Как составить последовательность кодонов

Генетическая информация и генетический код

Каждый вид имеет свой собственный, отличный от других видов, набор белков. Интересно то, что белки, выполняющие идентичные функции у разных видов могут быть похожими или даже абсолютно идентичными.

У белков есть несколько состояний их структур:

Именно первичная структура является определяющей свойства белка. Эта структура – цепь из аминокислот. Аминокислоты, в свою очередь, представляют собой ряд триплетов из нуклеотидов. Решая генетические задачи, обращаются как раз-таки к знакомой таблице:

Каждая аминокислота кодируется тремя нуклеотидами, которые составляют триплет или иначе кодон. Именно последовательность нуклеотидов называется генетической информацией, а участок последовательности, в котором хранится информация о первичной структуре белка это и есть ген.

Нуклеотиды, составляющие ДНК и РНК различаются:

В состав ДНК входят:

А – аденин

Т – тимин

Ц – цитозин

Г – гуанин

В состав РНК входят:

А – аденин

У – урацил

Ц – цитозин

Г – гуанин

Кроме того, в составе РНК (рибонуклеиновой кислоты) сахар рибоза, а ДНК (дезоксирибонуклеиновой кислоты) – дезоксирибоза. РНК – одноцепочечная, а ДНК – двухцепочечная.

Между нуклеотидами есть водородные связи. Они могут быть как двойные, так и тройные. Нуклеотиды не могу быть связаны в случайном порядке. Для этого существует принцип комплементарности ДНК, по которому аденин одной цепи ДНК соединяется с тимином другой цепи ДНК, другая пара в ДНК – гуанин – цитозин. В РНК все аналогично, за исключением того, что вместо тимина там урацил. Между парами А-Т/А-У две водородных связи, а между парами Ц-Г – три. На письме это обозначается чёрточками: двойная связь как знак «равно», а тройная – три горизонтальные черты.

Свойства генетического кода

  1. Генетические код триплетен, то есть состоит из аминокислот, которые состоят из триплетов, а триплеты – 3 нуклеотида.
  2. Генетический код специфичен, один триплет кодирует одну аминокислоту. Посмотрите на таблицу аминокислот. При пересечении всех трех нуклеотидов у нас нет выбора между аминокислотами, таблица указывает лишь на одну определенную аминокислоту.
  3. Генетический код избыточен, одна аминокислота может быть закодирована более чем одним триплетом нуклеотидов. Здесь важно не запутаться. Опять смотрим на таблицу. Несмотря на то, что пересечение трех нуклеотидов дает 1 аминокислоту, мы видим повторы аминокислот в таблице. Например, аминокислота фенилаланин (сокращенно Фен) кодируется как триплетом УУУ, так и УУЦ. Есть аминокислоты и с большим количеством вариантов.
  4. Неперекрываемость генетического кода. Один и тот же нуклеотид не может входить в состав разных триплетов. Это не значит, что если у нас есть триплет УУУ, то рядом с ним не может быть триплета УЦГ. Это значит, что урацил в этих триплетах – не одна и та же молекула.
  5. Генетический код универсален, то есть, несмотря на все различия между живыми организмами, их генетическая информация кодируется одинаковыми аминокислотами, но в разных последовательностях и вариациях.
  6. Полярность генетического кода. В цепочке аминокислот есть триплеты, которые не несут информацию, а присутствуют для разделения цепи. Так как они не некодирующие, то в таблице у этих сочетаний букв стоит прочерк: УАА, УАГ, УГА.

Транскрипция и трансляция

Из цитологии известно, что генетическая информация у эукариотических клеток заключена в ядре в виде ДНК. Однако процесс биосинтеза белка происходит в цитоплазме на рибосомах.

Спиральная цепь ДНК при раскручивается, в это время по одной из цепочек ДНК строится комплементарная цепь. Из ядра в цитоплазму информация выходит в виде информационной РНК (иРНК). иРНК комплементарная одной из цепей ДНК. Этот процесс переписывания называется транскрипцией. Полученная цепь практически идентичная другой цепи ДНК, за исключением того, что вместо тимина там урацил.В процессе участвует специальный фермент РНК-полимераза.

Процесс транскрипции

Теперь в ядре есть цепочка, которая уже начала процесс биосинтеза. Как говорилось выше, процесс ассимиляции идет на рибосомах. иРНК выходит в цитоплазму через поры ядерной мембраны

тРНК по форме напоминает лист клевера, а по принципу работы – штамп. На него, прямо как чернила, наслаиваются кодоны.

В цитоплазме начинается процесс трансляции, то есть перевод последовательности нуклеотидов информационной РНК в последовательность аминокислот белка.

Процесс трансляции

Рибосома захватывает стартовый конец цепи иРНК. Затем она начинает двигаться по цепи, одна остановка рибосомы происходит на 6-ти нуклеотидах. В это время молекула тРНК, на которых есть триплет аминокислоты «подлетает» к цепи, в месте, где находится рибосома. За время остановки рибосомы транспортная РНК успевает распознать свою пару на цепи иРНК, которая называется антикодоном. Тогда тРНК «ставит свой штамп», оставляя на цепи свой кодон. Между нуклеотидами образуются водородные связи. Так нарастает новая цепь. На одной информационной РНК работает сразу много рибосом, поэтому работа идет очень быстро. Совокупность рибосом, синтезирующих на одной иРНК, называется полисомой.

По окончанию процесса биосинтеза, цепочка отсоединяется от рибосомы и принимает свою природную структуру: вторичную, третичную или четвертичную.

Задание ollbio10101120162017в1

В геном одного из растений ввели генно-инженерную конструкцию, похожую на использованную в предыдущем задании. Но промотор был заменён на другой – APETALA 3, который включается в лепестках и тычинках. В дальнейшем получили чистую линию трансгенных растений (линия №1).

Другие растение трансформировали конструкцией, в которой кодирующая часть гена CRE была поставлена под промотор LEA, активирующийся на поздних стадиях формирования зародыша, а ко ди рующая часть гена Flp – под промотор CAULIFLOWER, который активен в чашелистиках и лепест ках. После этого удалось получить чистую линию №2.

А. Какие органы будут светиться у растений из линии №1? Растений из линии №2?

Б. Каким будет фенотип растений первого поколения гибридов между линиями №1 и №2? Для об основания ответа опишите структуру генно-инженерной конструкции с флуоресцентными белками.

В. Каким будет расщепление по фенотипами и генотипам среди потомков второго поколения, полученных при самоопылении гибридов первого поколения? Считайте, что генно-инженерные конструкции наследуются независимо, а кроссинговер внутри конструкций не происходит


А. Красным светом будут светиться лепестки и тычинки, поскольку промотор APETALA 3 активен именно в этих органах. У линии №2 свечения не будет, поскольку в неё не были введены гены, кодирующе флуоресцентные белки.

Б. Поскольку рекомбиназа CRE подействовала на поздних этапах развития зародыша, то у всех потомков F1 произойдёт рекомбинация по сайтам LoxP. Строение этого участка ДНК будет следующим:

В чашелистиках и лепестках на эту последовательность ДНК подействует флиппаза. Это приведёт к тому, что участок между сайтами FRT «перевернётся»:

Это означает, что после включения промотора APETALA 3 в лепестках и тычинках лепестки будут светиться зелёным светом (результат двух рекомбинаций), а тычинки – синим светом (результат только одной рекомбинации). Остальные части растения не должны светиться.

В. Условно обозначим исходную вставку, несущую гены флуоресцирующих белков, в линии №1 как L1 (см. рисунок 1 в условии задачи), а отсутствие вставки обозначим как l0.
Аналогично обозначим генно-инженерную конструкцию, несущую гены рекомбиназы и флипазы, в линии №2 как R (см. рис. 2), а отсутствие вставки будем обозначать как r0. Тогда генотипы родительских линий:
Р: Линия №1 – L1L1 r0r0 × Линия №2 l0l0 RR

Сразу после скрещивания генотипы зигот:
F1: L1l0 Rr0

Но уже при формировании зародыша «включится» рекомбиназа CRE, что приведёт к изменению структуры ДНК-вставки L1. Обозначим получившийся вариант вставки, которая потенциально могла бы светиться синим светом, как L2 (см. рис. 3 из ответа Б). Ни в пестиках, ни в тычинках гены CRE и Flp не «включаются» (не экспрессируются) , поэтому потомкам F2 могут достаться либо L2, либо l0.

Гаметы: 1/4 L2R 1/4 L2r 1/4 l0R 1/4 l0r
Генотипы зигот сразу после образования

Жёлтой заливкой показаны генотипы, в которых не присутствует вставка с рекомбиназами, поэтому генотипы изменяться не будут. Красными точечными рамками показаны генотипы, в которых нет вставку с флуоресцентными белками. В этом случае рекомбинации также не
будет. У этих 1/4 растений с генотипом l0l0 свечения не будет ни в одном из органов. У 3/16 растений с генотипом L2l0 rr будет свечение и чашелистиков, и лепестков синим светом.

У остальных 9/16 растений с генотипами L2- R- на позних этапах образования зародыша произойдёт рекомбинация по сайтам LoxP. Вставка перейдёт обратно в форму L1, которая будет сохраняться по мере вегетативного развития. При образовании лепестков и чашелистиков
начнёт экспрессироваться ген Flp, что приведёт к рекомбинации по прямым повторам FRT. Участок между ними, содержащий гены DsRed и YFP, будет утрачен, а промотор APETALA 3 как бы «приблизится» к кодирующей части гена GFP. Таким образом, лепестки у этих
растений будут светиться зелёным светом, а тычинки – красным.

Ответ: среди потомков второго поколения 1/4 растений не будут светиться вообще, у 3/16 растений и чашелистики, и лепестки будут светиться синим светом, а у оставшихся 9/16 растений лепестки будут светиться зелёным, тогда как свечение тычинок будет красным

pазбирался: Надежда | обсудить разбор

Задание ollbio09101120162017в1

Для исследования различных процессов в живых организмах используют флуоресцентные белки. При облучении, например, ультрафиолетовым светом такой белок светится в видимой части спектра. Получены зеленый (GFP, green fluorescent protein), синий (BFP, blue fluorescent protein), желтый (YFP, yellow fluorescent protein) и даже красный (DsRed, из коралла Discosoma striata) флуоресцентные белки.
В генно-инженерных конструкциях их ставят под определенные промоторы. В зависимости от этого в живом объекте светятся разные части.
35 CaMV – промотор, который работает во всех клетках растений. Генный инженер создал конcтрукцию, схематическая карта которой приведена ниже. Промотор условно изображён в форме пятиугольника, кодирующие части генов – в форме серых прямоугольников, сайты Lox P и FRT – в виде стрелок, показывающих направление асимметричной части. Для получения белкового продукта необходимо, чтобы кодирующая часть оказалась на той же цепи ДНК, что и промотор, находилась в верной ориентации (и при этом – в сторону 5´- конца нити ДНК относительно промотора). Последовательности Lox P и FRT достаточно короткие и не мешают считыванию и-РНК. Чёрными ромбами обозначены терминаторы транскрипции. Считайте, что в этом месте матричный синтез и-РНК прекращается.
А. Каким цветом должны светиться клетки, в которых содержится данная генно-инженерная конструкция? Почему?

Б. Нарисуйте в тех же условных обозначениях структуру приведённого участка ДНК после действия рекомбиназы CRE. (Считайте, что при этом рекомбинация произошла только один раз!) Изменится ли после этого свечение клеток?
В. Нарисуйте в тех же условных обозначениях структуру приведённого участка ДНК после действия флиппазы Flp. (Считайте, что при этом рекомбинация произошла только один раз!) Изменится ли после этого свечение клеток?
Г. Предположим, что на исходную последовательнось ДНК в генно-инженерной конструкции сначала подействовали рекомбиназой CRE, а после этого – флиппазой Flp. Нарисуйте схему строения ДНК для этого случая. Каким будет свечение клеток?


В современной генетической инженерии часто применняют технологии, связанные с гомологичной рекомбинацией ДНК непосредственно в живом объекте. Один из примеров – система CRE-Lox P.
Lox P – это последовательность нуклеотидов в ДНК фага Р1. Она состоит из 34 нуклеотидов. В середине располагается несимметричная последовательность из 8 нуклеотидов (показана серой стрелкой на рисунке). По краям располагаются так называемые палиндромные последовательности из 13 нуклеотидов (выделены на рисунке как пунктирные блоки). Они симметричны (чтобы в этом убедиться, достаточно прочитать обе последовательность от 5´- конца к 3´- концу). Именно эти палиндромные участки узнаёт особый фермент, вызывающий рекомбинацию, который обозначают CRE. Будем в дальнейшем называть этот фермент рекомбиназой CRE. Для того, чтобы состоялась рекомбинация, два сайта Lox P должны расположиться параллельно
друг другу. Рекомбиназа CRE узнает эти сайты, внесет в ДНК разрезы в определённых местах, а затем

соединит по-новому две нити ДНК (т.е. произойдет рекомбинация).
Аналогично работает и другая система гомологичной рекомбинации – Flp-FRT, обнаруженная у пекарских дрожжей. Сайт FRT – это последовательность ДНК, которую узнает свой фермент гомологичной рекомбинации – флиппаза (Flp).

При рекомбинации две молекулы ДНК должны ориентироваться параллельно друг другу сайтами FRT, и только в этом случае произойдёт рекомбинация. Заметим, что флиппаза Flp узнает только свою последовательность FRT, но не может работать с сайтами Lox P, а рекомбиназа CRE узнает только свои сайты Lox P, но не работает с сайтами FRT.

 

Предварительное доказательство (лемма) к задаче 9 (5 баллов).
1. Докажем, что при гомологичной рекомбинаци по «перевёрнутым» (инвертированным) повторам происходит «переворот» последовательности ДНК, находящейся между повторами. Для этого нарисуем молекулу ДНК и условно обозначим на ней буквами несколько точек.

Затем «изогнём» молекулу так, чтобы повторы, обозначенные стрелками, встали параллельно друг другу. После обмена участками и «распрамления» окажется, что центральная часть между повторами “перевернулась”.

2. Докажем, что при гомологичной рекомбинаци по прямым повторам происходит образование кольцевой ДНК, при этом из линейной последовательности ДНК «удаляется» участок, находящейся между повторами. Для этого используем тот же приём: нарисуем
молекулу ДНК и условно обозначим на ней буквами несколько точек.
Только в этом случае для того, чтобы прямые повторы встали параллельно друг другу, придётся хитроумно изогнуть молекулу так, чтобы от конца одного из повторов (точка С) шли точки D, E, F, а потом начинался новый повтор (в точке G). После рекомбинации точки С и G поменяются местами, и в результате получится кольцевая ДНК (C, D, E, F, G) и линейный участок (A, B, H, J). Будем считать, что кольцевая ДНК как бы «исчезает» (не может реплицироваться в клетке).

 

А. Поскольку после 35S-промотора на той же цепи ДНК располагается кодирующая часть гена DsRed, клетки должна светиться красным светом.
Б. Рекомбиаза CRE узнаёт последовательнсоти LoxP. Если повторы расположены инвертированно, то произойдёт «переворот» последовательности ДНК, расположенной между повторами. Таким образом, после рекомбинации конструкция будет выглядеть следущим образом:

Свечение клеток изменится, поскольку после промотора на той же цепи ДНК окажется гена BFP, обестпечивающий синее свечение клеток.
В. При рекомбинации по прямым повторам происходит потеря участка ДНК, расположенного между ними. Из двух повторов остаётся только один. Таким образом, после рекомбинации по сайтам FRT конструкция будет выглядеть следующим образом:

Клетки будут светиться зелёным светом за счёт того, что под промотором оказалась кодирующая последовательность гена GFP.

