Как составить расчетную схему балки

В этом уроке будем учиться строить эпюры для балок, работающих на поперечный изгиб — эпюры поперечных сил и изгибающих моментов. Важно уметь правильно построить и проанализировать эти эпюры, потому что большинство современных инженерных сооружений состоят из элементов, которые работают на изгиб.

В статье рассмотрим 2 примера: один попроще — консольная балка, загруженная сосредоточенными силами и моментом, другой посложнее — двухопорная балка, загруженная распределённой нагрузкой.

Чтобы освоить материал этого урока, уже нужно знать, как определяются опорные реакции. Умеешь — отлично, но если же нет, то можешь изучить этот урок.

Подробно рассматривать в этом уроке нахождения реакций не будем, я буду приводить только их расчёт.

Поперечные силы и изгибающие моменты

При поперечном изгибе, в поперечных сечениях балки, возникает два внутренних силовых фактора (ВСФ) – поперечная сила (Q) и изгибающий момент (Mизг).

Схема нагружения балки
Поперечные силы и изгибающие моменты в произвольном сечении балки

Наша задача, научиться определять их и строить эпюры. Чтобы потом, используя полученные эпюры, можно было проводить различные расчёты. Например, подбирать размеры поперечных сечений балки или проверять прочность балки, если эти размеры уже заданы и т. д.

Поперечные силы и изгибающие моменты определяются с помощью метода сечений. Когда балка мысленно рассекается на две части. Затем действие частей балки друг на друга заменяется внутренними силовыми факторами (ВСФ) – поперечными силами и изгибающими моментами. Потом путём рассмотрения равновесия одной из частей находятся ВСФ.

Если пока не очень понятно — это нормально, когда начнём это всё делать на практике, ты обязательно всё поймёшь!

Обозначения поперечных сил и изгибающих моментов

Теперь поговорим по поводу обозначений для поперечных сил и изгибающих моментов. Как правило, задачи в сопромате, и механике в целом, решаются относительно каких-то координатных осей. А поперечные силы и изгибающие моменты, имеют индексы в зависимости от выбранной системы координат.

Например, если выбрать следующие обозначения для координатных осей:

Обозначения поперечных сил и изгибающих моментов с привязкой к координатным осям

То, поперечная сила, будет обозначаться, как Qy (параллельна оси y), а изгибающий момент, как Mx (поворачивает относительно оси x). Это наиболее частый вариант. Однако, можно встретить обозначения – Qy, Mz или Qz, Mx. Самые ленивые, предпочитают подписывать данные величины, как просто Q и M. Как видишь, здесь всё зависит от предпочтений твоего преподавателя. Чтобы изучая этот урок, ты не привыкал (- а) к каким-то индексам, т. к. твой преподаватель тебя всё равно будет учить по-своему, я решил использовать в статье для поперечной силы, просто букву – Q, а для изгибающего момента – Mизг. Такое обозначение изгибающего момента, тоже используется часто, а сам индекс «изг» нужен, чтобы не путать внутренний – изгибающий момент, с внешними моментами, которые почти всегда подписываются просто буквой – M.

Расчётная схема балки

Также нужно понимать, что когда мы рассчитываем поперечные силы и изгибающие моменты, мы считаем их непросто для какой-то линии:

Простая схема балки, свободная от нагрузок

А подразумеваем, что мы рассчитываем некоторый элемент конструкции — балку, которая обязательно имеет некоторую форму, либо для которой впоследствии будет рассчитана эта форма, в зависимости от целей расчёта.

К примеру, балка может иметь прямоугольное поперечное сечение:

Балки имеющая прямоугольную форму поперечного сечения

Если в расчётах эпюр при растяжении (сжатии) или кручении, форма стержня указывалась явно, и в этом был определённый смысл, так как те стержня имели ступенчатую форму – разную жёсткость на участках. То здесь, как правило, балки имеют одинаковое сечение, по всей длине, поэтому для экономии времени, балку показывают в виде такой линии. Затем, после построения эпюр, традиционно, для балки либо подбирается поперечное сечение из условия прочности, либо проверяется прочность уже заданного сечения.

Правила знаков для поперечных сил и изгибающих моментов

В этом разделе поговорим о правилах знаков для поперечных сил и изгибающих моментов. Для примера возьмём самую простую расчётную схему — консольную балку, загруженную сосредоточенной силой (F).

