Как составить решетку пиннета


Загрузить PDF


Загрузить PDF

Решетка Пеннета является визуальным инструментом, который помогает генетикам определять возможные комбинации генов при оплодотворении. Решетка Пеннета представляет собой простую таблицу из 2×2 (или больше) ячеек. С помощью этой таблицы и знания генотипов обоих родителей ученые могут предсказать, какие комбинации генов возможны у потомков, и даже определить вероятность наследования тех или иных признаков.

Шаги

Основные сведения и определения

Чтобы пропустить данный раздел и перейти непосредственно к описанию решетки Пеннета, нажмите здесь.

  1. Изображение с названием Work With Punnett Squares Step 1

    1

    Узнайте больше о понятии генов. Прежде чем приступить к освоению и использованию решетки Пеннета, следует ознакомиться с некоторыми основными принципами и понятиями. Первым таким принципом является то, что все живущие существа (от крохотных микробов до гигантских синих китов) обладают генами. Гены представляют собой невероятно сложные микроскопические наборы инструкций, которые встроены практически в каждую клетку живого организма. В сущности, в той или иной степени гены отвечают за каждый аспект жизни организма, в том числе за то, как он выглядит, каким образом ведет себя, и за многое, многое другое.

    • При работе с решеткой Пеннета следует помнить также о том принципе, что живые организмы наследуют гены от своих родителей.[1]
      Возможно, вы и раньше подсознательно понимали это. Подумайте сами: ведь не зря дети, как правило, похожи на своих родителей?
  2. Изображение с названием Work With Punnett Squares Step 2

    2

    Узнайте больше о понятии полового размножения. Большинство (но не все) известных вам живых организмов производят потомство посредством полового размножения. Это означает, что женская и мужская особь вносят свои гены, и их потомство наследует примерно по половине генов от каждого родителя. Решетка Пеннета служит для того, чтобы наглядно изобразить различные комбинации генов родителей.

    • Половое размножение является не единственным способом воспроизведения живых организмов. Некоторые организмы (например, многие виды бактерий) воспроизводят себя посредством бесполого размножения, когда потомство создается одним родителем. При бесполом размножении все гены наследуются от одного родителя, и потомок является почти точной его копией.
  3. Изображение с названием Work With Punnett Squares Step 3

    3

    Узнайте о понятии аллелей. Как отмечалось выше, гены живого организма представляют собой набор инструкций, которые указывают каждой клетке, что следует делать. Фактически, как и обычные инструкции, которые разделены на отдельные главы, пункты и подпункты, различные части генов указывают на то, как следует делать разные вещи. Если два организма обладают различными “подразделами”, они будут по-разному выглядеть или вести себя — например, генетические различия могут привести к тому, что у одного человека будут темные, а у другого светлые волосы. Такие различные виды одного гена называются аллелями.

    • Поскольку ребенок получает два набора генов — по одному от каждого родителя — у него будет две копии каждой аллели.
  4. Изображение с названием Work With Punnett Squares Step 4

    4

    Узнайте о понятии доминантных и рецессивных аллелей. Аллели не всегда обладают одинаковой генетической “силой”. Некоторые аллели, которые называют доминантными, обязательно проявятся во внешнем виде ребенка и его поведении. Другие, так называемые рецессивные аллели, проявляются лишь в том случае, если не стыкуются с доминантными аллелями, которые “подавляют” их. Решетка Пеннета часто используется для того, чтобы определить, с какой вероятностью ребенок получит доминантную или рецессивную аллель.

    • Поскольку рецессивные аллели “подавляются” доминантными, они проявляются реже, и в этом случае ребенок обычно получает рецессивные аллели от обоих родителей. В качестве примера наследуемой особенности часто приводят серповидноклеточную анемию, однако при этом следует учесть, что рецессивные аллели далеко не всегда бывают “плохими”.[2]

    Реклама

  1. Изображение с названием Work With Punnett Squares Step 5

    1

    Начертите квадратную сетку 2×2. Простейший вариант решетки Пеннета делается очень легко. Нарисуйте достаточно большой квадрат и разделите его на четыре равных квадрата. Таким образом у вас получится таблица из двух строк и двух столбцов.