Г. После действия рекомбиназы CRE те последовательности, на которые может действовать флип паза Flp, «перевернулись», и вместо прямых стали инвертрованными. После рекомбинации участок между ними также должен «перевернуться»:

В этом случае клетки также будут светиться зелёным светом за счёт того, что под промотором оказалась кодирующая последовательность гена GFP.

pазбирался: Надежда | обсудить разбор

Задание ollbio09101120172018в2

У одного из представителей семейства Колокольчиковые (Campanulaceae) – платикодона
крупноцветкового (Platycodon grandiflorum) пентамерные цветки, состоящие из круга чашелистиков,
круга лепестков, круга тычинок и круга плодолистиков (см. рис.). Иногда среди платикодонов можно найти
махровые цветки, у которых на месте тычинок развиваются лепестки.
А. Нарисуйте диаграмму махрового цветка платикодона. На диаграмме обозначьте части цветка.
Предложите для него формулу.
Б. Предположим, что в природной популяции
платикодона крупноцветкового возникла форма
с махровыми цветками (по остальным признакам
форма не отличается от нормы). Образование
махровых цветков определяется одной рецессивной
мутацией. Ученые пересадили из природы на
экспериментальный участок два мутантных и одно
нормальное растение. Считая, что при опылении
пыльца всех особей смешивается, пыльца из
природных популяций не попадает на участок, и
при этом возможно самоопыление, рассчитайте,
каким может быть расщепление в потомстве первого
поколения по генотипам и фенотипам.
В. Далее среди потомков первого поколения выбрали только те растения, у которых цветки нормальные,
а остальные убрали с участка до опыления. С оставленных растений собрали семена и посеяли. Каким
может оказаться расщепление среди потомков второго поколения по генотипу и фенотипу?


А. Опираясь на рисунок, мы видим, что чашелистики изображены свободными, тогда как все лепестки
срослись. Пять тычинок свободные, а плодолистиков три, и они также срослись. (У Колокольчиковых
завязь нижняя, но это не принципиально для дальнейшего решения.) Можно предложить следующую
формулу для типичного цветка в сем. Колокольчиковые: * Ч5 Л(5) Т5 П(3) или * Ca5 Co(5) A5 G(3) . Поскольку у махровых форм происходит замена тычинок на лепестки, в формуле вместо тычинок нужно указать дополнительный круг лепестков: * Ч5 Л(5)+(5) П(3) или * Ca5 Co(5)+(5) G(3) .

При построении диаграммы должны выполняться следующие принципы:
1. Органы в круге располагаются друг относительно друга под углом 360 : 5 = 72 градуса.
2. В двух соседних кругах органы должны чередоваться, т.е. положение медианы каждого
органа должно приходиться строго на промежуток между органами предыдущего круга. Для
пентамерного цветка между органами в соседних кругах угол должен составлять 36 градусов. На
рисунке видно, что плодолистики (поскольку из три) не могут правильно чередоваться с пятью
тычинками.
3. Если рассматривать органы через круг, то их медианы должны находиться друг напротив друга
(органы противолежат).
4. Центром цветка считается центр завязи. Поэтому при проверке расположения органов в цветке все
линии будут проводиться через центр завязи и центральную (медианную) жилку органа.
5. На рисунке показан цветок с центрально-угловой плацентацией (гинецей синкарпный). Между
гнездами завязи находятся перегородки (септы). Для плодолистика медианой считается линия, делящая угол между септами ровно пополам.

 

Б. Обозначим ген, отвечающий за проявление махровости как А. Поскольку мы знаем, что махровость цветков определяется рецессивной мутацией по этому гену, генотип махровых растений может быть только аа. Взятое из природы нормальное растение могло оказаться как гомозиготой АА, так и носителем рецессивного аллеля Аа. Поэтому возможно два варианта расщепления среди потомков.
Из природы были взяты два махровых и одно немахровое растение, и по семенной продуктивности все три растения одинаковы, следовательно, 2/3 семян будет собрано с махровых, и 1/3 – с немахровых растений. Однако пыльцу может образовать только растение с немахровыми цветками.
Вариант 1. Немахровое растение – гомозигота АА.

Тогда среди потомков в данном скрещивании должно оказаться:
1/3 (≈33.3%) АА 2/3 (≈66.7%)
Аа или 1 АА : 2 Аа
По фенотипу все потомки окажутся немахровыми.
Вариант 2. Немахровое растение – гетерозигота Аа.
Среди женских гамет соотношение вклад каждого из растений останется прежним, т.е. 2/3 от
всех аллелей а придут от махровых растений. Среди оставшихся 1/3 женских гамет 1/6 будет нести
аллель а, и еще 1/6 – аллель А. Таким образом, соотношение среди женских гамет будет 5/6 а и 1/6 А.
Среди мужских гамет 1/2 будет нести аллель А, и еще 1/2 – аллель а.

Таким образом, среди потомков первого поколения возможно следующее расщепление по
генотипам: 1/12 АА (≈8.3%) 6/12=1/2 Аа (50.0%) 5/12 аа (≈41.7%)
1 АА : 6 Аа : 5 аа
По фенотипам: 7/12 (≈50.3%) немахровых 5/12 (≈41.7%) махровых
7 немахровых : 5 махровых

 

В. В первом варианте скрещивания махровых растений не окажется. Рассчитаем доли потомков
по генотипам и фенотипам во втором поколении.
1/3 (≈33.3%) АА дадут только гаметы А, тогда как 2/3 растений с генотипом Аа дадут половину
гамет А и вторую половину гамет а. Таким образом, суммарно гамет А в популяции окажется 2/3,
и 1/3 гамет, несущих аллель а.

Таким образом, среди потомков второго поколения возможно следующее расщепление по
генотипам: 4/9 АА (≈44.4%) 4/9 Аа (44.4%) 1/9 аа (≈11.1%)
4 АА : 4 Аа : 1 аа
По фенотипам: 8/9 (≈88.9%) немахровых 1/9 (≈11.1%) махровых
8 немахровых : 1 махровых.
Во втором случае (из природы было взято гетерозиготное немахровое растение) после того,
как мы удалим все махровые растения, останется 1/7 АА (≈14.3%) и 6/7 Аа (≈85.7%). Последние
дадут половину гамет А (3/7) и половину гамет а (3/7). Суммарная доля гамет А составит 4/7. Тогда:

Во втором случае расщепление среди потомков второго поколения будет:
по генотипам:
16/49 АА (≈32.6%) 24/49 Аа (≈49.0%) 9/49 аа (≈18.4%)
25 АА : 30 Аа : 9 аа
По фенотипам: 40/49 (≈81.6%) немахровых 9/49 (≈18.4%) махровых
40 немахровых : 9 махровых.

pазбирался: Надежда | обсудить разбор

Задание ollbio08101120172018в2

У многих видов бактерий для защиты от вирусов есть специальные ферменты – рестриктазы. Они расщепляют ДНК по определённым симметричным последовательностям, которые в ДНК бактерий данного вида отсутствуют или модифицированы присоединением к основанию метильной группы. Они называются по первым буквам латинского названия рода и вида бактерии, например, Bgl – рестриктаза из гнилостной бактерии Bacillus globigii. При действии такого фермента на очищенную ДНК разрывы происходят в
строго определённых местах и образуются фрагменты ДНК определённой длины с определёнными последовательностями на концах. Например, рестриктаза BglII расщепляет последовательность:
При этом на концах полученных фрагментов ДНК всегда будут одинаковые и комплементарные друг другу одноцепочечные участки ДНК, называемыми «липкими концами», т.к. они могут соединяться между собой за счёт образования комплементарных пар оснований. Если такой комплекс обработать ферментом

ДНК-лигазой, произойдёт ковалентное соединение фрагментов, соединённых «липкими концами». Это лежит в основе метода получения рекомбинантных ДНК.
При таком сшивании соединение концов одного фрагмента при его длине более 500 нуклеотидных пар происходит в 10 раз чаще, чем соединение концов двух разных фрагментов.
У многих бактерий кроме основной хромосомы присутствуют небольшие дополнительные ДНК, называемые плазмидами. Они представляют собой кольцевые молекулы ДНК, способные к репликации в клетке, и несут гены, отсутствующие в основной хромосоме, например, гены устойчивости к антибиотикам.
Плазмида pСО36 несёт гены устойчивости к эритромицину и ампицилину и состоит из 4200 пар нуклеотидов. Рестриктаза BglII расщепляет эту плазмиду только по гену устойчивости к эритромицину в начале этого гена. В районе расщепления ДНК имеет последовательность нуклеотидов:

Плазмиду обработали рестриктазой BglII до полного расщепления. После этого рестриктазу удалили и смесь фрагментов ДНК обработали ДНК-лигазой. Полученные ДНК смешали с клетками бактерий, не несущих плазмид и неустойчивых к антибиотикам. В результате произошла генетическая трансформация: в часть клеток проникла ДНК плазмиды и изменила их свойства. Полученные клетки высеяли на твёрдую питательную среду, не содержащую антибиотиков. В результате деления каждая клетка образовала
колонию генетически идентичных клеток. Было получено 51366 таких колоний. Клетки из каждой колонии пересеяли на среду, содержащую ампициллин, на которой рост дали 573 колонии. Клетки из колоний,
выросших на ампициллине, пересеяли на среду с эритромицином. На этой среде выросла 51 колония.
Из них выдели плазмидную ДНК, и оказалось что она представлена двумя разными по длине формами, причём каждой колонии был только один вид плазмиды.
А. Какова (в %) эффективность трансформации клеток плазмидной ДНК?
Б. Почему не все колонии, выросшие на ампициллине, дали рост на эритромицине?
В. Как можно объяснить разную длину плазмид в устойчивых к эритромицину колониях?
Г. Сколько всего размерных классов плазмид можно найти в колониях, устойчивых к ампицилину?


Сначала найдём место расщепления плазмиды рестриктазой BglII:

Таких участков оказывается два. В результате расщепления из плазмиды выщепляется короткий фрагмент:

Остаётся укороченная линейная ДНК, содержащая интактный ген устойчивости к ампицилину и расщеплённый ген устойчивости к эритромицину.

При сшивании липких концов ДНК-лигазой наиболее часто будут соединяться концы этой молекулы и образовываться кольцо длиной 4163 нуклеотида. Такая ДНК будет сообщать клеткам устойчивость к
ампицилину и не даст устойчивости к эритромицину. Второй фрагмент из-за небольшой длины не может замкнуться в кольцо. Второй вариант лигирования приводит к сшиванию липких концов двух фрагментов. Он происходит примерно в 10 раз реже, а после сшивки вторая пара липких концов скорее всего также, как и исходный фрагмент замкнётся в кольцо. Таких колец из пары фрагментов может образоваться 4 вида: димеры большого фрагмента в двух разных ориентациях (правый конец с левым концом второго фрагмента и левый конец с правым концом второго фрагмента или правый с правым и левый с левым) и соединения большого и малого фрагмента в двух разных ориентациях (вариант исходной плазмиды и инверсия малого фрагмента). Из них только в варианте исходной плазмиды восстанавливается устойчивость к эритромицину.
Линейная молекула, образованная сшиванием двух фрагментов, может присоединить ещё один
фрагмент с ещё в 10 раз меньшей частотой. Такие фрагменты в дальнейшем будут циклизоваться
в плазмиды трёх размеров: из трёх больших фрагментов, из двух больших и одного малого и одного
большого и двух малых. Три малых фрагмента дадут короткую последовательность, которая не сможет
замкнуться в кольцо и существовать в клетке. В каждом размерном классе будет несколько вариантов с
разной ориентацией фрагментов. Только в одном из них восстановится ген устойчивости к эритромицину: правый конец большого фрагмента соединяется с левым концом малого фрагмента, а правый конец малого фрагмента – с левым концом второго большого фрагмента, а оставшиеся концы двух больших фрагментов соединяются с образованием кольцевой плазмиды длиной 8363 пары нуклеотидов. Доля таких молекул будет менее 1% всех плазмид. Вероятность образования плазмид из 4 и более фрагментов ещё на порядок ниже и их обнаружение при данном числе полученных трансформированных клеток нереально.
А. Так как расщепление рестриктазой не затрагивает ген устойчивости к ампицилину, все клетки, в
результате трансформации получившие любую плазмиду, будут устойчивы к ампицилину и вырастут
на среде с этим антибиотиком. Таким образом из 33506 выросших колоний плазмиду получили 578,
выросших на ампицилине. Эффективность трансформации представляет долю трансформированных
клеток от общего их числа, т.е. 573 : 51366 × 100% = 1.12%
Б. На эритромицине могут вырасти только те клетки, в которые попали плазмиды, в которых в
результате лигирования восстановится последовательность нуклеотидов в гене устойчивости к этому
антибиотику, расщеплённому рестриктазой. Остальные плазмиды, полученные по приведённой методике, будут содержать либо ген с выщепленным коротким фрагментом, что приведёт либо к утрате стартового кодона (если обозначенный зелёным цветом кодон является стартовым), либо к сдвигу рамки считывания (т.к. число удалённых нуклеотидов не кратно трём), либо, при инверсии короткого фрагмента, к появлению стоп-кодонов т.е. прекращению синтеза белка. Таким образом большинство полученных плазмид не обеспечат устойчивости к эритромицину.
В. Рост на эритромицине могут обеспечить только плазмиды, несущие восстановленную последовательность гена устойчивости. Такие плазмиды могли образоваться из одного большого и одного малого фрагмента (4200 пар, исходная плазмида)) или из двух больших и одного малого (8363 пары, начало и конец гена из разных копий большого фрагмента).
Г. Получается 1 размер из одного большого фрагмента, два размерных класса из двух фрагментов
и три размерных класса из трёх фрагментов, то есть 6 размерных классов. (В реальности различить
по длине плазмиды, отличающиеся на длину малого фрагмента, т.е. менее чем на 0,5%, невозможно.
Поэтому в эксперименте, например на электрофореграмме, будут видны лишь три размерных класса, соответствующие 1, 2 или 3 копиям большого фрагмента.)

pазбирался: Надежда | обсудить разбор

Задание EB2719t

Фрагмент цепи ДНК имеет следующую последовательность нуклеотидов: АГТЦЦГАТГТГТ. Определите последовательность кодонов на иРНК, антикодоны соответствующих тРНК и аминокислотную последовательность соответствующего фрагмента молекулы белка. Ответ поясните. Для решения задания используйте таблицу генетического кода.


Выписываем ДНК.

АГТЦЦГАТГТГТ

По принципу комплементарности строим иРНК на матрице ДНК.

УЦАГГЦУАЦАЦА

Теперь, опять же по принципу комплементарности, строим тРНК.

АГУ, ЦЦГ, АУГ, УГУ

Определяем с помощью таблицы аминокислотную последовательность синтезируемого белка по иРНК.

сер-гли-тир-тре

Ответ: см. решение

pазбирался: Ксения Алексеевна | обсудить разбор

Задание EB0319D

В некоторой молекуле ДНК на долю нуклеотидов с тимином приходится 14%. Определите процентное содержание нуклеотидов с гуанином, входящих в состав этой молекулы. В ответе запишите только соответствующее число.


Для решения данного задания следует вспомнить правило Чаргаффа, которое гласит, что количество аденина равно количеству тимина, а количество гуанина – цитозину. Это согласуется и с правилом комплементарности.

По условию в молекуле ДНК на тимин приходится 14%. Исходя из правила Чаргаффа, на аденин тоже приходится 14%. Остаток приходится на гуанин и цитозин в равных количествах.

Аденин + Тимин = 14%+14% = 28%

Гуанин + Цитозин = 100% – 28% = 72%

Гуанин и Цитозин раздельно: 72% : 2 = 36%

Ответ: 36

pазбирался: Ксения Алексеевна | обсудить разбор

Задание EB2719D

Фрагмент молекулы ДНК имеет следующую последовательность нуклеотидов:ЦГЦЦЦГАТАЦТАГАЦ

В результате мутации – замены одного нуклеотида в ДНК третья аминокислота во фрагменте полипептида заменилась на аминокислоту Гис. Определите аминокислоту, которая кодировалась до мутации. Какие изменения произошли в ДНК, иРНК в результате замены одного нуклеотида? Благодаря какому свойству генетического кода одна и та же аминокислота у разных организмов кодируется одним и тем же триплетом? Ответ поясните. Для выполнения задания используйте таблицу генетического кода.

 


  1. По принципу комплементарности на основе ДНК находим иРНК.

ДНК: ЦГЦ-ЦЦГ-АТА-ЦТА-ГАЦ

иРНК: ГЦГ-ГГЦ-УАУ-ГАУ-ЦУГ

  1. Третья аминокислота, которая кодировалась до мутации состоит из нуклеотидов УАУ, то есть это аминокислота Тир.

Аминокислота Гис кодируется следующими триплетами: ЦАУ, ЦАЦ.