Расчётная схема

Расчётная схема консольной балки загруженная сосредоточенным усилием

Предположим, что нужно определить поперечную силу и изгибающий момент в каком-то поперечном сечении. Пока не будем строить никаких эпюр, а просто поставим перед собой простейшую задачу — рассчитать внутренние силовые факторы (Q и Мизг) для одного, конкретного сечения. Например, рассмотрим сечение в заделке (А).

Чтобы вычислить внутренние силовые факторы для этого сечения, нужно учесть всю внешнюю нагрузку, либо справа от сечения, либо слева. Если учитывать нагрузку справа — нужно учесть силу F, а если учитывать нагрузку слева — нужно учесть тогда реакции в заделке. Чтобы не вычислять реакции, пойдём по короткому пути и учтём всю нагрузку — справа.

Правило знаков для поперечных сил

Поперечная сила в сечении будет равна алгебраической сумме всех внешних сил (с учётом знака) по одну сторону от рассматриваемого сечения.

А знаки внешних сил определяются следующим образом — если внешняя сила, относительно рассматриваемого сечения, стремится повернуть:
ПО часовой стрелке, то её нужно учесть с «плюсом»;

Правило – положительное значение поперечной силы

ПРОТИВ часовой стрелки — учитываем её с «минусом».

Правило – отрицательное значение поперечной силы

Таким образом, для нашего случая, поперечная сила в сечении A будет равна:

Правило знаков для изгибающих моментов

Изгибающий момент в сечении будет равен алгебраической сумме всех моментов внешних сил (с учётом знака) по одну сторону от рассматриваемого сечения.

Перед тем как поговорить о правилах знаков для изгибающих моментов. Необходимо понять ещё одну особенность — когда на балку действует какая-то внешняя нагрузка, балка деформируется. При деформации балки принято различать «верхние волокна» и «нижние волокна», относительно линии (нейтральной оси), проходящей через центр тяжести поперечного сечения балки.

Схема показывающая верхние и нижние волокна консольной балки

Одни волокна при поперечном изгибе, будут растягиваться, а другие сжиматься.

Схема деформированной балки с указанием растянутых и сжатых волокон

В нашем случае, «верхние волокна», как видишь, будут растянуты, а нижние – сжаты.

На основании этой особенности, часто используется следующее правило для изгибающих моментов — если момент силы стремится растянуть:
верхние волокна, то учитываем его с «минусом»

Правило – отрицательное значение изгибающего момента

нижние волокна, то нужно учесть его с «плюсом».

Правило – положительное значение изгибающего момента

Не забываем, что мы ведём расчёт моментов, поэтому все силы нужно умножать на соответствующие плечи.

Таким образом, в нашем случае, изгибающий момент в сечении A будет равен:

Если на балку действуют сосредоточенные моменты, то правило знаков аналогичное:

Отрицательное значение изгибающего момента – правило
Положительное значение изгибающего момента – правило

Сосредоточенные моменты, конечно, уже не нужно ни на что умножать. Например, для верхней схемы, изгибающий момент в сечении A будет равен:

Как построить эпюры поперечных сил и изгибающих моментов ?

В пределах участков, и эпюра Q и эпюра M меняются по определённому закону. Границами участков являются точки приложения сил, моментов, а также начало и конец распределённой нагрузки (будем рассматривать во второй задаче). Поэтому, чтобы построить эпюры в пределах участка, сначала необходимо написать уравнения, которые будут описывать изменение поперечных сил и изгибающих моментов в пределах участка. А затем, подставляя в уравнения координаты начала и конца участка, получить значения на эпюрах в характерных точках, и построить эпюры на участке. Рассчитав таким образом все участки, можно построить эпюры для балки.

Чувствую, опять перегрузил тебя информацией…давай лучше, наконец, посмотрим, как это всё делается на практике 😉

Построение эпюр для консольной балки

В качестве первого примера, возьмём консольную балку, жёстко закреплённую с левого торца и загруженной следующим образом:

Расчётная схема — консольной балки, загруженной силами и моментом

Будем рассчитывать балку справа налево.