  2. Изображение с названием Work With Punnett Squares Step 6

    2

    В каждой строке и столбце отметьте буквами родительские аллели. В решетке Пеннета столбцы отведены для материнских аллелей, а строки — для отцовских, либо наоборот. В каждую строку и колонку запишите буквы, которые представляют аллели матери и отца. При этом используйте заглавные буквы для доминантных аллелей и строчные для рецессивных.

    • Это легко понять из примера. Предположим, вы хотите определить вероятность того, что у данной пары родится ребенок, который сможет сворачивать язык трубочкой. Можно обозначить это свойство латинскими буквами R и r — прописная буква соответствует доминантной, а строчная рецессивной аллели. Если оба родителя гетерозиготны (имеют по одному экземпляру каждой аллели), то следует написать одну букву “R” и одну “r” над решеткой и одну “R” и одну “r” слева от решетки.
  3. Изображение с названием Work With Punnett Squares Step 7

    3

    Напишите соответствующие буквы в каждой ячейке. Вы легко сможете заполнить решетку Пеннета после того, как поймете, какие аллели войдут от каждого родителя. Впишите в каждую ячейку комбинацию генов из двух букв, которые представляют собой аллели от матери и отца. Другими словами, возьмите буквы в соответствующей строке и столбце и впишите их в данную ячейку.

    • В нашем примере следует заполнить ячейки следующим образом:
    • Верхняя левая ячейка: RR
    • Верхняя правая ячейка: Rr
    • Нижняя левая ячейка: Rr
    • Нижняя правая ячейка: rr
    • Заметьте, что доминантные аллели (заглавные буквы) следует писать впереди.[3]
  4. Изображение с названием Work With Punnett Squares Step 8

    4

    Определите возможные генотипы потомка. Каждая ячейка заполненной решетки Пеннета содержит набор генов, который возможен у ребенка данных родителей. Каждая ячейка (то есть каждый набор аллелей) обладает одинаковой вероятностью — другими словами, в решетке 2×2 каждый из четырех возможных вариантов имеет вероятность 1/4. Представленные в решетке Пеннета различные комбинации аллелей называются генотипами. Хотя генотипы представляют собой генетические различия, это не обязательно означает, что в каждом варианте получится разное потомство (смотрите ниже).

    • В нашем примере решетки Пеннета у данной пары родителей могут возникнуть следующие генотипы:
    • Две доминантные аллели (ячейка с двумя буквами R)
    • Одна доминантная и одна рецессивная аллель (ячейка с одной буквой R и одной r)
    • Одна доминантная и одна рецессивная аллель (ячейка с R и r) — заметьте, что данный генотип представлен двумя ячейками
    • Две рецессивные аллели (ячейка с двумя буквами r)
  5. Изображение с названием Work With Punnett Squares Step 9

    5

    Определите возможные фенотипы потомка. Фенотип организма представляет собой действительные физические черты, которые основаны на его генотипе. Примером фенотипа служат цвет глаз, цвет волос, наличие серповидноклеточной анемии и так далее — хотя все эти физические черты определяются генами, ни одна из них не задается своей особой комбинацией генов. Возможный фенотип потомка определяется характеристиками генов. Различные гены по-разному проявляют себя в фенотипе.

    • Предположим в нашем примере, что ответственный за способность сворачивать язык ген является доминантным. Это означает, что сворачивать язык трубочкой смогут даже те потомки, в чей генотип входит лишь одна доминантная аллель. В этом случае получаются следующие возможные фенотипы:
    • Верхняя левая ячейка: может сворачивать язык (две буквы R)
    • Верхняя правая ячейка: может сворачивать язык (одна R)
    • Нижняя левая ячейка: может сворачивать язык (одна R)
    • Нижняя правая ячейка: не может сворачивать язык (нет заглавных R)
  6. Изображение с названием Work With Punnett Squares Step 10