В условии сказано, что произошла замена лишь одного нуклеотида. Значит, аминокислота Гис кодируется последовательностью ЦАУ.

После мутации:

иРНК: ГЦГ-ГГЦ-ЦАУ-ГАУ-ЦУГ

ДНК: ЦГЦ-ЦЦГ-ГТА-ЦТА-ГАЦ

  1. Одна и та же аминокислота у разных организмов кодируется одним и тем же триплетом благодаря такому свойству генетического кода как универсальность

Ответ: см. решение

pазбирался: Ксения Алексеевна | обсудить разбор

Задание EB0520D

Установите соответствие между характеристиками и видами молекул: к каждой позиции, данной в первом столбце, подберите соответствующую позицию из второго столбца.

ХАРАКТЕРИСТИКИ ВИДЫ МОЛЕКУЛ

А)   содержит один вид азотистых оснований

Б)    обеспечивает энергией реакции синтеза

В)    входит в состав рибосом

Г)    содержит макроэргические связи

Д)    содержит четыре вида азотистых оснований

Е)    служит матрицей при трансляции

1)     РНК

2)     АТФ


РНК расшифровывается как рибонуклеиновая кислота. РНК. Сама РНК состоит из цепи нуклеотидов. Нуклеотиды РНК включают в себя следующие части: фосфатная группа, сахар рибоза и азотистое основание. Одно из отличий ДНК от РНК – азотистые основания. Для РНК это аденин, урацил, гуанин и цитозин, а для ДНК вместо урацила тимин. РНК играют важную роль в биосинтезе белка в клетке. РНК входит в состав рибосом.

АТФ расшифровывается как аденозинтрифосфат. Это молекулы, которые являются универсальным аккумулятором энергии в клетке. АТФ включает в себя азотистое основание аденин, сахар рибозу и 3 остатка фосфорной кислоты. Фосфатные группы соединены макроэргическими связями, есть в них заключено много энергии, которая при разрушении этих связей высвобождается. Синтез АТФ происходит в животных клетках в митохондриях, а в растительных и в митохондриях, и в хлоропластах. АТФ можно обнаружить в цитоплазме, ядре, митохондриях, хлоропластах. В растительных клетках эти молекулы образуются в результате фотосинтеза, а в животных – в результате дыхания.

Один вид азотистых оснований содержит АТФ, это аденин.

Обеспечивает энергией тоже АТФ.

Входит в состав рибосом РНК.

Макроэргические связи содержит АТФ.

Четыре вида азостистых оснований содержит РНК, это аденин, урацил, гуанин, цитозин.

Служит матрицей при трансляции РНК, трансляция – один из этапов биосинтеза белка.

Ответ: 221211

pазбирался: Ксения Алексеевна | обсудить разбор

Задание EB0320D

Сколько триплетов в молекуле иРНК кодируют белок, состоящий из 102 аминокислот? В ответе запишите только соответствующее число.


Одна аминокислота кодируется одним триплетом нуклеотидов. В условии сказано, что белок состоит из 102 аминокислот, значит, из 102 триплетов.

Ответ: 102

pазбирался: Ксения Алексеевна | обсудить разбор

Задание EB0319t

Участок гена состоит из 100 триплетов. Сколько аминокислот будет представлено в молекуле кодируемого этим участком фрагментом белка? В
ответе запишите только соответствующее число.


Одна аминокислота кодируется одним триплетом нуклеотидов. Следовательно, 100 триплетов – 100 аминокислот.

Ответ: 100

pазбирался: Ксения Алексеевна | обсудить разбор

Задание EB11284

Дана цепь ДНК: ЦТААТГТААЦЦА. Определите:

А) Первичную структуру закодированного белка.

Б) Процентное содержание различных видов нуклеотидов в этом гене (в двух цепях).

В) Длину этого гена.

Г) Длину белка.

https://bio-ege.sdamgia.ru/get_file?id=25056

Примечание от составителей сайта.

Длина 1 нуклеотида — 0,34 нм

Длина одной аминокислоты — 0,3 нм

Длина нуклеотида и аминокислоты — это табличные данные, их нужно знать (к условию не прилагаются)


Содержание верного ответа и указания к оцениванию Баллы
  1. Первая цепь ДНК: ЦТА-АТГ-ТАА-ЦЦА, поэтому и-РНК: ГАУ-УАЦ-АУУ-ГГУ.
  2. По таблице генетического кода определяем аминокислоты: асп — тир — иле — гли-.
  3. Первая цепь ДНК: ЦТА-АТГ-ТАА-ЦЦА, поэтому вторая цепь ДНК: ГАТ-ТАЦ-АТТ-ГГТ.
  4. Количество А=8; Т=8; Г=4; Ц=4. Все количество: 24, это 100%. Тогда

А = Т = 8, это (8х100%) : 24 = 33,3%. Г = Ц = 4, это (4х100%) : 24 = 16,7%.

  1. Длина гена: 12 х 0,34 нм (длина каждого нуклеотида) = 4,08 нм.
  2. Длина белка: 4 аминокислоты х 0,3 нм (длина каждой аминокислоты) = 1,2 нм.
Ответ включает все названные выше элементы, не содержит биологических ошибок. 3
Ответ включает 2 из названных выше элементов и не содержит биологических ошибок, ИЛИ ответ включает 3 названных выше элемента, но содержит не грубые биологические ошибки. 2
Ответ включает 1 из названных выше элементов и не содержит биологических ошибок, ИЛИ ответ включает 2 из названных выше элементов, но содержит не грубые биологические ошибки. 1
Ответ неправильный 0
Максимальный балл 3

Ответ: см. решение

pазбирался: Ксения Алексеевна | обсудить разбор

Задание EB11283

В одной молекуле ДНК нуклеотиды с тимином (Т) составляют 24% от общего числа нуклеотидов. Определите количество (в %) нуклеотидов с гуанином (Г), аденином (А), цитозином (Ц) в молекуле ДНК и объясните полученные результаты.


Содержание верного ответа и указания к оцениванию Баллы
  1. Аденин (А) комплементарен тимину (Т), а гуанин (Г) — цитозину (Ц), поэтому количество комплементарных нуклеотидов одинаково;
  2. количество нуклеотидов с аденином составляет 24%;
  3. количество гуанина (Г) и цитозина (Ц) вместе составляют 52%, а каждого из них — 26%.
Ответ включает все названные выше элементы, не содержит биологических ошибок. 3
Ответ включает 2 из названных выше элементов и не содержит биологических ошибок, ИЛИ ответ включает 3 названных выше элемента, но содержит не грубые биологические ошибки. 2
Ответ включает 1 из названных выше элементов и не содержит биологических ошибок, ИЛИ ответ включает 2 из названных выше элементов, но содержит не грубые биологические ошибки. 1
Ответ неправильный 0
Максимальный балл 3

Ответ: см. решение

pазбирался: Ксения Алексеевна | обсудить разбор

Задание EB11273

Ген содержит 1500 нуклеотидов. В одной из цепей содержится 150 нуклеотидов А, 200 нуклеотидов Т, 250 нуклеотидов Г и 150 нуклеотидов Ц. Сколько нуклеотидов каждого вида будет в цепи ДНК, кодирующей белок? Сколько аминокислот будет закодировано данным фрагментом ДНК?


Содержание верного ответа и указания к оцениванию Баллы
  1. В кодирующей цепи ДНК в соответствии с правилом комплементарности нуклеотидов будет содержаться: нуклеотида Т — 150, нуклеотида А — 200, нуклеотида Ц — 250, нуклеотида Г — 150. Таким образом, всего А и Т по 350 нуклеотидов, Г и Ц по 400 нуклеотидов.
  2. Белок кодируется одной из цепей ДНК.
  3. Поскольку в каждой из цепей 1500/2=750 нуклеотидов, в ней 750/3=250 триплетов. Следовательно, этот участок ДНК кодирует 250 аминокислот.
Ответ включает все названные выше элементы, не содержит биологических ошибок. 3
Ответ включает 2 из названных выше элементов и не содержит биологических ошибок, ИЛИ ответ включает 3 названных выше элемента, но содержит не грубые биологические ошибки. 2
Ответ включает 1 из названных выше элементов и не содержит биологических ошибок, ИЛИ ответ включает 2 из названных выше элементов, но содержит не грубые биологические ошибки. 1
Ответ неправильный 0
Максимальный балл 3

Ответ: см. решение

pазбирался: Ксения Алексеевна | обсудить разбор

Задание EB11282

В пробирку поместили рибосомы из разных клеток, весь набор аминокислот и одинаковые молекулы и-РНК и т-РНК, создали все условия для синтеза белка. Почему в пробирке будет синтезироваться один вид белка на разных рибосомах?


Содержание верного ответа и указания к оцениванию Баллы
  1. Первичная структура белка определяется последовательностью аминокислот, зашифрованных на участке молекулы ДНК. ДНК является матрицей для молекулы и-РНК.
  2. Матрицей для синтеза белка является молекула и-РНК, а они в пробирке одинаковые.
  3. 3) К месту синтеза белка т-РНК транспортируют аминокислоты в соответствии с кодонами и-РНК.
Ответ включает все названные выше элементы, не содержит биологических ошибок. 3
Ответ включает 2 из названных выше элементов и не содержит биологических ошибок, ИЛИ ответ включает 3 названных выше элемента, но содержит не грубые биологические ошибки. 2
Ответ включает 1 из названных выше элементов и не содержит биологических ошибок, ИЛИ ответ включает 2 из названных выше элементов, но содержит не грубые биологические ошибки. 1
Ответ неправильный 0
Максимальный балл 3

Ответ: см. решение

pазбирался: Ксения Алексеевна | обсудить разбор

Задание EB11276

В процессе трансляции участвовало 30 молекул т-РНК. Определите число аминокислот, входящих в состав синтезируемого белка, а также число триплетов и нуклеотидов в гене, который кодирует этот белок.


  1. Одна т-РНК транспортирует одну аминокислоту. Так как в синтезе белка участвовало 30 т-РНК, белок состоит из 30 аминокислот.
  2. Одну аминокислоту кодирует триплет нуклеотидов, значит, 30 аминокислот кодирует 30 триплетов.
  3. 3) Триплет состоит из 3 нуклеотидов, значит, количество нуклеотидов в гене, кодирующем белок из 30 аминокислот, равно 30х3=90.
Ответ включает все названные выше элементы, не содержит биологических ошибок. 3
Ответ включает 2 из названных выше элементов и не содержит биологических ошибок, ИЛИ ответ включает 3 названных выше элемента, но содержит не грубые биологические ошибки. 2
Ответ включает 1 из названных выше элементов и не содержит биологических ошибок, ИЛИ ответ включает 2 из названных выше элементов, но содержит не грубые биологические ошибки. 1
Ответ неправильный 0
Максимальный балл 3

Ответ: см. решение

pазбирался: Ксения Алексеевна | обсудить разбор

Задание EB21764

Последовательность аминокислот во фрагменте молекулы белка следующая: ФЕН-ГЛУ-МЕТ. Определите, пользуясь таблицей генетического кода, возможные триплеты ДНК, которые кодируют этот фрагмент белка.https://bio-ege.sdamgia.ru/get_file?id=25056


  • Составим цепь иРНК. Для этого выпишем аминокислоты из условия и найдем соответствующие им триплеты нуклеотидов. Внимание! Одну аминокислоту могут кодировать несколько триплетов.

ФЕН – УУУ или УУЦ

ГЛУ – ГАА или ГАГ

МЕТ – АУГ

  • Определим триплеты ДНК по принципу комплементарности

УУУ-ААА

УУЦ-ААГ

ГАА-ЦТТ

ГАГ-ЦТЦ

АУГ-ТАЦ

Содержание верного ответа и указания к оцениванию Баллы
  1. Аминокислота ФЕН кодируется следующими триплетами иРНК: УУУ или УУЦ, следовательно, на ДНК ее кодируют триплеты ААА или ААГ.
  2. Аминокислота ГЛУ кодируется следующими триплетами иРНК: ГАА илиГАГ. Следовательно, на ДНК ее кодируют триплеты ЦТТ или ЦТЦ.
  3. 3) Аминокислота МЕТ кодируется триплетом иРНК АУГ. Следовательно, на ДНК ее кодирует триплет ТАЦ.
Ответ включает все названные выше элементы, не содержит биологических ошибок. 3
Ответ включает 2 из названных выше элементов и не содержит биологических ошибок, ИЛИ ответ включает 3 названных выше элемента, но содержит не грубые биологические ошибки. 2
Ответ включает 1 из названных выше элементов и не содержит биологических ошибок, ИЛИ ответ включает 2 из названных выше элементов, но содержит не грубые биологические ошибки. 1
Ответ неправильный 0
Максимальный балл 3

Ответ: см. решение

pазбирался: Ксения Алексеевна | обсудить разбор

Задание EB26715

Известно, что все виды РНК синтезируются на ДНК-матрице. Фрагмент молекулы ДНК, на котором синтезируется участок тРНК, имеет следующую последовательность нуклеотидов (верхняя цепь смысловая, нижняя транскрибируемая).

5’-ТАТЦГАТТЦГЦЦТГА-3’

3’-АТАГЦТААГЦГГАЦТ-5’

Установите нуклеотидную последовательность участка тРНК который синтезируется на данном фрагменте, обозначьте 5’ и 3’ концы этого фрагмента. Какой кодон иРНК будет соответствовать антикодону этой тРНК, если она переносит к месту синтеза белка аминокислоту ГЛУ. Ответ поясните. Для решения задания используйте таблицу генетического кода:

https://bio-ege.sdamgia.ru/get_file?id=25056


Выписываем себе смысловую цепь:

5’-ТАТ — ЦГА — ТТЦ — ГЦЦ — ТГА- 3’.

Выписываем транскрибируемую цепь:

3’-АТА — ГЦТ — ААГ — ЦГГ — АЦТ- 5’.

Строим тРНК по транскрибируемой ДНК:

5’УАУ3’, 5’ЦГА3’, 5’УУЦ3’, 5’ГЦЦ3’, 5’УГА3’.

Теперь, пользуясь табличкой генетического кода, обнаружим последовательности иРНК, кодирующие аминокислоту «Глу».

Это последовательности 5’- ГАА — 3’ и 5’- ГАГ — 3’.

Построим комплементарные этим иРНК триплеты тРНК:

3’ЦУУ5’ и  3’ЦУЦ5’. Нам необходимо понять, какая же иРНК, переносящая аминокислоту «Глу» комплементарна антикодону тРНК. Значит, мы должны найти полученные нами кодоны тРНК в построенной ранее цепочке тРНК. Однако, мы получили триплеты ориентированные от 5’ к 3’ концу, а в построенной цепочке наоборот.

Перепишем полученные триплеты в нужной ориентации:

3’УУЦ5’ и 3’ЦУЦ 5’.

Третий триплет последовательности тРНК совпадает с полученным нами триплетом 3’УУЦ5’.

Значит, иРНК, которая переносит аминокислоту «Глу» в данном случае имеет последовательность 5’- ГАА — 3’

Содержание верного ответа и указания к оцениванию Баллы
  1. 1) Нуклеотидная последовательность участка тРНК — УАУ-ЦГА-ЦУУ-ГЦЦ-УГА;

    2) нуклеотидная последовательность кодона ГАА (находим по таблице генетического кода триплеты соответсвующие аминокислоте глу — ГАА; ГАГ);

    3) нуклеотидная последовательность антикодона тРНК — ЦУУ, что соответствует кодону ГАА по правилу комплементарности.

    Примечание.

    Внимательно читайте условие.

    Ключевое слово: «Известно, что все виды РНК синтезируются на ДНК-матрице.»

    В данном задании просят найти тРНК (трилистник), который построен на основе ДНК, а затем уже у нее вычислить местоположение антикодона.