Рассмотрим первый участок

Обозначим некоторое сечение 1-1 на расстоянии x1, от свободного торца балки, при этом x1 будет находиться в диапазоне: 0 ≤ x1 ≤ 4м.

Указание расчётного сечения на первом участке

Так как расчёт выполняется справа налево, то в уравнениях необходимо учесть всю нагрузку, которая находится правее рассматриваемого сечения. Как видишь, на этом участке действует всего лишь одна сила F. Её и будем учитывать.

Поперечные силы на первом участке

Сила F, относительно сечения 1-1, поворачивает ПО часовой стрелке, поэтому с учётом правила знаков, записываем её с «плюсом»:

Как видишь, поперечная сила будет постоянна на первом участке:

Уже можем отразить это на эпюре поперечных сил:

Построение эпюры поперечных сил на первом участке

Изгибающие моменты на первом участке

Теперь запишем уравнение для изгибающих моментов. Сила F растягивает верхние волокна, поэтому с учётом правила знаков, нужно учесть момент силы F со знаком «минус»:

Здесь уже изгибающие моменты будут меняться по линейному закону. Как я уже писал, чтобы построить эпюру изгибающих моментов на участке, нужно вычислить значения на границах участка:

Откладываем полученные значения:

Построение эпюры изгибающих моментов на первом участке

Расчёт второго участка

Переходим ко второму участку. Также будем рассматривать некоторое сечение 2-2, на расстоянии x2 от начала участка (0 ≤ x≤ 6м). Здесь также нужно учесть ВСЮ нагрузку, которая находится справа от сечения 2-2.

Указание второго расчётного сечения

Поперечные силы на втором участке

Теперь на участке будут действовать 2 силы (сосредоточенный момент — M, никак не влияет на эпюру поперечных сил), учитываем их с учётом правила знаков:

Теперь можем показать окончательную эпюру поперечных сил:

Построение окончательной эпюры поперечных сил

Изгибающие моменты на втором участке

Для изгибающих моментов, с учётом правила знаков, второе уравнение будет выглядеть следующим образом:

Вычисляем значения на границах второго участка:

Показываем окончательную эпюру изгибащих моментов:

Построение окончательной эпюры изгибающих моментов

Проверка построенных эпюр

Балку можно рассчитать и слева направо. При этом очевидно, должны получаться те же эпюры. Давай проверим себя и рассчитаем эту балку с другой стороны.

Определение реакций в жёсткой заделке

Первым делом, нам потребуется определить реакции в заделке:

Обозначение реакций в жёсткой заделке на расчётной схеме

Расчёт эпюр поперечных сил и изгибающих моментов

Рассчитываем все участки теперь слева направо:

Обозначение расчётных сечений для участков балки

Ожидаемо, получили те же эпюры поперечных сил и изгибающих моментов:

Построение эпюр изгибающих моментов для расчёта балки слева направо

Причём не обязательно считать все участки балки только слева направо или справа налево. Можно считать балку с разных сторон:

Схема демонстрирующая, что расчёт балки можно выполнять с двух сторон

Такой подход позволяет минимизировать расчёт: когда балка имеет много расчётных участков. Как раз так и будем считать вторую двухопорную балку.

Эпюра моментов со стороны растянутых или сжатых волокон

По построенной эпюре можно явно сказать, какие волокна балки будут растянуты, а какие сжаты. Это очень полезная информация, при проведении прочностных расчётов.

Причем сама эпюра была построенна со стороны растянутых волокон:

Эпюра изгибающих моментов построенная со стороны растянутых волокон

Однако, студентов некоторых специальностей учат строить эпюры, с другой стороны – со стороны сжатых волокон:

Эпюра изгибающих моментов построенная со стороны сжатых волокон

Как видишь, в первом случае, отрицательные значения на эпюре моментов откладываются выше нулевой линии, а во втором – ниже. При этом правила знаков для расчета эпюр и сами расчёты не меняются. Обычно эпюры «на растянутых волокнах» строят студенты — строители, а эпюры «на сжатых волокнах» строятся студентами машиностроительных специальностей. В конечном счёте с какой стороны ты будешь строить эпюры, будет зависеть от твоего преподавателя, как он учит. В своих уроках я буду строить эпюры моментов со стороны растянутых волокон.

Учёт распределённой нагрузки

Перед тем как пойдём дальше и рассмотрим вторую задачу – двухопорную балку, нужно научиться работать с распределённой нагрузкой.