    6

    Определите вероятность различных фенотипов по числу ячеек. Одно из наиболее распространенных применений решетки Пеннета состоит в том, чтобы с ее помощью находить вероятность появления того или иного фенотипа в потомстве. Поскольку каждая ячейка соответствует определенному генотипу и вероятность появления каждого генотипа одинакова, для нахождения вероятности фенотипа достаточно поделить число ячеек с данным фенотипом на общее число ячеек.[4]

    • В нашем примере решетка Пеннета говорит нам о том, что для данных родителей возможны четыре вида комбинации генов. Три из них соответствуют потомку, который способен сворачивать язык, и одна отвечает отсутствию такой способности. Таким образом, вероятности двух возможных фенотипов составляют:
    • Потомок может сворачивать язык: 3/4 = 0,75 = 75%
    • Потомок не может сворачивать язык: 1/4 = 0,25 = 25%

    Реклама

  1. Изображение с названием Work With Punnett Squares Step 11

    1

    Поделите каждую ячейку решетки 2×2 еще на четыре квадрата. Не все комбинации генов настолько просты, как описанное выше моногибридное (моногенное) скрещивание. Некоторые фенотипы определяются более чем одним геном. В таких случаях следует учесть все возможные комбинации, для чего потребуется большая таблица.

    • Основное правило применения решетки Пеннета в том случае, когда генов больше, чем один, состоит в следующем: для каждого дополнительного гена следует удваивать число ячеек. Иными словами, для случая одного гена используется решетка 2×2, для двух генов подходит таблица 4×4, при рассмотрении трех генов следует начертить решетку 8×8, и так далее.
    • Чтобы было легче понять данный принцип, рассмотрим пример для двух генов. Для этого нам придется начертить решетку 4×4. Изложенный в данном разделе метод подходит и для трех или большего количества генов — просто понадобится большая решетка и больше работы.
  2. Изображение с названием Work With Punnett Squares Step 12

    2

    Определите гены со стороны родителей. Следующий шаг состоит в том, чтобы найти гены родителей, которые отвечают за интересующее вас свойство. Поскольку вы имеете дело с несколькими генами, к генотипу каждого родителя следует добавить еще одну букву — другими словами, необходимо использовать четыре буквы для двух генов, шесть букв для трех генов и так далее. В качестве напоминания полезно записать генотип матери над решеткой, а генотип отца — слева от нее (или наоборот).

    • Для иллюстрации рассмотрим классический пример. Растение гороха может иметь гладкие или морщинистые зерна, и зерна могут быть желтого или зеленого цвета. Желтый цвет и гладкость горошин являются доминантными чертами.[5]
      В этом случае гладкость горошин обозначим буквами S и s для доминантного и рецессивного гена соответственно, а для их желтизны используем буквы Y и y. Предположим, что женское растение имеет генотип SsYy, а мужское характеризуется генотипом SsYY.
  3. Изображение с названием Work With Punnett Squares Step 13

    3

    Запишите различные комбинации генов вдоль верхнего и левого краев решетки. Теперь мы можем записать над решеткой и слева от нее различные аллели, которые могут передаться потомкам от каждого из родителей. Как и в случае одного гена, каждая аллель может передаться с одинаковой вероятностью. Однако поскольку мы рассматриваем несколько генов, у каждой строки или столбца будет стоять несколько букв: две буквы в случае двух генов, три буквы для трех генов и так далее.

    • В нашем случае следует выписать различные комбинации генов, которые каждый родитель способен передать из своего генотипа. Если сверху расположен генотип матери SsYy, а слева — генотип отца SsYY, то для каждого гена у нас получатся следующие аллели:
    • Вдоль верхнего края: SY, Sy, sY, sy
    • Вдоль левого края: SY, SY, sY, sY
  4. Изображение с названием Work With Punnett Squares Step 14

    4

    Заполните ячейки соответствующими комбинациями аллелей. Впишите в каждую ячейку решетки буквы так же, как делали это для одного гена. Однако в данном случае для каждого добавочного гена в ячейках появится по две дополнительные буквы: итого, в каждой ячейке будет четыре буквы для двух генов, шесть букв для четырех генов и так далее. Согласно общему правилу, число букв в каждой ячейке соответствует числу букв в генотипе одного из родителей.