Ответ включает все названные выше элементы, не содержит биологических ошибок. 3
Ответ включает 2 из названных выше элементов и не содержит биологических ошибок, ИЛИ ответ включает 3 названных выше элемента, но содержит не грубые биологические ошибки. 2
Ответ включает 1 из названных выше элементов и не содержит биологических ошибок, ИЛИ ответ включает 2 из названных выше элементов, но содержит не грубые биологические ошибки. 1
Ответ неправильный 0
Максимальный балл 3

Ответ: см. решение

pазбирался: Ксения Алексеевна | обсудить разбор

Задание EB26713

Антикодоны тРНК поступают к рибосомам в следующей последовательности нуклеотидов УЦГ, ЦГА, ААУ, ЦЦЦ. Определите последовательность нуклеотидов на иРНК, последовательность нуклеотидов на ДНК, кодирующих определенный белок и последовательность аминокислот во фрагменте молекулы синтезируемого белка, используя таблицу генетического кода:https://bio-ege.sdamgia.ru/get_file?id=25056


Нам дана тРНК, она ориентирована от 5′ к 3′ концу.

Для удобства, на черновике, выписываем цепь тРНК из условия, чтобы не потерять какой-нибудь нуклеотид:

тРНК 5’УЦГ3′, 5’ЦГА3′, 5’ААУ3′, 5’ЦЦЦ3′

Теперь выписываем тРНК, ориентируя антикодоны не в направлении 5′ к 3′ концу, а наоборот. тРНК 3’ГЦУ5′, 3’АГЦ5′, 3’УАА5′, 3’ЦЦЦ5′

Примечание: когда записываем тРНК, то указываем 5′ и 3′ концы, ставим запятые между тРНК.

Картинки по запросу трнк

Теперь строим цепь иРНК, указываем 5′ и 3′ концы. тРНК ориентирована от 3′ к 5′ , поэтому, учитывая принцип антипараллельности, иРНК ориентирована наоборот, от 5′ и 3′:

Напоминаю, какие же есть пары у РНК: А комплементарна У, Г комплементарна Ц.

иРНК 5′ — ЦГА — УЦГ — АУУ — ГГГ — 3′

Теперь по принципу комплементарности строим цепь ДНК по иРНК, это будет транскрибируемая цепь ДНК. Над ней необходимо будет построить смысловую цепь ДНК. Опять же, не забываем про антипараллельность.

Напоминаю пары в ДНК: А комплементарна Т, Ц комплементарна Г

3′ — ГЦТ — АГЦ — ТАА — ЦЦЦ — 5′ — это наша транскрибируемая цепь. Строим по ней смысловую цепь: 5′ — ЦГА — ТЦГ — АТТ — ГГГ — 3′

Теперь определим последовательность получившихся аминокислот в иРНК. Для этого воспользуемся таблицей генетического кода, которая прилагается в задании.

Как пользоваться таблицей? .

Рассмотрим пример: последовательность аминокислоты: АГЦ

  1. Находим первое основание в первом столбце таблицы – А.
  2. Находим второе основание среди колонок 2-4. Наше основание – Г. Ему соответствует 4 столбец таблицы.
  3. Находим последнее, третье основание. У нас это Ц. В последнем столбике ищем в первой строке букву Ц. Теперь ищем пересечение с нужным столбиков, указывающим на второе основание.
  4. Получаем аминокислоту «сер»

C:UsersКсеньяDesktopБезымянный.png

Определим наши аминокислоты:

ЦГА — «Арг»

УЦГ – «Сер»

АУУ– «Иле»

ГГГ – «Гли»

Итоговая последовательность: Арг-Сер-Иле-Гли

Содержание верного ответа и указания к оцениванию Баллы
  1. 1. По принципу комплементарности определяем последовательность иРНК: 5’-ЦГА-УЦГ-АУУ-ГГГ- 3’;

    2. Нуклеотидную последовательность транскрибируемой и смысловой цепей ДНК также определяем по принципу комплементарности:

     

    5’ − ЦГА-ТЦГ-АТТ-ГГГ − 3’

    3’ − ГЦТ-АГЦ-ТАА-ЦЦЦ − 5’

     

    3. По таблице генетического кода и кодонам иРНК находим последовательность аминокислот в пептиде: Арг-Сер-Иле-Гли

Ответ включает все названные выше элементы, не содержит биологических ошибок. 3
Ответ включает 2 из названных выше элементов и не содержит биологических ошибок, ИЛИ ответ включает 3 названных выше элемента, но содержит не грубые биологические ошибки. 2
Ответ включает 1 из названных выше элементов и не содержит биологических ошибок, ИЛИ ответ включает 2 из названных выше элементов, но содержит не грубые биологические ошибки. 1
Ответ неправильный 0
Максимальный балл 3

Ответ: см. решение

pазбирался: Ксения Алексеевна | обсудить разбор

Задание EB11126

Чем строение молекулы ДНК отличается от строения молекулы иРНК?


  1. ДНК построена по типу двойной спирали, и-РНК — одноцепочечная.
  2. В нуклеотидах ДНК углевод дезоксирибоза и азотистое основание тимин
  3. В нуклеотидах и-РНК — рибоза и урацил.

Ответ: см. решение

pазбирался: Ксения Алексеевна | обсудить разбор

Задание EB20604

Вставьте в текст «Биосинтез белка» пропущенные термины из предложенного перечня, используя для этого цифровые обозначения. Запишите в текст цифры выбранных ответов, а затем получившуюся последовательность цифр (по тексту) впишите в приведённую ниже таблицу.

БИОСИНТЕЗ БЕЛКА

В результате пластического обмена в клетках синтезируются специфические для организма белки. Участок ДНК, в котором закодирована информация о структуре одного белка, называется ______(А). Биосинтез белков начинается с синтеза ______(Б), а сама сборка происходит в цитоплазме при участии ______(В). Первый этап биосинтеза белка получил название _________(Г), а второй — трансляция.

ПЕРЕЧЕНЬ ТЕРМИНОВ:

  1. иРНК
  2. ДНК
  3. транскрипция
  4. мутация
  5. ген
  6. рибосома
  7. комплекс Гольджи
  8. фенотип

Запишите в ответ цифры, расположив их в порядке, соответствующем буквам: 


Ген — участок ДНК, в котором закодирована информация о структуре одного белка. 5)

Биосинтез белка начинается с синтеза иРНК, сборка происходит в цитоплазме при помощи рибосом.1) 6)

Первый этап — транскрипция (переписывание). 3)

Ответ: 5163

pазбирался: Ксения Алексеевна | обсудить разбор

Задание EB21657

Установите правильную последовательность процессов биосинтеза белка. Запишите в таблицу соответствующую последовательность цифр.

  1. присоединение аминокислоты к пептиду
  2. синтез иРНК на ДНК
  3. узнавание кодоном антикодона
  4. объединение иРНК с рибосомой
  5. выход иРНК в цитоплазму

Расположим в правильном порядке:

  1. синтез иРНК на ДНК
  2. выход иРНК в цитоплазму
  3. объединение иРНК с рибосомой
  4. узнавание кодоном антикодона
  5. присоединение аминокислоты к пептиду

Ответ: 25431

pазбирался: Ксения Алексеевна | обсудить разбор

Задание EB21756

Установите правильную последовательность реакций, происходящих в процессе биосинтеза белков. Запишите в таблицу соответствующую последовательность цифр.

  1. раскручивание молекулы ДНК
  2. объединение иРНК с рибосомой
  3. присоединение первой тРНК с определённой аминокислотой
  4. выход иРНК в цитоплазму
  5. постепенное наращивание полипептидной цепи
  6. синтез иРНК на одной из цепей ДНК

Раскручивание молекулы ДНК синтез иРНК на одной из цепей ДНК выход иРНК в цитоплазму объединение иРНК с рибосомой присоединение первой тРНК с определённой аминокислотой постепенное наращивание полипептидной цепи

Ответ: 164235

pазбирался: Ксения Алексеевна | обсудить разбор

Задание EB16828

Установите последовательность процессов при биосинтезе белка в клетке.

  1. образование пептидной связи между аминокислотами
  2. взаимодействие кодона иРНК и антикодона тРНК
  3. выход тРНК из рибосомы
  4. соединение иРНК с рибосомой
  5. выход иРНК из ядра в цитоплазму
  6. синтез иРНК

1. Образование функционального центра рибосомы — ФЦР, состоящего из иРНК и двух субъединиц рибосом. В ФЦР всегда находятся два триплета (шесть нуклеотидов) иРНК, образующих два активных центра: А (аминокислотный) — центр узнавания аминокислоты и П (пептидный) — центр присоединения аминокислоты к пептидной цепочке.

2. Транспортировка аминокислот, присоединенных к тРНК, из цитоплазмы в ФЦР. В активном центре А осуществляется считывание антикодона тРНК с кодоном иРНК, в случае комплементарности возникает связь, которая служит сигналом для продвижения (скачок) вдоль иРНК рибосомы на один триплет. В результате этого комплекс «кодон рРНК и тРНК с аминокислотой» перемещается в активный центр , где и происходит присоединение аминокислоты к пептидной цепочке (белковой молекуле). После чего тРНК покидает рибосому.

3. Пептидная цепочка удлиняется до тех пор, пока не закончится трансляция и рибосома не соскочит с иРНК. На одной иРНК может умещаться одновременно несколько рибосом (полисома). Полипептидная цепочка погружается в канал эндоплазматической сети и там приобретает вторичную, третичную или четвертичную структуру. Скорость сборки одной молекулы белка, состоящего из 200-300 аминокислот, составляет 1-2 мин. Формула биосинтеза белка: ДНК (транскрипция) —> РНК (трансляция) —> белок

Ответ: 654213

pазбирался: Ксения Алексеевна | обсудить разбор

Задание EB10829

Установите, в какой последовательности образуются структуры молекулы белка.

  1. полипептидная цепь
  2. клубок или глобула
  3. полипептидная спираль
  4. структура из нескольких субъединиц

Картинки по запросу первичная вторичная третичная четвертичная структура белка

Третичная структура — глобула, четвертичная — несколько глобул.

Ответ: 1324

pазбирался: Ксения Алексеевна | обсудить разбор

Задание EB22097

Все при­ведённые ниже процессы, кроме двух, можно отнести к матричным реакциям в клетке. Определите два процесса, «вы­па­да­ю­щих» из об­ще­го спис­ка, и за­пи­ши­те в ответ цифры, под ко­то­ры­ми они ука­за­ны.

  1. синтез РНК
  2. биосинтез белка
  3. хемосинтез
  4. фотолиз воды
  5. репликацию ДНК

Раз “матричные реакции», то они связаны с ДНК и РНК. Не стоит забывать, что они являются белками. К матричным реакциям, в таком случае, относятся: синтез РНК, репликация ДНК, биосинтез белка. Хемосинтез и фотолиз воды отношения к этому не имеют.

Ответ: 34

pазбирался: Ксения Алексеевна | обсудить разбор

Задание EB0301

Длина фрагмента молекулы ДНК бактерии равняется 20,4 нм. Сколько аминокислот будет в белке, кодируемом данным фрагментом ДНК?

Примечание.

Длина одного нуклеотида 0,34 нм.


Обратите внимание на примечание, оно явно здесь не просто так.

Итак, сейчас перед нами практически задача по математике из начальной школы.

Первое наше действие: У нас есть бусы, длина которых 20,4 единиц измерения. Диаметр одной бусины 0,34 единиц измерения. Сколько здесь бусин? Естественно, нужно просто поделить все бусы на размер одной их составляющей:

20,4 : 0,34= 60.

Мы нашли количество нуклеотидов. У генетического кода есть такое свойство как триплетность. Она аминокислота кодируется тремя нуклеотидами. Чтобы узнать число аминокислот нужно разбить нуклеотиды на группки по три:

60: 3= 20

20 аминокислот будет в белке с длинной фрагмента ДНК 20,4 нм.

Ответ: 20

pазбирался: Ксения Алексеевна | обсудить разбор

Задание EB2412

Сколько нуклеотидов в участке гена кодируют фрагмент белка из 25 аминокислотных остатков? В ответ запишите только соответствующее число.


Раз одна аминокислота кодируется тремя нуклеотидами, то 1 аминокислота=3 нуклеотида

25*3 = 75

Ответ: 75

pазбирался: Ксения Алексеевна | обсудить разбор

Задание EB1038

Все представленные на схеме вещества, кроме двух, имеют в своём составе азотистое основание — аденин. Определите два вещества, «выпадающие» из общего списка, и запишите


В состав ДНК и РНК точно входят Аденин, ведь отличаются они совсем другими азотистыми основаниями: Аденину в РНК по принципу комплементарности соответствует Урацил, а не Тимин. На картинке с тРНК вообще видны буквы А. Это и есть Аденин.

Внимание! Раз на первой картинке была ДНК, то это совсем не значит, что на второй и третьей тоже она. Это может быть любой другой белок, в состав которого Аденин может и не входить.

Остается еще АТФ. В ее она включает в себя Аденин, так что под решение вопроса не подходит.

Лишними являются вторичная и третичная структура неопределенного белка.

Ответ: 23

pазбирался: Ксения Алексеевна | обсудить разбор

Задание EB6645

Сколько ами­но­кис­лот кодирует 900 нуклеотидов. В ответ запишите только соответствующее число.


1 аминокислота= 3 нуклеотида. Делим все нуклеотиды на 3, получаем аминокислоты.

900 : 3 = 300.

Ответ: 300

pазбирался: Ксения Алексеевна | обсудить разбор

Задание EB7512

Какой ан­ти­ко­дон транспортной РНК со­от­вет­ству­ет триплету ТГА в мо­ле­ку­ле ДНК?


Здесь можно разработать алгоритм. Если дана молекула ДНК, а нужно найти тРНК, то нужно:

  1. Записать информационную РНК (иРНК) по принципу комплементарности
  2. Записать транспортную ДНК по принципу комплементарности.
  3. Готово!

На нашем примере:

Тимину соответствует аденин

Гуанину – цитозин

Аденину – урацил, ведь это РНК

1) АЦУ

Аденину соответствует урацил

Цитозину – гуанин

Урацилу – аденин

2) УГА

Ответ: УГА

pазбирался: Ксения Алексеевна | обсудить разбор

Задание EB6702

В молекуле ДНК количество нуклеотидов с гуанином составляет 20% от общего числа. Сколько нуклеотидов в % с тимином в этой молекуле. В ответ запишите только соответствующее число.


Раз у нас дано, что 20% от общего числа – гуанин, то это значит, то 20% приходится и на комплементарный ему цитозин.

20% + 20% = 40%- гуанин и цитозин.

Для аденина и тимина остается:

100% – 40% = 60%

60% – для аденина и тимина, а вопрос только про тимин,значит, число нужно поделить на 2:

60% : 2 = 30%

30% – на тимин

30% – на аденин

Ответ: 30

pазбирался: Ксения Алексеевна | обсудить разбор

Ксения Алексеевна | Просмотров: 9.1k

Скачать материал

без ожидания

Решение задач с использованием таблицы генетического кода

Скачать материал

без ожидания

  • Сейчас обучается 77 человек из 37 регионов

  • Сейчас обучается 43 человека из 24 регионов

  • Сейчас обучается 33 человека из 21 региона

Описание презентации по отдельным слайдам:

  • Решение задач с использованием таблицы генетического кода

    1 слайд

    Решение задач с использованием таблицы генетического кода

  • Повторение:
Какие процессы описаны в данной схеме? Как они взаимосвязаны?

    2 слайд

    Повторение:
    Какие процессы описаны в данной схеме? Как они взаимосвязаны?

  • В одной цепи молекулы ДНК следующая последовательность нуклеотидов: ТТАААЦЦАТ...

    3 слайд

    В одной цепи молекулы ДНК следующая последовательность нуклеотидов: ТТАААЦЦАТТТГ.
    Используя принцип комплементарности, постройте вторую цепь и и-РНК, комплементарную ей.
    -Т – Т – А – А- А – Ц – Ц- А- Т- Т – Т – Г –
    I I I I I I I I I I I I
    -А – А – Т – Т – Т- Г – Г – Т – А – А – А – Ц-
    (ДНК)

      -У – У – А –А – А –Ц – Ц – А – У – У –У – Г-
    (и- РНК)

  • Таблица генетического кода (и-РНК)

    4 слайд

    Таблица генетического кода (и-РНК)

  • Основные типы задач, решение которых предполагает использование таблицы генет...

    5 слайд

    Основные типы задач, решение которых предполагает использование таблицы генетического кода
    Построение молекулы и-РНК, антикодонов т-РНК и последовательности аминокислот в белке

    Определение структуры т-РНК и переносимой ею аминокислоты

    Определение аминокислотной последовательности в белке до и после изменений в ДНК

    Краткая теория
    Задача 1
    Задача 2
    Задача 3
    Задача 4
    Задача 5
    Задача 6
    Задача 8
    Задача 7
    Завершить работу
    Краткая теория
    Информационные источники
    самостоятельно:
    самостоятельно:

  • нуклеотиды и-РНК комплементарны нуклеотидам ДНК;
вместо тимина ДНК во всех ви...