Давай рассмотрим ещё одну простенькую схему — консольную балку, загруженную распределённой нагрузкой:

Расчётная схема консольной балки, загруженной распределённой нагрузкой

Определение поперечной силы и изгибающего момента в сечении A

Чтобы определить поперечную силу в сечении A, первым делом нужно «свернуть» распределённую нагрузку (q) до сосредоточенной силы. Для этого нужно интенсивность нагрузки (q) умножить на длину участка действия нагрузки.

После чего получим силу — ql, приложенную ровно посередине участка, на котором действует распределённая нагрузка:

Сворачивание распределённой нагрузки до сосредоточенной силы

Тогда поперечная сила QA будет равна:

Изгибающий момент Mизг, A будет равен:

Расчёт эпюр поперечных сил и изгибающих моментов

Для написания уравнений для расчёта эпюр рассмотрим сечение 1-1:

Обозначение расчётного сечения для написания уравнений

Уравнение для поперечных сил будет следующее:

Рассчитаем значения на эпюре поперечных сил:

Построение эпюры поперечных сил для консольной балки от распределённой нагрузки

Уравнение для изгибающих моментов будет следующее:

Тогда значения на эпюре будут такими:

Откладывание ординат для построения эпюры изгибающих моментов

На участке с распределённой нагрузкой, на эпюре изгибающих моментов всегда будет либо выпуклость, либо вогнутость. Так как эпюра на этом участке будет меняться по квадратичному закону.

Если эпюра моментов откладывается со стороны растянутых волокон, распределённая нагрузка будет направлена «внутрь вогнутости» (выпуклости) эпюры изгибающих моментов:

Построение эпюры изгибающих моментов со стороны растянутых волокон для консольной балки от распределённой нагрузки

Если же эпюра моментов откладывается со стороны сжатых волокон, то наоборот:

Построение эпюры изгибающих моментов со стороны сжатых волокон для консольной балки от распределённой нагрузки

Построение эпюр для двухопорной балки

А теперь давай рассмотрим более сложную схему – двухопорную балку, загруженную всеми типами нагрузок:

Расчётная схема двухопорной балки

Определим реакции опор:

Расчётная схема двухопорной балки с обозначением реакций в опорах

Рассчитываем первый участок:

Строим эпюры на первом участке:

Построение эпюр сил и моментов на первом участке

Определение экстремума на эпюре моментов

Так как эпюра поперечных сил пересекает нулевую линию на первом участке, это значит, что в месте пересечения — на эпюре изгибающих моментов будет экстремум — точка, в которой эпюра моментов часто имеет наибольшее значение. Это значение, обязательно следует рассчитывать, потому — что экстремумы часто являются не только максимальными значениями в пределах участка, но и для всей балки в целом. Поэтому так важно, вычислять это значение, для дальнейшего проведения прочностных расчётов.

Чтобы найти экстремум, сначала нужно найти координату, где эпюра поперечных сил пересекает нулевую линию. Для этого уравнение для поперечных сил нужно приравнять к нулю:

Отсюда найти значение координаты:

Затем подставить это значение в уравнение для изгибающих моментов:

Теперь можем указать экстремум на эпюре:

Указание экстремума на эпюре изгибающих моментов

Расчет эпюр на остальных участках

Расчёты остальных участков не вижу смысла комментировать, потому что здесь будет применяться всё то, о чём я уже рассказывал по ходу урока. Поэтому просто приведу решение:

Определение экстремума:

Построение эпюр поперечных сил и изгибающих моментов для двухопорной балки

Оценка правильности построенных эпюр поперечных сил и изгибающих моментов

И напоследок хочу рассказать как можно проверить себя – оценить правильность построенных эпюр визуально. Собственно так, как проверяют эпюры — преподаватели, ведь они не проверяют у всех студентов каждое уравнение, каждый знак или цифру, т.к. это бы занимало слишком много времени.

