого прямоугольного треугольника, то такие прямоугольные треугольники подобны.

Название признака Рисунок Формулировка признака

Формулировка признака подобия прямоугольных треугольников:

Если два катета одного прямоугольного треугольника пропорциональны двум катетам другого прямоугольного треугольника, то такие прямоугольные треугольники подобны.

Признак подобия прямоугольных треугольников по двум катетам
Признак подобия прямоугольных треугольников по острому углу

Формулировка признака подобия прямоугольных треугольников:

Если острый угол одного прямоугольного треугольника равен острому углу другого прямоугольного треугольника, то такие прямоугольные треугольники подобны.

Признак подобия прямоугольных треугольников по гипотенузе и катету

Формулировка признака подобия прямоугольных треугольников:

Если гипотенуза и катет одного прямоугольного треугольника пропорциональны гипотенузе и катету другого прямоугольного треугольника, то такие прямоугольные треугольники подобны.

Следствие 1 . Прямая, пересекающая треугольник и параллельная стороне треугольника, отсекает от этого треугольника подобный треугольник (рис. 3).

Следствие 2 . Отношение площадей подобных треугольников равно квадрату коэффициента подобия (рис. 4)

Подобные треугольники

Определение

Подобные треугольники — треугольники, у которых углы соответственно равны, а стороны одного соответственно пропорциональны сторонам другого треугольника.

Коэффициентом подобия называют число k , равное отношению сходственных сторон подобных треугольников.

Сходственные (или соответственные) стороны подобных треугольников — стороны, лежащие напротив равных углов.

Признаки подобия треугольников

I признак подобия треугольников

Если два угла одного треугольника соответственно равны двум углам другого, то такие треугольники подобны.

II признак подобия треугольников

Если три стороны одного треугольника пропорциональны трем сторонам другого, то такие треугольники подобны.

Свойства подобных треугольников

  • Отношение площадей подобных треугольников равно квадрату коэффициента подобия.
  • Отношение периметров подобных треугольников равно коэффициенту подобия.
  • Отношение длин соответствующих элементов подобных треугольников (в частности, длин биссектрис, медиан, высот и серединных перпендикуляров) равно коэффициенту подобия.

Примеры наиболее часто встречающихся подобных треугольников

1. Прямая, параллельная стороне треугольника, отсекает от него треугольник, подобный данному.

2. Треугольники и , образованные отрезками диагоналей и основаниями трапеции, подобны. Коэффициент подобия –

3. В прямоугольном треугольнике высота, проведенная из вершины прямого угла, разбивает его на два треугольника, подобных исходному.

Здесь вы найдете подборку задач по теме «Подобные треугольники» .

Прямоугольный треугольник: Признаки Равенства и Подобия

Определение

Прямоугольный треугольник — это треугольник, в котором один из углов прямой.

Гипотенуза в прямоугольном треугольнике — это сторона напротив прямого угла.


Катет в прямоугольном треугольнике
— это две стороны прилежащие к прямому углу.

Свойства прямоугольного треугольника

В прямоугольном треугольнике:

  1. Сумма острых углов 90˚.
  2. Катет, противолежащий углу в 30˚, равен половине гипотенузы.
  3. Медиана, проведенная к гипотенузе, равна ее половине.
  4. Центр описанной окружности — середина гипотенузы.

Формулы:

  1. Площадь прямоугольного треугольника равна
    половине произведения катетов:
  2. Радиус описанной окружности около прямоугольного
    треугольника равен половине гипотенузы:
  3. Радиус вписанной окружности в прямоугольный треугольник
    выражается следующим образом:
  4. Квадрат гипотенузы равен сумме квадратов катетов:

Признаки равенства прямоугольных треугольников

С помощью признаков равенства прямоугольных треугольников
можно доказать что прямоугольные треугольники равны.

  1. По двум катетам:
    Если два катета одного прямоугольного треугольника соответственно
    равны двум катетам другого прямоугольного треугольника,
    то такие треугольники равны.
  2. По катету и гипотенузе:
    Если катет и гипотенуза одного прямоугольного треугольника соответственно
    равны катету и гипотенузе другого прямоугольного треугольника,
    то такие треугольники равны.
  3. По гипотенузе и острому углу:
    Если гипотенуза и острый угол одного прямоугольного треугольника соответственно
    равны гипотенузе и острому углу другого прямоугольного треугольника,
    то такие треугольникиравны.
  4. По катету и острому углу:
    Если катет и острый угол одного прямоугольного треугольника соответственно
    равны катету и острому углу другого прямоугольного треугольника,
    то такие треугольники равны.

Признаки прямоугольного треугольника

С помощью признаков прямоугольного треугольника можно
доказать, что треугольник прямоугольный.