    • В нашем примере ячейки заполнятся следующим образом:
    • Верхний ряд: SSYY, SSYy, SsYY, SsYy
    • Второй ряд: SSYY, SSYy, SsYY, SsYy
    • Третий ряд: SsYY, SsYy, ssYY, ssYy
    • Нижний ряд: SsYY, SsYy, ssYY, ssYy
  5. Изображение с названием Work With Punnett Squares Step 15

    5

    Найдите фенотипы для каждого возможного варианта потомства. В случае нескольких генов каждая ячейка в решетке Пеннета также соответствует отдельному генотипу возможного потомства, просто этих генотипов больше, чем при одном гене. И в данном случае фенотипы для той или иной ячейки определяются тем, какие гены мы рассматриваем. Существует общее правило, согласно которому для проявления доминантных признаков достаточно наличия хотя бы одной доминантной аллели, в то время как для рецессивных признаков необходимо, чтобы все соответствующие аллели были рецессивными.[6]

    • Поскольку для гороха доминантными являются гладкость и желтизна зерен, в нашем примере любая ячейка хотя бы с одной заглавной буквой S соответствует растению с гладкими горошинами, и любая ячейка хотя бы с одной заглавной буквой Y отвечает растению с желтым фенотипом зерен. Растения с морщинистыми горошинами будут представлены ячейками с двумя строчными аллелями s, а для того, чтобы зерна имели зеленый цвет, необходимо наличие лишь строчных букв y. Таким образом, получаем возможные варианты формы и цвета горошин:
    • Верхний ряд: гладкие/желтые, гладкие/желтые, гладкие/желтые, гладкие/желтые
    • Второй ряд: гладкие/желтые, гладкие/желтые, гладкие/желтые, гладкие/желтые
    • Третий ряд: гладкие/желтые, гладкие/желтые, морщинистые/желтые, морщинистые/желтые
    • Нижний ряд: гладкие/желтые, гладкие/желтые, морщинистые/желтые, морщинистые/желтые
  6. Изображение с названием Work With Punnett Squares Step 16

    6

    Определите по ячейкам вероятность каждого фенотипа. Чтобы найти вероятность различных фенотипов в потомстве данных родителей, используйте тот же метод, что и в случае одного гена. Иными словами, вероятность того или иного фенотипа равна количеству соответствующих ему ячеек, поделенному на общее число ячеек.

    • В нашем примере вероятность каждого фенотипа составляет:
    • Потомок с гладкими и желтыми горошинами: 12/16 = 3/4 = 0,75 = 75%
    • Потомок с морщинистыми и желтыми горошинами: 4/16 = 1/4 = 0,25 = 25%
    • Потомок с гладкими и зелеными горошинами: 0/16 = 0%
    • Потомок с морщинистыми и зелеными горошинами: 0/16 = 0%
    • Заметьте, что невозможность унаследовать две рецессивные аллели y привела к тому, что среди возможного потомства нет растений с зелеными зернами.

    Реклама

Советы

  • Спешите? Попробуйте воспользоваться онлайн-калькулятором решетки Пеннета (например, этим), который заполняет ячейки решетки для заданных вами родительских генов.[7]
  • Как правило, рецессивные признаки встречаются реже, чем доминантные. Однако существуют ситуации, в которых рецессивные признаки могут повысить приспособляемость организма, и такие особи становятся более распространенными в результате естественного отбора. Например, рецессивный признак, который вызывает такое заболевание крови, как серповидноклеточная анемия, повышает также сопротивляемость малярии, что оказывается полезным в тропическом климате.[8]
  • Не все гены характеризуются лишь двумя фенотипами. Например, некоторые гены имеют отдельный фенотип для гетерозиготной (одна доминантная и одна рецессивная аллель) комбинации.

Реклама

Предупреждения

  • Помните о том, что каждый новый родительский ген приводит к тому, что количество ячеек в решетке Пеннета увеличивается вдвое. К примеру, при одном гене от каждого родителя у вас получится решетка 2×2, для двух генов — 4×4, и так далее. В случае пяти генов размер таблицы будет 32×32!