Вот несколько признаков, правильно построенных эпюр:

  • На эпюре поперечных сил, в местах приложения сосредоточенных сил, должны быть скачки на величину этих сил.
  • На эпюре изгибающих моментов, в местах приложения сосредоточенных моментов, должны быть скачки на величину этих моментов.
  • Эпюра поперечных сил, на участках без распределённой нагрузки, должна быть постоянна. А на участках, где действует распределённая нагрузка – меняться по линейному закону.
  • Эпюра изгибающих моментов, на участках без распределённой нагрузки, должна меняться по линейному закону или быть постоянна (если действуют только сосредоточенные моменты). А на участках, где действует распределённая нагрузка – иметь вогнутость или выпуклость.

Тема: «Расчетные и конструктивные схемы балок на двух опорах , консолей »

Цель
урока:

Изучить
расчетные и конструктивные схемы при
различных способах опирания балок.

Вопросы
темы:

  1. Расчетные
    и конструктивные схемы опирания балок
    на двух опорах, консольное, смешанное.

  2. Опоры
    коротких балок и большепролетных
    конструкций.

  3. Принципы
    построения расчетных схем по конструктивной
    схеме.

1.Расчетные и конструктивные схемы опирания балок на двух опорах, консольное, смешанное.

Построение
расчетной схемы представляет собой
соcтавную часть расчета конструкции.
От того, насколько точно конструктивная
схема заменяется расчетной схемой
зависят надежность и экономичность
рассчитываемой конструкции.

Балки:
конструктивная и расчетная схемы

Рассмотрим
простую балку, т.е. балку на двух опорах,
которые обеспечивают наиболее простое
прикрепление её к нижележащим конструкциям
(колоннам, стенам).

Схема
балки, в которой отражены материал,
форма и размеры сечения, а также
специальные устройства (анкеры, болты,
приварка и т.д.), называть конструктивной
схемой балки.

Конструктивные
схемы не дают возможности определить
реакции опор и внутренние усилия в
балке, поэтому:

а) балку
заменим ее геометрической осью, т.е.
линией, проходящей через центры тяжести
поперечных сечений. Это упрощение
позволяет не рассматривать материал,
форму и размеры сечения, считая, что
реакции и внутренние усилия от них не
зависят, а зависят только от нагрузок,
действующих на балку

Конструктивные
схемы балок:

а)
железобетонной; б) деревянной; в) стальной;

l0

расчетный пролет

б) силу
давления балки на опору будем считать
приложенной в одной точке — центре
опорной поверхности

Схема
распределения давления под балкой

lоп
длина
опорного участка балки


в)
расстояние между серединами опорных
участков считается расчетной длиной
балки l0
или расчетным пролетом
l0 =l – 2 (lon / 2) – 2δ;

Схема
определения расчетного пролета:

l
— расстояние между разбивочными осями;

lсв

расстояние между опорами в свету;

l0

расчетный пролет;
lоп
опорный
участок;

δ
— расстояние от оси до края элемента.

г) будем
считать, что силы трения по плоскости
контакта балки и опоры (или теперь в
точке опирания балки) отсутствуют
(опоры, в которых пренебрегают силой
трения, называют идеальными).

Полученная
на основе принятых упрощений схема
балки называется ее расчетной
схемой.

Расчетная
схема любой конструкции вообще и балки
в частности

это
идеализированное изображение
конструктивной схемы, в которой не
отражены свойства, незначительно
влияющие на точность расчета.

При
этом различать конструктивную и
расчетную схемы опор балки.
Расчетная схема опоры соответствует
конструктивной при принятых упрощениях,
если они имеют одинаковые статические
и геометрические (или кинематические)
признаки.

Под
геометрическими признаками

подразумевается количество независимых
перемещений рассматриваемого сечения
(в данном случае концов балки).

Под
статическими признаками

подразумевается количество реактивных
опорных усилий.

Расчетные
схемы опор для железобетонной балки.
Конструктивная схема правой опоры В.

С
точки зрения геометрии такая опора
препятствует только вертикальному
перемещению конца балки, но допускает
горизонтальное перемещение (если
пренебречь силами трения), и под нагрузкой
происходит поворот торцевого сечения
а—Ь
на некоторый угол. С точки зрения статики
в такой опоре возникает единственная
(в рассматриваемом случае вертикальная)
реакция VB
по направлению перемещения, которое
исключается опорой. Представим расчетную
схему опоры в виде одного вертикального
стержня с шарнирами по концам.