    6 слайд

    нуклеотиды и-РНК комплементарны нуклеотидам ДНК;
    вместо тимина ДНК во всех видах РНК записывается урацил;
    нуклеотиды и-РНК пишутся подряд, без запятых, т. к. имеется в виду одна молекула;
    кодон и-РНК комплементарен антикодону т-РНК
    антикодоны т-РНК пишутся через запятую, т. к. каждый антикодон принадлежит отдельной молекуле т-РНК;
    Основной теоретический материал
    Построение молекулы и-РНК, антикодонов т-РНК и последовательности аминокислот в белке

  • аминокислоты находим по таблице генетического кода;
аминокислоты в белке пишу...

    7 слайд

    аминокислоты находим по таблице генетического кода;
    аминокислоты в белке пишутся через дефис, т. к. имеется в виду, что они уже соединились и образовали первичную структуру белка;
    3 нуклеотида =1 триплет (кодон) = 1 аминокислота = 1 т-РНК

    Основной теоретический материал
    Построение молекулы и-РНК, антикодонов т-РНК и последовательности аминокислот в белке

  • аминокислоты находим по таблице генетического кода;
аминокислоты в белке пишу...

    8 слайд

    аминокислоты находим по таблице генетического кода;
    аминокислоты в белке пишутся через дефис, т. к. имеется в виду, что они уже соединились и образовали первичную структуру белка;
    3 нуклеотида =1 триплет (кодон) = 1 аминокислота = 1 т-РНК

    Основной теоретический материал
    Построение молекулы и-РНК, антикодонов т-РНК и последовательности аминокислот в белке

  • Задача 1. 
Фрагмент цепи ДНК имеет последовательность 
   А-Ц-Г-Т-Т-Г-Ц-Ц-Ц...

    9 слайд

    Задача 1.
    Фрагмент цепи ДНК имеет последовательность
    А-Ц-Г-Т-Т-Г-Ц-Ц-Ц-А-А-Т.
    Определите последовательность нуклеотидов и-РНК, антикодоны т-РНК и последовательность аминокислот в синтезируемом белке.

  • и-РНК строим комплементарно ДНК;
антикодоны т-РНК комплементарны кодонам и-Р...

    10 слайд

    и-РНК строим комплементарно ДНК;
    антикодоны т-РНК комплементарны кодонам и-РНК;
    аминокислоты находим по кодонам и-РНК, используя таблицу генетического кода.
    Основные этапы решения задачи. План рассуждений.

  • фрагмент цепи ДНК:                   
 А-Ц-Г-Т-Т-Г-Ц-Ц-Ц-А-А-Т
кодоны и-РНК:...

    11 слайд

    фрагмент цепи ДНК:
    А-Ц-Г-Т-Т-Г-Ц-Ц-Ц-А-А-Т
    кодоны и-РНК:
    У-Г-Ц-А-А-Ц-Г-Г-Г-У-У-А
    антикодоны т-РНК
    А-Ц-Г,У-У-Г,Ц-Ц-Ц,А-А-У
    Основные этапы решения задачи. Оформление.

  • фрагмент цепи ДНК:                   
 АЦГ-ТТГ-ЦЦЦ-ААТ
кодоны и-РНК:...

    12 слайд

    фрагмент цепи ДНК:
    АЦГ-ТТГ-ЦЦЦ-ААТ
    кодоны и-РНК:
    УГЦ-ААЦ-ГГГ-УУА
    антикодоны т-РНК
    АЦГ,УУГ,ЦЦЦ, ААУ
    Основные этапы решения задачи. Краткое оформление.

  • кодоны и-РНК: УГЦ-ААЦ-ГГГ-УУА

    13 слайд

    кодоны и-РНК: УГЦ-ААЦ-ГГГ-УУА

  • Таблица генетического кода (и-РНК)

    14 слайд

    Таблица генетического кода (и-РНК)

  • последовательность аминокислот в белке: 
              цис-асн-гли-лей
(кодон...

    15 слайд

    последовательность аминокислот в белке:
    цис-асн-гли-лей
    (кодоны и-РНК:
    УГЦ-ААЦ-ГГГ-УУА)

    Основные этапы решения задачи. Определение аминокислот по таблице генетического кода.

  • Задача 2. 
Последовательность аминокислот во фрагменте молекулы белка фен-г...

    16 слайд

    Задача 2.
    Последовательность аминокислот во фрагменте молекулы белка фен-глу-мет.
    Определите, пользуясь таблицей генетического кода, возможные триплеты ДНК, которые кодируют этот фрагмент белка

  • Триплеты и-РНК: Фен-Глу-Мет
Фен – УУУ или УУЦ
Глу – ГАА или ГАГ
Мет - АУГ
Нах...

    17 слайд

    Триплеты и-РНК: Фен-Глу-Мет
    Фен – УУУ или УУЦ
    Глу – ГАА или ГАГ
    Мет – АУГ
    Находим триплеты ДНК:
    Фен – ААА или ААГ
    Глу – ЦТТ или ЦТЦ
    Мет – ТАЦ
    Основные этапы решения задачи. Решение задачи. Оформление.

  • Триплеты и-РНК: Фен-Глу-Мет
Фен – УУУ или УУЦ
Глу – ГАА или ГАГ
Мет - АУГ
Нах...

    18 слайд

    Триплеты и-РНК: Фен-Глу-Мет
    Фен – УУУ или УУЦ
    Глу – ГАА или ГАГ
    Мет – АУГ
    Находим триплеты ДНК:
    Фен – ААА или ААГ
    Глу – ЦТТ или ЦТЦ
    Мет – ТАЦ
    Основные этапы решения задачи. Решение задачи. Оформление.

  • Задача 3. 
В биосинтезе белка участвовали        т-РНК с антикодонами 
 УУА...

    19 слайд

    Задача 3.
    В биосинтезе белка участвовали т-РНК с антикодонами
    УУА, ГГЦ, ЦГЦ, АУА, ЦГУ.
    Определите структуру двухцепочечного участка молекулы ДНК, несущего информацию о синтезируемом полипептиде, и последовательность аминокислот в нем.

  • 


Ответы на задачу № 3

    20 слайд

    Ответы на задачу № 3

  • Задача 4. 
Матрицей для синтеза белка послужил фрагмент и-РНК, имеющий посл...

    21 слайд

    Задача 4.
    Матрицей для синтеза белка послужил фрагмент и-РНК, имеющий последовательность
    АУГ-ГЦУ-ААА-ЦЦГ.
    Определите антикодоны т-РНК, участвовавшие в трансляции, первичную структуру синтезированного белка и последовательность нуклеотидов в гене, кодирующем данный белок.

  • 


Ответы на задачу № 4

    22 слайд

    Ответы на задачу № 4

  • т-РНК синтезируются прямо на матрице ДНК по принципу комплементарности...

    23 слайд

    т-РНК синтезируются прямо на матрице ДНК по принципу комплементарности и без участия и-РНК (обычно это указывается в условии задачи);
    чтобы узнать, какую аминокислоту переносит т-РНК, необходимо построить кодон и-РНК;
    по кодону и-РНК с помощью таблицы генетического кода определяем аминокислоту;
    указанный в условии триплет т-РНК является антикодоном.

    Определение структуры т-РНК и переносимой ею аминокислоты

  • т-РНК синтезируются прямо на матрице ДНК по принципу комплементарности...

    24 слайд

    т-РНК синтезируются прямо на матрице ДНК по принципу комплементарности и без участия и-РНК (обычно это указывается в условии задачи);
    чтобы узнать, какую аминокислоту переносит т-РНК, необходимо построить кодон и-РНК;
    по кодону и-РНК с помощью таблицы генетического кода определяем аминокислоту;
    указанный в условии триплет т-РНК является антикодоном.

    Определение структуры т-РНК и переносимой ею аминокислоты

  • Задача 5. 
Известно, что все виды РНК синтезируются на ДНК - матрице. Фраг...

    25 слайд

    Задача 5.
    Известно, что все виды РНК синтезируются на ДНК – матрице. Фрагмент молекулы ДНК, на которой синтезировался участок центральной петли т-РНК, имеет следующую последовательность нуклеотидов:
    ЦГЦ-ГАЦ-ГТГ-ГТЦ-ГАА.
    Установите нуклеотидную последовательность участка т-РНК, который синтезируется на данном фрагменте, и аминокислоту, которую будет переносить эта т-РНК в процессе биосинтеза белка, если третий триплет соответствует антикодону т-РНК.
    Ответ поясните.

  • 1) Находим последовательность нуклеотидов участка центральной петли т-РНК:...

    26 слайд

    1) Находим последовательность нуклеотидов участка центральной петли т-РНК:
    участок ДНК: ЦГЦ-ГАЦ-ГТГ-ГТЦ-ГАА
    т-РНК: ГЦГ-ЦУГ-ЦАЦ-ЦАГ-ЦУУ
    2) Подчеркнутый триплет по условию задачи соответствует антикодону. Антикодон
    т-РНК: ЦАЦ. Ему соответствует кодон
    и-РНК: ГУГ.
    3) По таблице генетического кода находим аминокислоту: вал.
    Основные этапы решения задачи. План рассуждений. Оформление.

  • 1) Находим последовательность нуклеотидов участка центральной петли т-РНК:...

    27 слайд

    1) Находим последовательность нуклеотидов участка центральной петли т-РНК:
    участок ДНК: ЦГЦ-ГАЦ-ГТГ-ГТЦ-ГАА
    т-РНК: ГЦГ-ЦУГ-ЦАЦ-ЦАГ-ЦУУ
    2) Подчеркнутый триплет по условию задачи соответствует антикодону. Антикодон
    т-РНК: ЦАЦ. Ему соответствует кодон
    и-РНК: ГУГ.
    3) По таблице генетического кода находим аминокислоту: вал.
    Основные этапы решения задачи. План рассуждений. Оформление.

  • Задача 6. 
Известно, что все виды РНК синтезируются на ДНК - матрице. Фраг...

    28 слайд

    Задача 6.
    Известно, что все виды РНК синтезируются на ДНК – матрице. Фрагмент молекулы ДНК, на которой синтезировался участок центральной петли т-РНК, имеет следующую последовательность нуклеотидов:
    АТА­ГЦТ­ГАА- ЦГГ-АЦТ.
    Установите нуклеотидную последовательность участка т-РНК, который синтезируется на данном фрагменте, и аминокислоту, которую будет переносить эта т-РНК в процессе биосинтеза белка, если третий триплет соответствует антикодону т-РНК.
    Ответ поясните.

  • Ответ: 
1) нуклеотидная последовательность участка тРНК: 
  УАУ-ЦГА-ЦУУ-ГЦЦ-У...

    29 слайд

    Ответ:
    1) нуклеотидная последовательность участка тРНК:
    УАУ-ЦГА-ЦУУ-ГЦЦ-УГА;
    2) нуклеотидная последовательность антикодона ЦУУ (третий триплет) соответствует кодону на и-РНК: ГАА;
    3) по таблице генетического кода этому кодону соответствует аминокислота глу, которую будет переносить данная т-РНК
    Условие: Известно, что все виды РНК синтезируются на ДНК – матрице. Фрагмент молекулы ДНК, на которой синтезировался участок центральной петли т-РНК, имеет следующую последовательность нуклеотидов: АТА­ГЦТ­ГАА- ЦГГ-АЦТ

  • Ответ: 
1) нуклеотидная последовательность участка тРНК: 
  УАУ-ЦГА-ЦУУ-ГЦЦ-У...

    30 слайд

    Ответ:
    1) нуклеотидная последовательность участка тРНК:
    УАУ-ЦГА-ЦУУ-ГЦЦ-УГА;
    2) нуклеотидная последовательность антикодона ЦУУ (третий триплет) соответствует кодону на и-РНК: ГАА;
    3) по таблице генетического кода этому кодону соответствует аминокислота глу, которую будет переносить данная т-РНК
    Условие: Известно, что все виды РНК синтезируются на ДНК – матрице. Фрагмент молекулы ДНК, на которой синтезировался участок центральной петли т-РНК, имеет следующую последовательность нуклеотидов: АТА­ГЦТ­ГАА- ЦГГ-АЦТ

  • Оцените себя:

0 ошибок – 3 балла
1 ошибка – 2 балла
2 ошибки – 1 балл

    31 слайд

    Оцените себя:

    0 ошибок – 3 балла
    1 ошибка – 2 балла
    2 ошибки – 1 балл

  • Задача 7. 
   С какой последовательности аминокислот начинается белок, есл...

    32 слайд

    Задача 7.
    С какой последовательности аминокислот начинается белок, если он закодирован такой последовательностью нуклеотидов: ГАЦ-ЦГА-ТГТ-АТГ-АГА.
    Каким станет начало цепочки, если под влиянием облучения четвертый нуклеотид окажется выбитым из молекулы ДНК?
    Как это отразится на свойствах синтезируемого белка?

  • 1) Исходная ДНК: 
     ГАЦ-ЦГА-ТГТ-АТГ-АГА
     и-РНК: 
     ЦУГ-ГЦУ-АЦА-УАЦ-...

    33 слайд

    1) Исходная ДНК:
    ГАЦ-ЦГА-ТГТ-АТГ-АГА
    и-РНК:
    ЦУГ-ГЦУ-АЦА-УАЦ-УЦУ
    последовательность аминокислот:
    лей-ала-тре-тир-сер
    Основные этапы решения задачи. План рассуждений. Оформление.

  • 2) Оставшаяся последовательность будет на один нуклеотид короче, поэтому посл...

    34 слайд

    2) Оставшаяся последовательность будет на один нуклеотид короче, поэтому последний триплет будет неполным. Значит, и последовательность аминокислот будет короче на одну аминокислоту.
    Измененная (мутантная) ДНК:
    ГАЦ-ГАТ-ГТА-ТГА-ГА
    и- РНК: ЦУГ-ЦУА-ЦАУ-АЦУ-ЦУ
    последовательность аминокислот:
    лей-лей-гис-тре-…
    Основные этапы решения задачи. План рассуждений. Оформление.

  • 3)Первичная структура белка изменилась (изменилось число аминокислот и их п...

    35 слайд

    3)Первичная структура белка изменилась (изменилось число аминокислот и их последовательность), что отразится на пространственной структуре молекулы, а значит, и на ее свойствах и функциях.
    Основные этапы решения задачи. План рассуждений. Оформление.

  • Задача 8. 
В результате мутации во фрагменте молекулы белка аминокислота трео...

    36 слайд

    Задача 8.
    В результате мутации во фрагменте молекулы белка аминокислота треонин (тре) заменилась на глутамин (глн).
    Определите аминокислотный состав фрагмента молекулы нормального и мутированного белка и фрагмент мутированной и-РНК, если в норме и-РНК имеет последовательность:
    ГУЦ-АЦА­ГЦГ-АУЦ-ААУ.
    Ответ поясните. Для решения задания используйте таблицу генетического кода.

  • 1) и-РНК: ГУЦ−АЦА-ГЦГ- АУЦ-ААУ; 
нормальный белок: ……………………………………..;
2) После...

    37 слайд

    1) и-РНК: ГУЦ−АЦА-ГЦГ- АУЦ-ААУ;
    нормальный белок: ……………………………………..;
    2) После мутации фрагмент молекулы белка будет иметь состав: ………………………………..;
    3) Глутамин кодируется двумя кодонами …… и ……., следовательно, мутированная и-РНК будет …………………..….. или …………………….……..
    Скорее всего произошла …………………………………
    ………………………., т.е. ….поменялись с …. — триплет …….. превратился в ……. и тогда мутированная и-РНК будет:………………………
    Основные этапы решения задачи. План рассуждений.

  • 1) и-РНК: ГУЦ−АЦА-ГЦГ- АУЦ-ААУ; 
нормальный белок: вал-тре-ала-иле-асн;
2) По...