Реклама

Об этой статье

Эту страницу просматривали 32 929 раз.

Была ли эта статья полезной?

• • • ₪ • • •
┏━ ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ ━┓

В данной статье я постараюсь максимально простым языком рассказать об одной полезной вещице – решётке Пеннета.

┗━ ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ ━┛

Решётка Пеннета/Квадрат Паннета – это таблица, позволяющая предсказать возможные генотипы и вероятность их появления у потомков в результате конкретного скрещивания.

Чаще всего решётка Пеннета используется при решении задач на дигибридное скрещивание, но на деле исследуемых признаков может быть гораздо больше, хоть 10.

Как и в любой генетической задаче, чтобы узнать генотипы потомков, вам нужно сперва знать генотипы родителей и гаметы, которые они “дают”.

Гаметы у одного организма не должны повторяться. Если присутствует несколько наборов одинаковых признаков (гомозиготы/дигомозиготы и тд.), то делается только одна запись.
Пример: у организма AABB всего одна гамета AB, а не две.

У дигетерозиготы, например, всего 4 возможные гаметы.

Все возможные гаметы дигетерозиготного организма
Все возможные гаметы дигетерозиготного организма

Так как мы рассматриваем скрещивание AaBb×AaBb, то генотипы родителей, соответственно, будут одинаковыми.

Записываем гаметы одного родителя в столбик, другого – в строчку. Где какой – не особо важно.

Для удобства можно расположить их симметрично.

Ну а далее всё, что вам нужно сделать – это в каждую пустую клеточку записать соответствующий генотип, “соединяя” гаметы обоих родителей.

Фенотипическое расщепление у потомков при дигибридном скрещивании (две дигетерозиготы) будет всегда 9:3:3:1.

Фенотипическое расщепление в данном случае показывает то, какие признаки у организма проявляются (доминантные), а какие нет (рецессивные). В ситуации со скрещиванием дигетерозигот у потомков наблюдаются следующе расщепление по фенотипу: (9 AB), (3 Ab), (3 aB) и (1 ab).

В зависимости от требований поставленной задачи вам придётся что-то искать и считать в этой таблице.

Пример простецкой рандомной задачи:
Допустим, что:
“А” и “а” отвечают за цвет венчика.
Красный венчик у маков – доминантный признак.
Сколько потомков дигетерозиготных маков имеют красный венчик?

Биология: построение и использование решётки Пеннета

Для решения данной задачи нужно всего лишь посчитать количество потомков, имеющих в своём генотипе хотя бы один доминантный признак А. Их здесь 12. Задача решена.

Часто в подобных заданиях существование явления неполного доминирования опускается.

✁ – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – –

Спасибо, что прочитали данную статью. Я надеюсь, что кому-нибудь эта ознакомительная информация пригодится.

Пожалуйста, оценивайте данный материал и задавайте вопросы, я с радостью на них отвечу и поделюсь с вами знаниями.

Желаю вам успехов!

До встречи в новых работах,

✎﹏﹏Your fellow freshman☯

Пеннет рядом со своей легендарной таблицей
Пеннет рядом со своей легендарной таблицей

Решётка Пеннета, или решётка Паннета, — 2D-таблица, предложенная английским генетиком Реджинальдом Паннетом (1875—1967) в качестве инструмента, представляющего собой графическую запись для определения сочетаемости аллелей из родительских генотипов[1]. Вдоль одной стороны квадрата расположены женские гаметы, вдоль другой — мужские. Это позволяет легче и нагляднее представить генотипы, получаемые при скрещивании родительских гамет.

Моногибридное скрещивание[править | править код]

В этом примере оба организма имеют генотип Bb. Они могут производить гаметы, содержащие аллель B или b (первая означает доминантность, вторая — рецессивность). Вероятность потомка с генотипом ВВ составляет 25 %, Bb — 50 %, bb — 25 %.

Материнские
B b
Отцовские B BB Bb
b Bb bb

Фенотипы же получаются в сочетании 3:1. Классический пример — окраска шерсти крысы: например, B — чёрная шерсть, b — белая. В таком случае 75 % потомства будет иметь чёрную шерсть (BB или Bb), тогда как только 25 % будет иметь белую (bb).