  1. По теореме Пифагора:
    Если квадрат стороны равен сумме квадратов двух других сторон,
    то треугольник прямоугольный.
  2. По центру описанной окружности:
    Если центр описанной окружности лежит на стороне треугольника,
    то треугольник прямоугольный.
  3. По медиане:
    Если медиана треугольника равна половине стороны, к которой она проведена,
    то треугольник прямоугольный.
  4. По площади:
    Если площадь треугольника равна половине произведения двух его сторон,
    то треугольник прямоугольный.
  5. По радиусу описанной окружности:
    Если радиус описанной окружности равен половине,
    то треугольник прямоугольный.

Признаки подобия прямоугольных треугольников

С помощью признаков подобия прямоугольных треугольников можно
доказать, что прямоугольные треугольники подобны.

[spoiler title=”источники:”]

Подобные треугольники

http://colibrus.ru/pryamougolnyy-treugolnik/

[/spoiler]

Признаки подобия прямоугольных треугольников


Признаки подобия прямоугольных треугольников

4

Средняя оценка: 4

Всего получено оценок: 127.

4

Средняя оценка: 4

Всего получено оценок: 127.

Подобие – это следующее понятие после равенства: как в математике после сложения идет умножение, так в геометрии после равенства треугольников изучают подобие. В реальной жизни подобие помогает, за счет вычислений по тени, определять реальные размеры зданий или высоких сооружений. В задачах на эту тему, благодаря подобию, можно найти значение сторон, воспользовавшись знакомым отношением.

Определения

Подобными называются треугольники, отношение сторон которых соответственно равны. Предположим треугольник АВС равен треугольнику DРН. Это значит, что:

$${АВover{DP}}={BCover{PH}}={ACover{DH}}=k$$

k это коэффициент подобия.

Для обычного треугольника существует три признака подобия. Именно через них доказываются признаки подобия прямоугольных треугольников.

Первый признак подобия: по двум углам. Если два угла одного треугольника соответственно равны двум углам другого треугольника, то такие треугольники подобны.

Первый признак подобия

Рис. 1. Первый признак подобия.

Второй признак: по трем сторонам. Если три стороны одного треугольника пропорциональны соответственным сторонам другого треугольника, то такие треугольники подобны.

Второй признак подобия

Рис. 2. Второй признак подобия.

Третий признак: по двум сторонам и углу. Если две стороны одного треугольника пропорциональны двум сторонам другого треугольника, а углы, образованные этими сторонами равны, то такие треугольники подобны.

Третий признак подобия

Рис. 3. Третий признак подобия.

Эти определения необходимо знать, чтобы без проблем разобраться с подобием прямоугольных треугольников.

Признаки подобия прямоугольных треугольников

  • Первый признак по острому углу: если острый угол одного прямоугольного треугольника равен острому углу другого прямоугольного треугольника, то такие прямоугольные треугольники подобны.

Доказать этот признак очень просто. Достаточно вспомнить, что прямоугольным треугольником называется треугольник, который содержит в себе прямой угол. Значит, у двух прямоугольных треугольников, один из углов всегда равен другому. А один из острых углов так же равен соответственному углу в другом треугольнике. Значит, в таких треугольниках есть два равных между собой угла, и треугольники подобны по первому признаку подобия.

  • Второй признак: по двум катетам. Если два катета одного прямоугольного треугольника пропорциональны двум катетам другого прямоугольного треугольника, то такие треугольники подобны. Между двумя катетами всегда заключен прямой угол. Значит, у нас имеется две пропорциональные стороны и равные углы между ними. Тогда треугольники подобны по третьему признаку подобия.
  • Третий признак: по катету и гипотенузе. Если катет и гипотенуза одного прямоугольного треугольника пропорциональны катету и гипотенузе другого прямоугольного треугольника, то такие треугольники подобны. Для доказательства признака нужно вспомнить понятие косинуса. Косинус угла это отношения прилежащего катета к гипотенузе.

$$cos(ACB)={BCover{AC}}$$

$$cos(DHP)={PHover{DH}}$$

При этом по условию: $${ACover{DH}}={BCover{PH}}$$. Из условия выразим ВС и подставим в значение косинуса.

$$ВС=РН*{АCover{DН}}$$

$$cos(ACB)={BCover{AC}}={PH*{ACover{DH}}over AC}={PHover{AC}}$$ – то есть косинусы углов равны, оба угла острые, значит и углы равны. Тогда треугольники подобны по двум сторонам и углу между ними.

Заключение

Что мы узнали?

Мы разобрали понятие подобия, выделили все определения и теоремы, необходимые для доказательства трех признаков подобия прямоугольных треугольников. Мы показали, что эти признаки лишь следствие основных, т.е. эти свойства созданы чтобы упростить и сделать быстрее решение. А это значит, что если вдруг вы забыли признаки для прямоугольного треугольника, то всегда можно воспользоваться общими.