Схема
шарнирно-подвижной опоры:

а)
конструктивная схема; б) расчетная
схема;

1
— балка до приложения силы
F;

2—
балка после приложения силы
F;

3
— шарнир; 4

опорный
стержень

Расчетная
схема правой опоры вполне соответствует
конструктивной и по геометрическим
признакам, так как опорный стержень
препятствует только вертикальному
перемещению, и по статическим признакам,
так как возникает единственная реакция
по направлению опорного стержня. Такая
опора (и ее расчетная схема) называется
шарнирно-подвижной,
шарнирной
потому, что допускает поворот сечения
балки на опоре, и подвижной потому, что
допускает горизонтальное перемещение
конца балки.

Схема
шарнирно-неподвижной опоры:

а)
конструктивная схема; б) расчетная
схема;

1
балка
до приложения силы
F;

2
— балка после приложения силы
F;

3
шарнир;
4 — опорные стержни

Конструктивная
схема опоры А,
с
точки зрения геометрии такая опора
характерна тем, что препятствует
вертикальному и горизонтальному
перемещениям и допускает поворот сечения
cd
на опоре на некоторый угол. С точки
зрения статики такая опора характеризуется
возникновением двух составляющих
реакций А
и VA).
Представим расчетную схему такой опоры
в виде двух опорных стержней: вертикального
и горизонтального. Полученная расчетная
схема левой опоры вполне соответствует
конструктивной схеме и по геометрическим
признакам, так как опорные стержни
препятствуют вертикальному и
горизонтальному перемещениям, но не
препятствуют повороту сечения, и по
статическим признакам, так как по
направлению каждого стержня возникает
реакция. При этом возникает одна наклонная
реакция, которую для удобства расчетов
представляют в виде двух составляющих.

Такая
опора (и ее расчетная схема) называется
шарнирно-неподвижной:

шарнирной потому, что она допускает
поворот сечения на опоре, и неподвижной
потому, что не допускает никаких линейных
перемещений конца балки.

Расчетная
схема простой балки на двух опорах.
Шарнирно-неподвижная опора также может
изображаться в виде двух стержней,
образующих треугольник. Оба варианта
изображений опоры равноценны как с
геометрической, так и со статической
точки зрения.

Схема
простой балки:

а)
конструктивная схема простой балки;
б), в) расчетные схемы

В
расчетной схеме простой балки не
отражается материал, размеры, форма
сечения и материал опор, то одной
расчетной схеме может соответствовать
несколько конструктивных схем.

2.Построение
расчетной схемы часто сопряжено с учетом
очень многих факторов. В строительстве
наиболее часто встречаются вертикальные
нагрузки, но опоры балки также должны
обеспечивать ее неподвижность в
горизонтальном направлении.

Крепление
балки к опоре с помощью анкерного
устройства

Опирание
балок или плит на кирпичные стены.

Вариант
опирания балки на кирпичные стены:

а)
фактическая схема: б) деформированная
схема;

в)
расчетная реальная схема; г) расчетная
схема, принимаемая для расчета

Если
исходить из принятых выше обозначений
опор, то такая балка должна иметь две
шарнирные неподвижные опоры. В реальных
балочных конструкциях при таком опирании
под действием нагрузки в результате
деформации балки расстояние между ее
концами уменьшается, не встречая
сопротивления опор горизонтальным
перемещениям концов балки (если нет
специальных устройств, препятствующих
этому перемещению.
Между торцом балки и кирпичной кладкой
всегда имеется зазор, что считать только
одну (причем при вертикальной нагрузке
— любую) опору неподвижной, а расчетную
схему принимать по рисунку г).

Если
балка опирается на стены, как показано
на рисунке а, что возможно в период
строительства, то в расчетной схеме
следовало бы считать в соответствии с
принятыми упрощениями обе опоры
подвижными

Вариант
опирания балки в период строительства:
а) конструктивная схема; б) расчетная
идеальная схема; в) расчетная реальная
схема

При
отсутствии трения балка превращается
в механизм, который начинает двигаться
под действием незначительной случайной
горизонтальной нагрузки, и поэтому не
может быть конструкцией. В реальных
конструкциях обязательно присутствует
трение, которое обеспечивает неподвижность
балки при незначительных горизонтальных
нагрузках. Если они могут быть
значительными, то необходимы специальные
устройства, обеспечивающие неподвижность
балки хотя бы на одном конце (анкеры,
прихватка сваркой и т.п.).