Дигибридное скрещивание[править | править код]

Следующий пример иллюстрирует дигибридное скрещивание между гетерозиготными растениями гороха. A представляет доминирующую аллель по признаку формы (круглый горох), a — рецессивную аллель (морщинистый горох). B представляет доминирующую аллель по признаку цвета (жёлтый горох), b — рецессивную аллель (зелёный). Если каждое растение имеет генотип AaBb, то, поскольку аллели по признаку формы и цвета независимы, может быть четыре типа гамет при всех возможных сочетаниях: AB, Ab, aB и ab.

AB Ab aB ab
AB AABB AABb AaBB AaBb
Ab AABb AAbb AaBb Aabb
aB AaBB AaBb aaBB aaBb
ab AaBb Aabb aaBb aabb

Соотношение в общем количестве получаемых в опыте растений по цвету и форме их плодов (горошин), составляет приблизительно 9 частей с круглыми жёлтыми плодами, приблизительно 3 части с круглыми зелёными, приблизительно 3 части с морщинистыми жёлтыми, приблизительно 1 часть с морщинистыми зелёными плодами. Фенотипы в дигибридном скрещивании сочетаются в соотношении 9:3:3:1.

Древовидный метод[править | править код]

Существует и альтернативный, древовидный метод, но он не отображает генотипы гамет верно:

Dihybrid Cross Tree Method.png

Его выгодно использовать при скрещивании гомозиготных организмов:

Homozygous cross tree method.png

Источники[править | править код]

  1. Introducing Punnett Squares Архивировано 19 июня 2009 года.

Литература[править | править код]

  • Campbell Neil. Biology. — 7th. — Benjamin-Cummings Publishing Company. — ISBN 978-0-8053-7146-8, OCLC 71890442.

Ссылки[править | править код]

  • Online Punnett Square Calculator
  • Online Punnett Square Calculator 2
  • Online Punnett Square Calculator, monohybrid and dihybrid, autosomal and sex-linked

Для
того, чтобы было проще решать практически
любую задачу по генетике, рекомендуется
строить так называемую решетку Пеннета,
получившую свое название от имени
английского генетика Р.Пеннета, впервые
ее предложившего.

Существует
два возможных типа построения решетки
Пеннета:

а)
вертикально-горизонтальная решетка
Пеннета

б)
наклонная решетка Пеннета

Представляется
целесообразным рекомендовать для
практического использования вертикально-
горизонтальную решетку Пеннета, т.к.
при этом не возникает проблем, по крайней
мере, чисто технического свойства: что
под каким углом вписывать в образовавшиеся
отсеки-ромбы.

Заполнение
левого верхнего прямоугольника решетки
Пеннета. Разделим его под углом в 45о
прямой линией, в результате чего получим
два одинаковых прямоугольных треугольника,
в каждый из которых заносится следующая
информация: ближе к основанию угла –
символ пола, чуть выше и левее – генотипы
каждой из скрещиваемых форм (в нашем
примере генотипы скрещиваемых форм
одинаковые: Аа). При этом непременно в
верхнем треугольнике должна содержатся
информация об особи женского пола, в
нижнем – сведения об особи мужского
пола.






Аа

Аа

1/2А

1/2а

1/2А

1/2а

На
верхней горизонтали выписываются типы
гамет женской особи; в нашем примере
(Аа) их два: А и а. Причем и те, и другие в
равных количествах, поэтому перед
буквами мы ставим коэффициенты: 1/2А и
1/2а. Аналогично оформляется левая
вертикаль решетки, где располагают типы
гамет особи мужского пола – с
соответствующими коэффициентами.

Еще
одно важное замечание: все записи в
ячейках по верхней горизонтали и левой
вертикали делаются по центру ячеек.

На
пересечениях горизонталей и вертикалей
образовались прямоугольники (в нашем
случае их четыре). Пронумеруем их
произвольно от № 1 до № 4. В каждый из
них будут записываться соответствующие
сочетания, или соответствующие комбинации,
генов.