Тест по теме

Доска почёта

Доска почёта

Чтобы попасть сюда – пройдите тест.

    Пока никого нет. Будьте первым!

Оценка статьи

4

Средняя оценка: 4

Всего получено оценок: 127.


А какая ваша оценка?

Подобие прямоугольных треугольников и его применение

1 января 2016

Разумеется, подобными могут быть не только прямоугольные треугольники, но именно в них возникает несколько интересных свойств, которые могут значительно упростить решение сложных планиметрических задач.

Сегодня мы изучим механизм того, как возникают подобные прямоугольные треугольники, какие особенные свойства при этом возникают и как грамотно применять всё это в своей работе.

Всего в видео рассмотрено две ситуации:

  1. Подобие при проведении высоты к гипотенузе;
  2. Подобие после проведения линий, параллельных катетам.

В обоих случаях разбирать будем реальные задачи, чтобы сразу применять изученные свойства на практике.:)

Смотрите также:

  1. Основное свойство биссектрисы угла в треугольнике и его применение для решения задач
  2. Что такое теорема косинусов и как она помогает решать геометрические задачи
  3. Тест к уроку «Площади многоугольников на координатной сетке» (средний)
  4. Тригонометрические функции
  5. Задачи на проценты: считаем проценты с помощью пропорции
  6. Производительность совместного труда

Подобие – это понятие, характеризующее наличие одинаковой, не зависящей от размеров, формы у геометрических фигур.

Подобные фигуры – это фигуры, для которых существует взаимно-однозначное соответствие, при котором расстояние между любыми парами их соответствующих точек изменяется в одно и то же число раз.

Например, то, что фигуры F1 и F2 подобны, означает, что для любых двух точек M1 и N1 фигуры F1 и сопоставленных им точек M2 и N2 фигуры F2 выполняется соответствие (frac{M_1N_1}{M_2N_2}=k), где k – одно и то же число для всех точек (k > 0). Число k называется коэффициентом подобия.Преобразование фигуры F1 в фигуру F2, при котором расстояния между точками изменяются в одно и то же число раз, называется преобразованием подобия.

Гомотетия – это преобразование подобия. Это преобразование, в котором получаются подобные фигуры (фигуры, у которых соответствующие углы равны и стороны пропорциональны).

Гомотетия – это преобразование, при котором каждой точке A ставится в соответствие точка A1, лежащая на прямой OA, по правилу (OA_1=kcdot OA), где k – постоянное, отличное от нуля число, O – фиксированная точка. Точка O называется центром гомотетии, число k – коэффициентом гомотетии.

Свойства преобразования гомотетии:

1) При гомотетии прямые переходят в прямые, полупрямые – в полупрямые, отрезки – в отрезки, углы – в углы.

2) Сохраняются углы между полупрямыми (соответственно, сохраняется параллельность прямых). Стороны гомотетичных фигур пропорциональны, а углы равны.

Подобные треугольники – это треугольники, у которых углы равны, а стороны пропорциональны.

Свойства подобных треугольников

  1. Периметры подобных треугольников относятся как их соответствующие стороны: (frac{P_{A_1B_1C_1}}{P_{ABC}}=frac{A_1B_1}{AB}=frac{B_1C_1}{BC}=frac{A_1C_1}{AC}=k).
  2. Соответствующие линейные элементы подобных треугольников (медианы, высоты, биссектрисы и т. д.) относятся как их соответствующие стороны.
  3. Площади подобных фигур относятся как квадраты их соответствующих линейных размеров: (frac{S_{A_1B_1C_1}}{S_{ABC}}=frac{A_1B_1^2}{AB^2}=frac{B_1C_1^2}{BC^2}=frac{A_1C_1^2}{AC^2}=k^2).

1-й признак подобия треугольников

Если два угла одного треугольника равны двум углам другого треугольника, то такие треугольники подобны.

(left. begin{aligned} angle A=angle A_1\ angle B=angle B_1 end{aligned} right } Rightarrow Delta ABC sim Delta A_1B_1C_1)

2-й признак подобия треугольников

Если две стороны одного треугольника пропорциональны двум сторонам другого треугольника и углы, образованные этими сторонами, равны, то такие треугольники подобны.

3-й признак подобия треугольников

Если стороны одного треугольника пропорциональны сторонам другого треугольника, то такие треугольники подобны.

Признаки подобия прямоугольных треугольников

  1. Если прямоугольные треугольники имеют равный острый угол, то такие треугольники подобны.
  2. Если два катета одного прямоугольного треугольника пропорциональны двум катетам другого прямоугольного треугольника, то такие треугольники подобны.
  3. Если катет и гипотенуза одного прямоугольного треугольника пропорциональны катету и гипотенузе другого прямоугольного треугольника, то такие треугольники подобны.

Добавить комментарий