    38 слайд

    1) и-РНК: ГУЦ−АЦА-ГЦГ- АУЦ-ААУ;
    нормальный белок: вал-тре-ала-иле-асн;
    2) После мутации фрагмент молекулы белка будет иметь состав: вал-глн-ала-иле-асн;
    3) Глутамин кодируется двумя кодонами ЦАА и ЦАГ, следовательно, мутированная и-РНК будет ГУЦ−ЦАА−ГЦГ−АУЦ−ААУ или . ГУЦ−ЦАГ−ГЦГ−АУЦ−ААУ
    Скорее всего произошла инверсия — поворот нуклеотидов на 180°, т.е. А поменялись с Ц — триплет АЦА превратился в ЦАА и тогда мутированная и-РНК будет: ГУЦ−ЦАА−ГЦГ−АУЦ−ААУ

  • 1) и-РНК: ГУЦ−АЦА-ГЦГ- АУЦ-ААУ; 
нормальный белок: вал-тре-ала-иле-асн;
2) По...

    39 слайд

    1) и-РНК: ГУЦ−АЦА-ГЦГ- АУЦ-ААУ;
    нормальный белок: вал-тре-ала-иле-асн;
    2) После мутации фрагмент молекулы белка будет иметь состав: вал-глн-ала-иле-асн;
    3) Глутамин кодируется двумя кодонами ЦАА и ЦАГ, следовательно, мутированная и-РНК будет ГУЦ−ЦАА−ГЦГ−АУЦ−ААУ или . ГУЦ−ЦАГ−ГЦГ−АУЦ−ААУ
    Скорее всего произошла инверсия — поворот нуклеотидов на 180°, т.е. А поменялись с Ц — триплет АЦА превратился в ЦАА и тогда мутированная и-РНК будет: ГУЦ−ЦАА−ГЦГ−АУЦ−ААУ

  • Оцените себя:

0 ошибок – 3 балла
1 ошибка – 2 балла
2 ошибки – 1 балл

    40 слайд

    Оцените себя:

    0 ошибок – 3 балла
    1 ошибка – 2 балла
    2 ошибки – 1 балл

  • Таблица генетического кода (и-РНК)

    41 слайд

    Таблица генетического кода (и-РНК)

  • Список использованных источников
https://ru.wikipedia.org/wiki  – Таблица ген...

    42 слайд

    Список использованных источников
    https://ru.wikipedia.org/wiki – Таблица генетического кода;
    http://bio.reshuege.ru – Задачи по цитологии С5;
    http://ege-study.ru/materialy-ege/podborka-zadanij-po-citologii – Д. А. Соловков, ЕГЭ по биологии, задача С5. Подборка заданий по цитологии;
    http://keramikos.ru/table.php?ap=table1000304 – Задание С5. Решение задач по цитологии на применение знаний в новой;
    http://www.myshared.ru/slide/357298 – Решение задач части С5.

Найдите материал к любому уроку, указав свой предмет (категорию), класс, учебник и тему:

6 252 120 материалов в базе

  • Выберите категорию:

  • Выберите учебник и тему

  • Выберите класс:

  • Тип материала:

    • Все материалы

    • Статьи

    • Научные работы

    • Видеоуроки

    • Презентации

    • Конспекты

    • Тесты

    • Рабочие программы

    • Другие методич. материалы

Найти материалы

Другие материалы

  • 23.11.2016
  • 1208
  • 0
  • 23.11.2016
  • 11805
  • 124
  • 23.11.2016
  • 9938
  • 9
  • 23.11.2016
  • 706
  • 0
  • 23.11.2016
  • 1547
  • 1
  • 23.11.2016
  • 3128
  • 32
  • 23.11.2016
  • 1018
  • 6

Вам будут интересны эти курсы:

  • Курс повышения квалификации «Организация и руководство учебно-исследовательскими проектами учащихся по предмету «Биология» в рамках реализации ФГОС»

  • Курс повышения квалификации «ФГОС общего образования: формирование универсальных учебных действий на уроке биологии»

  • Курс повышения квалификации «Медико-биологические основы безопасности жизнедеятельности»

  • Курс повышения квалификации «Методические аспекты реализации элективного курса «Антропология и этнопсихология» в условиях реализации ФГОС»

  • Курс повышения квалификации «Государственная итоговая аттестация как средство проверки и оценки компетенций учащихся по биологии»

  • Курс повышения квалификации «Нанотехнологии и наноматериалы в биологии. Нанобиотехнологическая продукция»

  • Курс повышения квалификации «Основы биоэтических знаний и их место в структуре компетенций ФГОС»

  • Курс повышения квалификации «Гендерные особенности воспитания мальчиков и девочек в рамках образовательных организаций и семейного воспитания»

  • Курс профессиональной переподготовки «Биология и химия: теория и методика преподавания в образовательной организации»

  • Курс профессиональной переподготовки «Организация производственно-технологической деятельности в области декоративного садоводства»

  • Курс повышения квалификации «Инновационные технологии обучения биологии как основа реализации ФГОС»

Таблицы соответствия кодонов мРНК и аминокислот

Генетический код — свойственный всем живым организмам способ кодирования последовательности аминокислотных остатков в составе белков при помощи последовательности нуклеотидов в составе нуклеиновой кислоты.

В ДНК используется четыре азотистых основания — аденин (А), гуанин (G), цитозин (С), тимин (T), которые в русскоязычной литературе обозначаются буквами А, Г, Ц и Т. Эти буквы составляют алфавит генетического кода. В РНК используются те же нуклеотиды, за исключением нуклеотида, содержащего тимин, который заменён похожим нуклеотидом, содержащим урацил, который обозначается буквой U (У в русскоязычной литературе). В молекулах ДНК и РНК нуклеотиды выстраиваются в цепочки и, таким образом, получаются последовательности генетических букв.

Белки практически всех живых организмов построены из аминокислот всего 20 видов. Эти аминокислоты называют каноническими. Каждый белок представляет собой цепочку или несколько цепочек аминокислот, соединённых в строго определённой последовательности. Эта последовательность определяет строение белка, а следовательно все его биологические свойства.

Реализация генетической информации в живых клетках (то есть синтез белка, кодируемого геном) осуществляется при помощи двух матричных процессов: транскрипции (то есть синтеза мРНК на матрице ДНК) и трансляции генетического кода в аминокислотную последовательность (синтез полипептидной цепи на мРНК). Для кодирования 20 аминокислот, а также сигнала «стоп», означающего конец белковой последовательности, достаточно трёх последовательных нуклеотидов. Набор из трёх нуклеотидов называется триплетом. Принятые сокращения, соответствующие аминокислотам и кодонам, изображены на рисунке. К последовательности триплетов (кодонов) в нуклеиновой кислоте, а, следовательно, и к последовательности аминокислотных остатков в белковой молекуле понятие «генетический код» не имеет отношения. Генетический код — это способ записи, а не содержание записи.

Генетический код, общий для большинства про- и эукариот. В таблице приведены все 64 кодона и указаны соответствующие аминокислоты. Порядок оснований — от 5′ к 3′ концу мРНК.

неполярный полярный основный кислотный (стоп-кодон)
Стандартный генетический код

1-е
основание
2-е основание 3-е
основание
U C A G
U UUU (Phe/F) Фенилаланин UCU (Ser/S) Серин UAU (Tyr/Y) Тирозин UGU (Cys/C) Цистеин U
UUC UCC UAC UGC C
UUA (Leu/L) Лейцин UCA UAA Стоп (Охра) UGA Стоп (Опал) A
UUG UCG UAG Стоп (Янтарь) UGG (Trp/W) Триптофан G
C CUU CCU (Pro/P) Пролин CAU (His/H) Гистидин CGU (Arg/R) Аргинин U
CUC CCC CAC CGC C
CUA CCA CAA (Gln/Q) Глутамин CGA A
CUG CCG CAG CGG G
A AUU (Ile/I) Изолейцин ACU (Thr/T) Треонин AAU (Asn/N) Аспарагин AGU (Ser/S) Серин U
AUC ACC AAC AGC C
AUA ACA AAA (Lys/K) Лизин AGA (Arg/R) Аргинин A
AUG[A] (Met/M) Метионин ACG AAG AGG G
G GUU (Val/V) Валин GCU (Ala/A) Аланин GAU (Asp/D) Аспарагиновая кислота GGU (Gly/G) Глицин U
GUC GCC GAC GGC C
GUA GCA GAA (Glu/E) Глутаминовая кислота GGA A
GUG GCG GAG GGG G
A  Кодон AUG кодирует метионин и одновременно является сайтом инициации трансляции: первый кодон AUG в кодирующей области мРНК служит началом синтеза белка.
Секторный вариант записи, внутренний круг — 1-е основание кодона (от 5′-конца)
Обратная таблица (указаны кодоны для каждой аминокислоты, а также стоп-кодоны)

Ala/A GCU, GCC, GCA, GCG Leu/L UUA, UUG, CUU, CUC, CUA, CUG
Arg/R CGU, CGC, CGA, CGG, AGA, AGG Lys/K AAA, AAG
Asn/N AAU, AAC Met/M AUG
Asp/D GAU, GAC Phe/F UUU, UUC
Cys/C UGU, UGC Pro/P CCU, CCC, CCA, CCG
Gln/Q CAA, CAG Ser/S UCU, UCC, UCA, UCG, AGU, AGC
Glu/E GAA, GAG Thr/T ACU, ACC, ACA, ACG
Gly/G GGU, GGC, GGA, GGG Trp/W UGG
His/H CAU, CAC Tyr/Y UAU, UAC
Ile/I AUU, AUC, AUA Val/V GUU, GUC, GUA, GUG
START AUG STOP UAG, UGA, UAA
Отклонения от стандартного генетического кода

Пример Кодон Обычное значение Читается как:
Некоторые виды дрожжей рода Candida CUG Лейцин Серин
Митохондрии, в частности у Saccharomyces cerevisiae CU(U, C, A, G) Лейцин Серин
Митохондрии высших растений CGG Аргинин Триптофан
Митохондрии (у всех без исключения исследованных организмов) UGA Стоп Триптофан
Ядерный геном инфузории Euplotes UGA Стоп Цистеин или селеноцистеин
Митохондрии млекопитающих, дрозофилы, S. cerevisiae и многих простейших AUA Изолейцин Метионин = Старт
Прокариоты GUG Валин Старт
Эукариоты (редко) CUG Лейцин Старт
Эукариоты (редко) GUG Валин Старт
Прокариоты (редко) UUG Лейцин Старт
Эукариоты (редко) ACG Треонин Старт
Митохондрии млекопитающих AGC, AGU Серин Стоп
Митохондрии дрозофилы AGA Аргинин Стоп
Митохондрии млекопитающих AG(A, G) Аргинин Стоп

люди,помогите,пожалуйста,по биологии.как правильно пользоваться таблицей генетического кода,я проболела и не понимаю.



Профи

(548),
закрыт



10 лет назад

Дополнен 12 лет назад

большое спасибо

Дополнен 12 лет назад

ирина канева

Гуру

(2957)


12 лет назад

например, нам надо узнать какую аминокислоту кодирует кодон (триплет) и-РНК – ЦАЦ
первое основание Ц мы ищем в таблице в первом вертикальном столбце (в нашем случае это это вторая строка где написано Ц (Г) )
второе основание А находим на самой верхней строчке, где написано – второе основание (в нашем случае это третий столбец, где написано А (Т) ) далее на пересечении второй строчки Ц (Г) и третьего столбца А (Т) находим квадрат, в которм в столбик записаны аминокислоты (в нашем случае это – гис гис глн глн) осталось выбрать какую-то одну из них. в этом поможет третье основание Ц – смотрим на последний столбец таблицы и находим напротив нашаго квадрата с аминокислотами строчку Ц (Г) – из квадрата выбираем аминокислоту соответствующую этой строчке Ц (Г) – в нашем случае это гис.
если были бы даны триплеты ДНК, искали бы аминокислоту по основаниям в скобках.

Время на прочтение
23 мин

Количество просмотров 12K


Иллюстрация melmagazine.com (Source: melmagazine.com/wp-content/uploads/2019/11/DNA-1280×533.jpg)

В настоящее время для информационного обмена широко используются сети общего доступа с каналами, не защищенными от нарушителя. Обмен сообщениями в таких связных и компьютерных сетях пользователи вынуждены защищать самостоятельно. Так как сами каналы передачи сообщений пользователь защитить не может, он защищает сообщение.

Что в сообщении защищается? Во-первых, синтаксис (целостность) с этой целью используется кодология (кодирование и анализ кодов), во-вторых, семантика (конфиденциальность) для чего используются криптология (криптография и криптографический анализ), в-третьих, косвенно нарушителю можно ограничить доступность сообщения путем скрытия факта его передачи для чего используется стеганология (стеганография и стеганоанализ).

Перечисленные возможности теоретически и практически обеспечены в разной мере, и хотя каждое направление развивается достаточно длительное время, они еще далеки от завершения. В предлагаемой работе коснемся только одного частного вопроса — анализа кодов сообщений.

Введение

В качестве объекта анализа выбран генетический код (ГК). С любопытным примером использования ГК в области информационной защиты (по-видимому непрофессиональной и потому не успешной) можно познакомиться здесь.

В теории кодирования могут быть выделены два важных направления: кодирование источника информации и канальное кодирование. Первое из них реализуется, как правило, передающей стороной и имеет целью — устранение избыточности сообщений (пример, код Морзе), целью второго является — обнаружение и устранение ошибок в сообщениях. До появления корректирующих кодов задача устранения ошибок решалась повторной передачей искаженного фрагмента сообщения по запросу приемной стороны.

Здесь отметим факт невозможности правильного расшифрования приемной стороной шифрграммы, если в ее тексте возникли ошибки. Шифры не позволяют ни обнаруживать ошибки, ни тем более их исправлять. По этой причине на передающей стороне системы связи сообщение-шифрграмма кодируется корректирующим кодом, а на приемной стороне декодер в полученном сообщении обнаруживает (если они есть) и исправляет ошибки.

После этого вступает в дело криптосистема и легитимному получателю предоставляется расшифрованное сообщение. Таковы в общих чертах положения функционирования сетей, обменивающихся защищенными сообщениями.

В этой работе займемся подробно анализом очень важного Генетического кода, который создан не разумом человека, а самой природой (редкий случай).

История одного открытия и Нобелевская премия

Зададимся вопросом, как природой на уровне генетики и метаболизма организмов (клеток) реализованы такие положения информационного обмена в жизнедеятельности видов и их отдельных представителей?

Научному миру еще до Второй мировой войны было известно, что у живых организмов передача от поколения к поколению наследственных признаков осуществляется через относительно простые химические единицы (гены), включающие огромное количество информации, необходимой для продолжения и воспроизводства жизни.

Все гены (не являются белками) связываются в цепочки (хромосомы) и материализуются в дезоксирибонуклеиновой кислоте (ДНК). У специалистов не было ясности в том, как все происходит и как устроена сама ДНК.

Молодые исследователи физик англичанин Ф. Крик и биолог американец Дж. Уотсон в 1953 году (25.4) опубликовали в журнале Nature статью «Структура дезоксирибонуклеиновой кислоты». На момент начала их работы 1949 г. Джеймсу Уотсону было 23 года, Френсису Крику и Морису Уилкинсу по 33.

В статье авторы описали модель пространственной структуры ДНК в виде двойной спирали, две нити которой закручивалась вправо. Сами нити при этом оказывались связанными поперечными «ступенями», образованными из нуклеотидов.

Определение. Нуклеотиды — соединения, состоящие из сахара, азотсодержащих оснований (пурина или пиримидина) и фосфорной кислоты. Нуклеотиды являются «строительными блоками» для ДНК и РНК.

Эта спираль ДНК – носитель генетического кода – кода наследственности признаков организмов животных и растений. Это была совершенно необычная новая работа о строении и свойствах молекулы дезоксирибонуклеиновой кислоты.

Модель ДНК молодых авторов получила подтверждение при сопоставлении ее с рентгеновской дифракционной картиной кристаллической структуры ДНК английского биофизика Мориса Уилкинса. Позднее был открыт генетический код, содержащий и передающий информацию о синтезе структуры и состава белков – основных составляющих каждой клетки живых организмов, реализующей клеточный цикл.

Определение. Клеточный цикл — правильное чередование периодов относительного покоя с периодами деления клетки.