Б

алка
на двух опорах может иметь один конец
свободный, тогда участок балки длиной
а, расположенный за опорой, называется
консольным. Расчетная схема такой балки
рисунок б.

а)

Балка
с консольным участком:

а)
конструктивная схема; б) расчетная
схема.

Опоры,
показанные на приведенных рисунках,
применяют для сравнительно коротких
балок
.

Для
большепролетных балок и ферм, например,
мостовые опоры устраивают иначе. Это
вызвано тем, что при большой длине балки
ее температурные удлинения (укорочения)
значительны и силы трения существенно
препятствуют свободной деформации,
поэтому опоры надо устроить так, чтобы
по возможности уменьшить силы трения.
Кроме того, специально обеспечивают
свободный поворот сооружений на опорах.
Опоры, обеспечивающие свободный поворот
(шарнирные опоры), показаны на рисунке.
Правая опора выполнена подвижной
(катковая опора), что обеспечивает
свободу температурных деформаций.

Соседние файлы в предмете [НЕСОРТИРОВАННОЕ]

  • #
  • #
  • #
  • #
  • #
  • #
  • #
  • #
  • #
  • #
  • #

Расчёт статически определимых балок

(определение реакций и построение эпюр)

Внимание! Расчёт статически неопределимых систем методом сил находится здесь.

Добро пожаловать! Данный онлайн-калькулятор предназначен для расчёта балки и позволит
построить эпюры внутренних силовых факторов (изгибающих моментов, поперечных и осевых
или продольных сил), рассчитать реакции в опорах. В итоге формируется отчёт с готовым
решением. Удачи!

Создать новую модель Для расчёта необходимо полностью определить модель (с закреплением и нагрузкой)

12

В данном расчёте не задано ни одного объекта. Для создания объектов модели перейдите в раздел “Операции”

δ ?EJEJXYαhwRauto0°180°-180°0°90°180°-90°0°180°-180°

Примеры построения эпюр для решения задач сопротивления материалов, строительной и технической механики со всеми расчетами, подробными пояснениями и видеоуроками.

Примечание: студентам строительных специальностей эпюры изгибающих моментов надо строить на растянутых слоях балки, поэтому положительные значения Mx необходимо откладывать вниз, а отрицательные — вверх от базовой линии.

Сохранить или поделиться с друзьями

Рассмотрим пару упрощенных и несколько максимально подробных примеров построения эпюр внутренних силовых факторов, напряжений и перемещений для всех способов закрепления и нагружения балок, стержней и валов.

Построение эпюр Qy и Mx для консольной балки

Для заданной консольной балки требуется построить эпюры внутренних силовых факторов Qy и Mx.

Решение

Вычерчиваем расчетную схему нагружения балки в масштабе, с указанием числовых значений приложенных нагрузок.

Показываем оси системы координат y-z и обозначаем характерные сечения балки.

Для построения эпюр внутренних силовых факторов консольных балок, опорные реакции можно не определять.

Тогда для расчета значений Qy и Mx необходимо рассматривать противоположную от заделки часть балки, где все внешние усилия известны.

Балка имеет 2 силовых участка.

Рассчитаем, с учетом правил знаков при изгибе, значения внутренних поперечных сил и изгибающих моментов в сечениях балки на каждом силовом участке методом сечений.

На первом участке оба силовых фактора рассчитаны.

Переходим ко второму

Так как эпюра Qy на втором силовом участке не пересекает базовую линию, экстремума на эпюре Mx не будет.

По полученным данным строим эпюры внутренних поперечных сил Qy и изгибающих моментов Mx.

При ручном оформлении решения, эпюры заштриховываются тонкими линиями перпендикулярно базовой (нулевой) линии.

Оформление в электронном виде допускает сплошную однородную заливку площади эпюры.

Проверка построенных эпюр:

  1. по дифференциальным зависимостям
  2. в сечениях балки, где приложены сосредоточенные силы, на эпюре Qy имеются скачки значений на величину соответствующей силы;
  3. в сечениях балки, где приложены изгибающие моменты, на эпюре Mx скачки значений на величину соответствующего момента.

Все условия выполнены, следовательно, эпюры построены верно.