В этом же году позднее авторы опубликовали еще одну статью, в которой описывался возможный механизм копирования ДНК путем матричного синтеза при делении живых клеток. Двойная спираль ДНК уподоблялась «замку молния».

Каждая нить спирали после «расстегивания замка» и разведения нитей становилась синтезирующей матрицей и достраивалась второй нитью материалом из цитоплазмы клетки по принципу комплементарности до полной ДНК. Там же говорилось, что определенная последовательность оснований (кодонов, триплетов) является кодом, который содержит генетическую информацию.

Идея математизации кода высказывалась впервые Г. Гамовым в статье 1954 года как проблема перевода слов из четырехбуквенного алфавита (системы) в слова двадцатибуквенного алфавита. Он представил проблему кодирования жизненных явлений не как биохимическую, а как комбинаторную математическую задачу. Предварительные длительные усилия авторов этого труда хорошо описаны в книге Д. Уотсона «Нить жизни».

В 1962 году Уотсон, Крик и Уилкинс получили Нобелевскую премию по физиологии и медицине «за открытия в области молекулярной структуры нуклеиновых кислот и за определение их роли для пере-дачи информации в живой материи».

Они располагали информацией о следующих фактах:

  1. В 1866 г Грегором Менделем сформулированы положения, что «элементы», названные позднее генами, определяют наследование физических свойств особей вида.
  2. Было известно, что гены или ДНК, управляют биосинтезом (образованием) клеточных белков, названных ферментами, и метаболизмом в целом таким образом контролируя биохимические процессы в клетке.
  3. В 1869 г Ф. Мишером открыта нуклеиновая кислота, хранящая наследственную информацию. Такая кислота имеется в каждой клетке и содержится в ее ядре. Информация материализована двумя нуклеиновыми кислотами дезоксирибуиновой (ДНК) и рибонуклеиновой (РНК). Они близки по химическому составу. Каждая образована 4-мя нуклеотидами (азотистыми основаниями): ДНК включает аденин (А), тимин (Т), гуанин (G), цитозин (С); РНК включает аденин (А), урацил (U) вместо тимина, гуанин (G), цитозин (С), а также молекулами моносахарида группы пентоз (дезоксирибозы или рибозы) и фосфатом.
  4. В первые десятилетия ХХ века были выяснены химический состав и структура нуклеиновых кислот, установлено, что гены – это участки молекулы ДНК и помещаются в хромосомах, структурных элементах ядра клетки.
  5. В 1950 г. Эрвин Чаргафф из Колумбийского университета показал, что нуклеиновые кислоты включают равные количества 4-х азотистых оснований.
  6. Морис Уилкинс и Розалинда Франклин из Королевского колледжа Лондонского университета на основании рентгеновского дифракционного исследования молекулы ДНК получили изображение ДНК в форме двойной спирали, закрученной вправо, напоминающей винтовую лестницу.
  7. Исследование белковых молекул показало, что около 20-ти важнейших аминокислот служат мономерными звеньями, из которых построены все белки (ферменты), синтезируемые в клетках организмов.
  8. В 1944 г физик Эрвин Шрёдингер написал и опубликовал книгу «Что такое жизнь? Физические аспекты живой клетки». В книге вопрос: «Как можно пространственно-временные события, происходящие в живом организме, объяснить с позиции физики и химии?».
  9. В 1954 г Георгий Гамов высказал гипотезу о том, что информация о строении белков передается синтезирующей их клеточной системе отображением трехбуквенных слов (триплетов) 4-х буквенного алфавита в слова 20-ти буквенного алфавита, где роль букв играют аминокислоты, входящие в состав белков.

Исследователям предстояло сделать очередной шаг, и он был сделан.

В гипотезах и предположениях недостатка не было, но кто-то должен проверять их истинность.
Перекрывающиеся коды (один нуклеотид-буква входит в состав более чем одного кодона): треугольный, мажорно-минорный и последовательный, предложены Гамовым с коллегами;
неперекрывающиеся коды: комбинационный Гамова и Ичаса, «код без запятых» Крика, Гриффита и Оргела. В комбинационном коде аминокислоты (20) кодируются триплетами из 4-х нуклеотидов, но важен не их порядок, а только состав: триплеты ТТА, ТАТ, АТТ кодируют в белках одну и ту же аминокислоту.

Код без запятых объяснял, как выбирается «рамка считывания». Такое «скользящее окно» вдоль нити ДНК, где буквы следуют, друг за другом без разделителей (запятых) их на слова предполагает, что слова все-таки как-то различаются. Согласно модели Ф. Крика делалось допущение: все триплеты разделяются на осмысленные, т. е. соответствующие конкретным аминокислотам, и не имеющие смысла.

Если только осмысленные триплеты формируют ДНК, то в другой «рамке считывания» такие триплеты окажутся не имеющими смысла. Авторы этого кода показали, что можно подобрать триплеты, удовлетворяющие таким требованиям и что их ровно 20. Конечно, полной уверенности в своей правоте у авторов не было.

Действительно, после 1960 года было показано, что кодоны, считавшиеся Криком бессмысленными, в пробирке реализовывали белковый синтез, а к 1965 году был установлен смысл всех 64 кодонов-триплетов. Выяснилось также, что ряд аминокислот кодируется двумя, тремя, четырьмя и даже шестью разными триплетами, т. е. имеет место определенная избыточность, назначение которой еще предстоит определить.

Генетический код жизни. Наследственная информация

Определение. Генетический код – множество слов, задающих способ кодирования цепочками нуклеотидов (букв алфавита А, G, C, T), последовательности аминокислот синтеза белков, свойственных всем живым организмам. Цепочки триплетов (кодовых слов) образуют хромосомы – носители наследственной информации. Каждому виду живых организмов соответствует свой хромосомный набор. Этот способ кодирования универсален и реализуется в каждой клетке растительного и животного организма при ее делении.

Для кодирования каждой из 20 видов канонических аминокислот, из которых строятся далее практически все белки и терминального сигнала «стоп» оказывается достаточно набора из трех нуклеотидов (букв), называемого триплетом (кодоном). Последовательность кодонов формирует в хромосомной нити ген и определяет последовательность аминокислот в полипептидной цепи белка, кодируемого этим геном. Существовала концепция «один ген – один фермент».

Классическое представление информации (линейность ее записи) – это тексты в широком понимании (речь, письма, книги, изображения, фильмы, музыка и т. п.) этого слова в некотором естественном языке (ЕЯ). Язык включает обширный словарь (лексику), а если ЕЯ кроме устной речи имеет письменность, то и алфавит с грамматикой.

Для сохранения информации в течение длительного времени и передачи ее копий необходимы прочная, хорошо защищенная память и письменность. Наследственная информация живых организмов записана ЕЯ природы в длинных текстах словами в некотором «молекулярном» алфавите, которые хранятся в форме хромосом в ядрах всех клеток живых организмов.

Процессы и пути переноса информации, записанной на естественных её носителях-молекулах, сформулированы Ф. Криком (1958 г.) в форме центральной догмы молекулярной биологии. Три основных процесса обеспечивают управление всеми остальными процессами функционирования клетки и жизни организмов в целом.

Эти процессы: репликация, транскрипция и трансляция. Далее о них будет сказано более подробно. Информация в организмах передается только в одном направлении от нуклеиновых кислот (ДНК → РНК →белок) к белку, обратной передачи не существует. Возможны особые случаи ДНК → белок, РНК→ РНК, РНК → ДНК.

Чтение информации вдоль молекулярных цепочек допустимо только в одном прямом направлении. Используется понятие «рамка считывания».

Определение. Рамкой считывания (открытой) называется последовательность неперекрывающихся кодонов, способная синтезировать белок, начинающаяся со старт-кодона и завершающаяся стоп-кодоном. Рамка определяется самым первым триплетом, с которого начинается трансляция.

Для начала трансляции старт-кодона недостаточно, необходим ещё инициационный кодон (их три: AUG, GUG, UUG). После его считывания трансляция идет путем последовательного считывания кодонов рибосомальной рРНК и присоединения аминокислот друг к другу рибосомой до достижения стоп-кодона.

Кодоны в ходе трансляции «читаются» всегда с некоторого стартового инициирующего символа (AUG) и не перекрываются. Чтение после старта триплет за триплетом идет до стоп-кодона завершения синтеза белковой полипептидной цепи.

Эти факты обобщаются в таблице способов передачи генетической информации.

Таблица 1 – Центральная догма молекулярной биологии

История изучения текстов наследственности организмов, их осмысления, длительная, богатая открытиями, достижениями, заблуждениями и разочарованиями. Перечень событий истории постижения (познания) текстов природы представляет несомненный интерес, как для науки, так и для каждого отдельного человека.

Слова текстов имеют очень большую длину, но алфавит письменности «ЕЯ природы» содержит всего четыре буквы – это молекулярные основания: в РНК это А (аденин), С (цитозин), G (гуанин), U (урацил) (в ДНК урацил заменяется на Т (тимин)). Язык живой природы – это язык молекул.

Биологами установлено, что каждое слово текста наследственности образовано полимерной молекулой ДНК (дезоксирибонуклеиновой кислоты, открытой в 1868 г. врачом И. Ф. Мишером), построенной из 4-х оснований (нуклеотидов – от nuclear — ядерный).

Основания скрепляются (соединяются) между собой в пары, А ←→ Т, Т←→ А, G ←→ C, С ←→ G особыми водородными связями, реализующими принцип дополнительности (комплементарности). Эти факты устанавливались в разное время, разными учеными и методами многих наук (физики, химии, биологии, цитологии, генетики и др.). Сложности на пути познания этого ЕЯ встречались постоянно.

Молекулы ДНК не кристаллизовались, но когда это удалось сделать, то задача установления структуры ДНК свелась к решению обратной задачи рентгеноструктурного анализа (преобразованием Фурье дифракционной картины кристалла, созданной на экране рентгеновскими лучами).

На рассчитанной и собранной вручную Дж. Уотсоном и Фрэнсисом Криком в 1953 году модели аналогично детской игре «LEGO», где элементами являлись молекулярные основания и очень точно выдерживались межатомные расстояния и углы разворота, была воспроизведена структура хромосомы в большом масштабе.

Эта модель практически подтвердила многообразные гипотезы теоретиков и убедительно доказала отсутствие расхождений с практическими экспериментами и результатами рентгеноструктурного анализа кристаллической ДНК.

Основные детальные данные о химическом строении ДНК и числовые характеристики модели были получены Розалиндой Франклин и М. Уилкинсом ранее 1953 г. в лаборатории рентгеноструктурного анализа. Конфликт ученых описан в романе «Одиночество в сети» Януша Леона Вишневского.

Наличие наглядной структуры ДНК и ее количественных характеристик дало толчок для развития генетики и всех бионаук, из которого возникла идея проекта «Геном человека» 2000 г. Уотсон стал первым руководителем этого проекта, в рамках проекта был полностью расшифрован хромосомный набор человека Homo sapiens. Полная генетическая карта 1-й хромосомы завершена в 2006. Карта содержит 3141 ген и 991 псевдоген.

С позиций математики четырем буквам алфавита можно приписать четыре элемента конечного расширенного поля Галуа GF(22) = (0, 1, α, β), операции с которыми выполняются по модулю неприводимого многочлена р(х) = х2 + х + 1. Тогда α + β = 1, α∙β = 1 и сопоставление элементов поля буквам принимает вид

, а дополнительный (комплементарный) нуклеотид вычисляется по правилу ¬х → х + 1, откуда Т → А + 1, С → G + 1.

Структурно модель ДНК представляет две эквидистантные полимерные цепи попарно соединенных нуклеотидов (по принципу веревочной лестницы) и закрученных в правую двойную спираль. Ниже по тексту вертикально выписанные пары букв соответствуют ступеням «лестницы»:

Т А G G T T C G Т …
A T C C A A G C A …

Две цепи повторяют последовательность букв, но начало одной расположено напротив конца другой. Информация в молекулах ДНК записывается с большой степенью избыточности, что, конечно, обеспечивает высокий уровень надежности при считывании информации и ее копировании (репликации: ДНК → ДНК). К исходному слову приписывается еще одно, но в дополнительном коде.

Все хромосомы содержат в своем составе гены и в каждой клетке содержатся в очень малом объеме (в ядре клетки) и короткие и очень длинные. Расстояние между нитями ДНК составляет 2 нм, между «ступеньками» – 0.31 нм, один полный оборот «спирали» через каждые 10 пар. Суммарная длина всех ДНК, вытянутых в одну нить достигает 2м. Наследственная информация человека записана в 23 хромосомах. Длина хромосомы порядка 109 нуклеотидов, а диаметр ядра меньше микрометра. Таким образом, ДНК в клетке компактизована.

Определение. Ген (греч.γενοζ – род). Структурная и функциональная единица наследственности живых организмов. Гены (точнее аллели) определяют наследственные признаки организмов, передающиеся от родителей потомству при размножении.

В словах ДНК можно выделить и рассматривать отдельные части-подслова (гены), которые несут целостную информацию о строении одной молекулы белка или одной молекулы РНК. Кроме того, гены характеризуются регуляторными последовательностями (промоторами).

Промоторы могут быть расположены как в непосредственной близости от открытой «рамки считывания», кодирующей белок или начала последовательности РНК, так и на расстоянии многих миллионов пар оснований (нуклеотидов), например, в случаях с энхансерами, инсуляторами и супрессорами.

Каждый ген предназначен и отвечает за создание определенного белка, необходимого для жизнедеятельности организма. Понятием генотип обозначается наследственная конституция гамет (половых клеток) и зигот (соматических клеток) в отличие от фенотипа, описывающего благоприобретенные признаки, которые по наследству не передаются.

Блоковые коды

Код многозначное понятие. Кодом, прежде всего, можно назвать множество кодовых слов, образующих собственно сам код. Именно такие слова распознает декодер на приемной стороне при передаче сообщений, а на передающей — их формирует кодер.

При формировании кодовых слов используется однозначное отображение конечного упорядоченного множества символов, принадлежащих некоторому конечному алфавиту, на иное, не обязательно упорядоченное, как правило, более обширное множество символов для кодирования передачи, хранения или преобразования информации

Перечислим свойства рассматриваемого генетического кода (ГК):

  • Универсальность. Общность кода для всего живого мира. Универсальность подтверждена экспериментами по синтезу белков in Vitro (в пробирке). В бесклеточную систему одного организма (животного) помещали мРНК другого (растительного) и при этом реализовывался белковый синтез.
  • Полярность. Однонаправленность считывания генов ДНК, РНК.
  • Триплетность. Значащей единицей ГК является триплет или кодон. Три нуклеотида (буквы алфавита) – кодон, триплет, кодовое слово.

    Г. Гамовым было высказано предположение о триплетности кода. Поскольку речь идет о 4-х нуклеотидах, образующих алфавит, и о 20 аминокислотах, используемых при синтезе белков, каждая из них должна в качестве прообраза иметь одно (или более) синтезирующее ее слово.

    Следовательно, такие слова не могут состоять из одной буквы (моноплетами), их всего 4; не может быть слов и из 2-х букв (дуплетов), так как их разнообразие ограничено 42 =16 словами; трехбуквенные слова (триплеты) 43 = 64 > 20 подходят и даже с избытком. С длиной слов кода определились.

  • Вырожденность. Вырожденностью ГК называется способность разных кодонов кодировать одну аминокислоту. Эта способность не приводит к двусмысленности, так как для пары кодонов-синонимов, соответствующих одной аминокислоте, ни один из них не кодирует одновременно ещё какую-то аминокислоту. Чаще всего у таких кодонов совпадают первые две позиции.

    Свойство связано с избыточностью. Состав каждого слова из 64 возможных был установлен лишь в 1965 году на основе многочисленных опытов. Выяснилось, что избыточность числа слов при синтезе некоторых белков используется природой для надежности правильности считывания информации. В итоге получилось, что каждая аминокислота кодируется разным числом триплетов (кодонов). Свойство кода назвали вырожденностью.

    Таблица 2 — Количественные соотношения триплетов и аминокислот

    Всего использовано для синтеза 20 аминокислот 61 триплет, три триплета не синтезируют белков. Они используются как разделители, терминаторы между генами. Кодон AUG – первый после лидерной последовательности выполняет функцию прописной буквы слова.
    Неперекрываемость. Нуклеотид одного кодона не может быть частью другого соседнего. Перекрытия имеют вид AGC, GCU, CUA,… это приводит к тому, что аминокислоты в белках не могут следовать произвольно. На практике же встречаются в произвольном порядке из чего следовало, что перекрытия в коде недопустимы. Одно и то же основание не может входить в состав двух соседних кодонов.