Как строить эпюры для балки на двух опорах

Для заданной расчетной схемы балки на двух шарнирных опорах требуется определить значения и построить эпюры внутренних поперечных сил и изгибающих моментов.

Решение

При построении эпюр для участков балки расположенных между опорами необходимо знать величину хотя бы одной из реакций.

Определение реакций в шарнирных опорах балки

Направим реакции опор, например, вверх

и запишем, с учетом правила знаков, суммы моментов нагрузок приложенных к балке относительно точек на опорах

Из составленных уравнений выражаем и находим реакции

Положительные значения указывают на то, что произвольно заданное направление реакций оказалось верным.

Расчет и построение эпюр

Используя метод сечений и соответствующие правила знаков, рассчитаем по каждому участку значения для построения эпюр.

Балка имеет 2 силовых участка.

На первом участке расчет произведем, рассматривая левую отсеченную часть балки

На втором — правую

Значения поперечной силы Qy на границах участка имеют разные знаки, следовательно, на этом участке, на эпюре Mx будет экстремум.

Определим его:

По полученным данным строим эпюры внутренних поперечных сил и изгибающих моментов.

Алгоритм проверки эпюр показан в решении предыдущей задачи.

Более подробно ход расчетов и построения эпюр для балки с тремя силовыми участками рассмотрен в следующих задачах.

Подробные примеры построения эпюр

При растяжении-сжатии

Примеры построения эпюр внутренних продольных сил, нормальных напряжений и линейных перемещений для стержней при их растяжении и сжатии.

  • эпюра внутренних продольных сил
  • эпюра нормальных напряжений в стержне
  • построение эпюр внутренних сил, напряжений и перемещений для стального бруса
  • построение эпюры внутренних продольных сил для стержня с продольно распределенной нагрузкой
  • расчет напряжений с построением эпюры в стержне заданной формы
  • построение эпюры перемещений сечений стержня

При кручении

Примеры построения эпюр внутренних крутящих моментов и угловых перемещений сечений вала при кручении.

  • Построение эпюры крутящих моментов для вала
  • Построение эпюр крутящих моментов и углов закручивания сечений вала

Построение эпюр при изгибе

Примеры построения эпюр внутренних поперечных сил и изгибающих моментов, нормальных и касательных напряжений для балок и рам при изгибе.

Эпюры внутренних силовых факторов

  • Построение эпюр поперечных сил Qy и изгибающих моментов Mx для балки (3 участка)
  • Эпюра внутренних поперечных сил
  • Эпюра внутренних изгибающих моментов балки
  • Построение эпюр для рамы
  • Проверка эпюр внутренних силовых факторов в рамах

Эпюры напряжений

  • эпюра нормальных напряжений двутавра
  • эпюра касательных напряжений для двутавра
  • эпюра нормальных напряжений прямоугольного сечения

Видеоурок расчетов для построения эпюр внутренних силовых факторов для балки:

Другие видео

Другие примеры решения задач >

Порядок построения эпюр

В рассмотренных выше примерах для построения эпюр выполняется следующая последовательность действий:

  1. Вычерчивается (в масштабе) расчетная схема элемента с указанием всех размеров и приложенных внешних нагрузок;Расчетная схема балки
    Расчетная схема балки
  2. Обозначаются характерные сечения бруса;
  3. Определяются опорные реакции;Опорные реакции балки
    Опорные реакции балки
  4. Рассматриваемый элемент разбивается на силовые участки;Обозначение силовых участков
    Обозначение силовых участков
  5. Для каждого силового участка выбирается рассматриваемая часть бруса (балки) Выбранная часть балки
    Выбранная часть балки
    и записываются выражения для рассчитываемых внутренних силовых факторов, напряжений или перемещений;Выражения для расчета поперечной силы в сечении балки
    Выражения для расчета поперечной силы в сечении балки
  6. Рассчитываются значения на границах участков. В случаях, когда переменная в выражении имеет вторую или более степень можно дополнительно определить значение в середине участка;
  7. В некоторых случаях необходимо определять экстремумы эпюр;
  8. После расчета всех значений выполняется построение эпюр.Эпюры поперечных сил и изгибающих моментов для балки
    Эпюры поперечных сил и изгибающих моментов для балки

После построения эпюр желательно выполнять их проверку.

Добавить комментарий