  • Непрерывность. Отсутствие разделителей между словами-кодонами и наличие знаков разделителей между генами.

    Каждый ген предназначен и отвечает за создание определенного белка, необходимого для жизнедеятельности организма. Понятием генотип обозначается наследственная конституция гамет (половых клеток) и зигот (соматических клеток) в отличие от фенотипа.

  • Однозначность кода. Каждый кодон-триплет кодирует лишь одну аминокислоту, либо играет роль терминатора трансляции. Имеется и исключение: кодон AUG у прокариот он в первой позиции (прописная буква) кодирует формилметионин, в других позициях – метионин.
  • Компактность кода. Под компактностью кода понимают отсутствие разделителей между кодонами в пределах гена. Каждый нуклеотид входит в состав значащего кодона. В 1961 году экспериментально была доказана Ф. Криком и Сеймуром Бензером триплетность и компактность кода.
  • Дискретность – один и тот же нуклеотид не может входить одновременно в состав двух или более триплетов;
  • Кроссинговер – обмен гомологичными (содержащими одни и те же гены) участками несестринских хроматид.

Рассмотрим два дискретных множества Х и n, содержащие соответственно |X| и |n| элементов и отображение φ: n → Х. При представлении произвольных отображений множеств словами в алфавите Х получается множество Хn слов, каждое длиной n символов из имеющихся q = |X|, которые образуют алфавит текстовых сообщений. Удобно все слова Хn расположить в лексикографическом порядке в общий список.

Нашей целью в этой части работы является формирование кода, обеспечивающего кодирование (преобразование) передаваемых данных в форму удобную для передачи в пространстве и времени и трансляцию (перевод) с одного языка на другой понятный получателю сообщения.

Формирование кода предполагает выбор алфавита, определение регулярности, а при выборе регулярного кода, определение длины кодового слова, определение количества кодовых слов, определение побуквенного состава каждого слова.

Таблица 3 — Генетический код состоит из 64 кодовых слов из 3-х букв каждое

Таблица 4 — Обратные значения кодовой последовательности триплетов РНК

Дополнительные свойства кода, например, код не должен иметь запятой, определяются более жесткими требованиями к названным параметрам кода. Код без запятой должен иметь слова с максимальным периодом. Такие требования ориентированы на удобство последующего синтеза кодека. С этими положениями синтеза кода тесно связаны вопросы кодирования информации и ее декодирования.

Анализ кода

Совсем по-другому звучит задача анализа кода, когда код уже существует и используется, но о нем самом практически мало что известно. Кодированные сообщения доступны для обозрения и изучения, но они столь разнообразны и многочисленны, что принцип их создания не просматривается даже при весьма обширном их анализе.

Собственно, сама система кодирования также доступна для наблюдения и изучения, но уровень сложности ее построения и функционирования не позволяет получить полное качественное и достоверное описание.

Информация (данные) представляет собой сообщение, т.е. цепочку символов алфавита, которая с некоторой стартовой позиции может быть разбита на отрезки (блоки) длиной n символов, и каждый такой отрезок представляет собой кодовое слово. Код в этом случае блоковый.

На приемной стороне канала передачи сообщения получатель должен иметь возможность правильно разделять непрерывную цепочку символов сообщения на отдельные слова. Использование разделителей слов (запятой) нежелательно, так как требует ресурсов.

Синхронизация. Без выполнения синхронизации правильная трансляция сообщения невозможна. Отсюда вытекает одно из требований к формируемому коду – код должен быть устроен так, чтобы синхронизация обеспечивалась однозначно средствами (свойствами) самого кода и приемного устройства информации.

Определение. Процесс установления позиции, содержащей стартовый (начальный) символ кодового слова, называется синхронизацией.
Задача синхронизации просто решается, если в алфавите используется специальный символ-разделитель слов, например, запятая. Рамка считывания очередного кодового слова устанавливается непосредственно за разделителем.

Такой разделитель удобен, но нежелателен по нескольким причинам.

  • Во-первых, код должен быть таким, чтобы в пункте прибытия сообщения оно имело точно такой же вид, как и в пункте отправления (обеспечение поддержания целостности);
  • Во-вторых, время кодирования, декодирования и длительность передачи должны быть как можно меньшими, так как при этом сокращается возможность искажающих влияний среды на текст сообщения;
  • В-третьих, объем носителя сообщения желательно иметь небольшим, так как при этом требуются меньшие затраты ресурсов хранения, защиты и др.

Для лучшей различимости слов кода они в полном списке возможных слов должны быть удалены одно от другого на некоторое расстояние, т.е. различаться составом значений символов, как векторы векторного пространства компонентами.

Следовательно, кодовыми словами могут быть не все и не любые слова множества Х n, а только лишь некоторое их подмножество D є Х n. Выбор символьного состава слов кода и представляет основную задачу его формирования, так как именно состав слов кода должен обеспечивать удовлетворение сформулированным требованиям к коду. Таким образом, будем далее рассматривать код без запятой.

Синхронизация кода без запятой. Покажем здесь, как может быть обеспечена однозначность синхронизации кода без запятой. Выберем два триплета кодовых слова вида х = (х1, х2, …, хn) и у = (у1, у2, …, уn). Образуем их конкатенацию х||у = (х1, х2, …, хn, у1, у2, …, уn). Эта конкатенация из двух слов позволяет породить еще n – 1 слово множества Хn путем многократных циклических сдвигов на одну позицию влево и выделения первых n символов сдвинутой последовательности. Введем важное понятие перекрытия пары слов.

Определение. При циклических сдвигах символов на шаг получаются слова вида (х2, …, хn, у1), (х3, …, хn, у1, у2)…( хn, у1,…, уn-2, уn-1), которые называются перекрытиями пары слов х и у.

Если все перекрытия в конкатенации для любой пары кодовых слов не являются кодовыми словами, то механизм приемной стороны (декодер) канала передачи информации имеет возможность устанавливать однозначно стартовую позицию. Это возможно при наличии у декодера списка D всех кодовых слов и возможности сопоставления их со считываемыми n символами из принятого сообщения.

Покажем, как это осуществляется. Пусть в принятой последовательности символов выбран и зафиксирован некоторый символ. Отсчитав n символов от фиксированного, декодер сопоставляет слово, которое получилось, со словами кодового списка. Если имеет место совпадение с одним из слов кодового списка, то синхронизация установлена. Фиксированный символ и его позиция стартовые.

Если совпадения нет ни с одним из слов списка кода, т. е. попали на слово-перекрытие, то это означает, что стартовая позиция расположена левее фиксированной позиции.
Сдвигаемся влево на одну позицию от фиксированной и повторяем действия предыдущего шага до тех пор, пока не получим на некотором шаге совпадения с одним из кодовых слов. Этот процесс обязательно имеет успешное завершение в правильной стартовой позиции, т. е. синхронизация в среднем устанавливается за число n/2 шагов.

Определение. Блоковым кодом без разделителя (запятой) называется подмножество D є Х n слов длины n в алфавите Х таких, что для любых двух кодовых слов х, у єD все перекрытия для них не являются кодовыми словами.

Мы уже установили, что такой код обеспечивает правильную синхронизацию в длинных цепочках кодовых слов без разделителей между ними. Какие же слова из множества Х n включаются в подмножество D є Х n? Если мощность множества Х n делится на целые числа, то мощность D может быть одним из таких делителей (теорема Лагранжа о группах) и код при этом называется групповым блоковым кодом без запятой.

Состав символов в словах кода пока остается не установленным, так же, как и количество слов в D. Очевидно, что выбор конкретного подмножества D из Х n имеет много вариантов (сочетаний из Х n по D), из которых только немногие или возможно единственный удовлетворяет всем требованиям к коду без запятой. Нами рассмотрено одно из важных требований о перекрытиях, и это свойство слов кода может быть использовано в качестве фильтра для отсеивания непригодных вариантов при выборе D.

Перейдем к решению вопроса о числе слов в формируемом коде.

Мощность кода без запятой. Будем отыскивать наибольшее из возможных число слов в коде D, которое обозначим символом |D| = Wn(q). Точное значение получить не удается, но оценку сверху для количества слов получить возможно, используя понятие периода слова. Обозначим символом Т kх циклический сдвиг слова длиной n на k шагов, k < n.

Определение. Периодом d кодона (кодового слова) называется наименьшее число k, при котором Т kх = х и d ≤ n, d | n. Слова максимального периода d = n называются полноцикловыми (основными). Код без запятой включает в свой состав только полноцикловые слова.

Действительно, пусть кодовое слово х = (х1, х2, х3, х1, х2, х3 ) имеет период d < n. Обозначим символом || операцию конкатенации над словами. Образуем из слова х конкатенацию х||х = (х1, х2, х3 ; х1, х2, х3 , х1, х2, х3 ; х1, х2, х3). Тогда перекрытие, выделенное символом (;) и заливкой совпадает с исходным кодовым словом, что недопустимо в коде без запятой. Отсюда следует вывод о том, что период слов кода не может быть меньше длины слова n.

Пусть Рn(q) обозначает число полноцикловых слов над алфавитом из q букв. Оценкой сверху мощности кода D без запятой будет выражение Wn(q) ≤ Рn(q)/n и циклический сдвиг кодового слова не может быть кодовым словом.



Таким образом, для исходных данных примера 1, из множества произвольных 64 слов длиной 3 символа можно создать код, содержащий 20 слов и обеспечивающий синхронизацию. Такой код не лишен недостатков. При внесении в одно из слов ошибки в единственном символе синхронизация кода не будет обеспечиваться. Другими словами, код неустойчив против ошибок.

Приведенный числовой пример может быть использован для иллюстрации и объяснения генетического кода живых организмов, который создан природой на долгом пути эволюции и полностью расшифрован современной наукой в 1966 году. Установлено, что генетический код, неперекрывающийся, и выявлен смысл (интерпретация) каждого кодона.
Итоговая таблица получает следующий вид (рис. 2).

Из таблицы следует, что код является вырожденным. Это означает существование в коде слов-синонимов, например, GUU = GUC = Val, CGG = AGA = Arg и др. Три кодона UAA, UAG, UGA не несут смысловой нагрузки (non-sense). Это терминаторные кодоны, появление любого из них в последовательности символов означает конец трансляции (передачи). Организм погибает, если в результате ошибки буква смыслового кодона будет изменена на терминаторный кодон.

Такие изменения возможны и называются мутациями.

Определение. Мутации — относительно устойчивые изменения наследственного вещества.

Каждая хромосома содержит гены х1, х2, …, хn, которые образуют сложный признак Х организма. Пара хромосом в клетке, полученной при слиянии отцовской и материнской половых клеток, образуется при размножении: одна хромосома получается от отца, другая – от матери (диплоидная пара хромосом).

У гомологичных хромосом все гены совпадают по своей функции, но могут отличаться несколькими нуклеотидами. Подобные отличия часто бывают следствием мутаций, причиной которых могут быть химические, радиационные воздействия, радиоактивное облучение, температурные воздействия, ионизирующие излучения.

Наследственные заболевания вызываются подобными мутациями, закрепленными в хромосомном наборе половых клеток одного из родителей. Известен пример гена человека, кодирующего гемоглобин. При замене буквы Т буквой А в одной позиции гена возникает альтернативная форма гемоглобина. Проявляется это в заболевании, называемом серповидной анемией.

При совпадении значения признака в обеих гомологичных хромосомах, особь называется гомозиготной по данному гену. В других случаях возникает гетерозиготность. Для гомозиготности характерны диплоидные пары вида а), а для гетерозиготности пары вида б) (рис. 3)


Рисунок 3 – диплоидные пары у гомозигот и гетерозигот

Вместо одной диплоидной пары образуется четыре гомологичных хромосомы А, А, а, а, и они распределяются поровну между четырьмя образовавшимися гаметами. Каждая гамета получает также одну из хромосом В, В, b, b, соответствующих сложному признаку. Это распределение происходит для хромосом независимо как между четырьмя гаметами, так и между разными признаками. Эти факты были установлены Менделем и в 1865 году им опубликованы.

Самой впечатляющей особенностью генетического кода следует считать его универсальность. Приведенную схему (рис.1) с успехом можно применять для расшифровки РНК животных и растений. В 1979 году появились результаты о генетическом коде митохондрий, который отличается от значений некоторых кодонов таблицы и с другими правилами узнавания кодонов.

Трансляцию осуществляет рибосома – особый орган клетки. Синхронизация (установка рамки считывания) осуществляется с помощью префикса, AGGAGGU, который называется последовательностью Шайн-Долгарно. Эта пуриновая последовательность присутствует в слове в единственном числе, и вероятность ее искажения мала. Но если искажение все-таки случится, то для организма наступит катастрофа.

Рисунок 1 – Соответствие слов кода аминокислотам Рисунок 2– Спираль ДНК, мРНК и белок

На рисунке 2 показано как последовательность аминокислот в молекуле белка кодируется последовательностью кодонов в молекуле ДНК. Здесь матричная мРНК – молекула посредник. Ее цепочки расходятся по принципу «застежки молнии», в которой роль замка выполняет фермент, разрывающий молекулу по водородным связям.

В клетках генетический код осуществляется тремя матричными процессами: репликацией (происходит в ядре), транскрипцией и трансляцией.

Транскрипция (побуквенная запись ДНК → мРНК) биологический процесс в эукариотических клетках протекает в ядре клетки (отделен ядерной мембраной от цитоплазмы) и представляет собой синтез молекул и-РНК на соответствующих участках ДНК. Последовательность нуклеотидов ДНК «переписывается» в такую же последовательность РНК.

Трансляция (считывание и перевод РНК → белок) биологический процесс в прокариотических клетках совмещен с процессом транскрипции, происходит в клеточной цитоплазме, на рибосомах; последовательность нуклеотидов иРНК транспортируется из ядра, переводится в последовательность аминокислот (синтез полипептидной цепи на матрице иРНК): этот этап протекает при участии транспортной РНК (тРНК) и соответствующих ферментов.
Таким образом, трансляция – это синтез белка рибосомой на основе информации, записанной в матричной мРНК. Для получения 20 аминокислот, а также сигнала «стоп», означающего конец белковой последовательности, достаточно трех последовательных нуклеотидов, которые называются триплетом.

Живые организмы распределяются на растения и животных по видам.

Определение. Вид – это совокупность организмов, которые взаимодействуют между собой в процессах жизнедеятельности и размножения. Сами организмы образуются из клеток, которые размножаются делением, из одной клетки в результате деления получается две с идентичным набором хромосом.

Деление клеток бывает двух типов: один для образования соматических клеток (клеток тела), другой – для образования половых клеток (гамет). Вид организма определяется наличием, числом и составом хромосом в клетках организмов, которые являются неизменными (постоянными).

Нормальный рост и развитие организма обеспечивается образованием ростом и размножением соматических клеток в результате митоза. При митозе все хромосомы, находящиеся в ядре клетки, удваиваются перед началом деления клетки (репликация ДНК) и распределяются поровну между двумя дочерними клетками. Набор из 2n2с хромосом в каждой соматической клетке абсолютно одинаков. Митоз сохраняет в клетках постоянное диплоидное число хромосом.

Другой процесс мейоз служит для образования гамет, которые нужны для продолжения рода организмов. В мейозе каждая клетка делится дважды, а число хромосом удваивается один раз. Мейоз приводит к образованию из диплоидных клеток гаплоидных гамет с набором n2c. При последующем оплодотворении гаметы формируют организм нового поколения с диплоидным кариотипом (nc + nc = 2n2c).

Этот механизм реализуется у всех видов, размножающихся половым путем. Мейоз обеспечивает постоянство хромосомных наборов (кариотипов) – наследственность, а созданием новых сочетаний отцовских и материнских генов генотипическую изменчивость.

Предлагаемая работа открывает возможности использования генетического кода для решения задач информационной защиты. Правильное понимание явления природы и его использование возможно только при затрате усилий со стороны исследователя, которого не останавливают трудности на пути глубокого познания окружающей нас природы и ее проявлений.

Добавить комментарий