Аа

Аа

1/2А

1/2а

1/2А

№1

№2

1/2а

№3

№4

При
этом ход рассуждений должен быть
следующим.

Если
женская половая клетка с геном А
достигается мужской половой клеткой,
также имеющей ген А, и оплодотворяется
ею (речь идет о «перекрестке» № 1), то
возникает зигота, генотип которой
гомодоминантен, т.е. АА. Так же можно
охарактеризовать и все остальные
«перекрестки»: № 2 (гетерозигота Аа), №
3 (гетерозигота Аа) и № 4 (гоморецессив
аа).

Аа

Аа

1/2А

1/2а

1/2А

АА

Аа

1/2а

Аа

аа

Таким
образом, можно сделать вывод: среди
потомков скрещиваемых форм (Аа х Аа)
могут быть обнаружены представители с
тремя разными вариантами генотипов, а
именно: АА, 2 Аа, аа.

Возможная
частота возникновения потомков с
каким-либо из рассматриваемых генотипов
высчитывается, по правилу вероятности,
следующим образом (на примере «перекрестка»
№ 1): если материнские гаметы с доминантным
геном А возникают с 50%-ной вероятностью,
равно, как и отцовские гаметы с доминантным
геном А (50%), то шанс возникновения зиготы
АА = 1/2А х 1/2А =1/4.

Продвигаясь
по «перекресткам» (№ 2, № 3, № 4), проставляем
вероятность возникновения потомков с
каждым из рассмотренных выше вариантов
генотипов (везде вписываем коэффициент
– 1/4, так как в нашем примере: Аа х Аа).

Несколько
странными на первый взгляд могут
показаться встречающиеся, хотя и крайне
редко, в некоторых работах такие названия
гетерозиготы, как «кондуктор» (от лат.
conductor – сопровождающий, проводник) или
«проводник». Но если вдуматься, это
выглядит странным только на первый
взгляд. В самом деле, особь, имеющая
гетерозиготный генотип, как бы «провозит»
(или «проводит») через поколение
рецессивный ген, не способный проявить
своего присутствия, будучи рядом с
доминантным. Но как только ему, этому
рецессивному гену, удается оказаться
в гомозиготном состоянии, он сразу же
вновь заявляет о своем присутствии в
генотипе, оказавшись способным проявить
себя в фенотипе особи.

Соседние файлы в предмете [НЕСОРТИРОВАННОЕ]

  • #
  • #
  • #
  • #
  • #
  • #
  • #
  • #
  • #
  • #
  • #

Инфоурок


Биология

ПрезентацииПрезентация по биологии “Решетка Пенета”

Презентация по биологии “Решетка Пенета”

Скачать материал

без ожидания

Решетка Пеннета

Скачать материал

без ожидания

  • Сейчас обучается 404 человека из 66 регионов

  • Сейчас обучается 26 человек из 19 регионов

  • Сейчас обучается 332 человека из 68 регионов

Описание презентации по отдельным слайдам:

  • Решетка Пеннета

  • Английский биолог, один из основоположников генетики. Паннет, по-видимому, бы...

    2 слайд

    Английский биолог, один из основоположников генетики. Паннет, по-видимому, был автором таблицы сочетания родительских аллелей, впервые опубликованной им в соавторстве с Уильямом Бейтсоном.

    Реджинальд Паннет

  • Представление моногибридного скрещивания (один ген)Начертите квадратную сетку...

    3 слайд

    Представление моногибридного скрещивания (один ген)
    Начертите квадратную сетку 2×2.

  • В каждой строке и столбце отметьте буквами родительские аллели Напишите соотв...

    4 слайд

    В каждой строке и столбце отметьте буквами родительские аллели Напишите соответствующие буквы в каждой ячейке. 

  • Определите возможные генотипы потомка.

    5 слайд

    Определите возможные генотипы потомка.

  • Определите возможные фенотипы потомка.  Определите вероятность различных фен...

    6 слайд

    Определите возможные фенотипы потомка. 
    Определите вероятность различных фенотипов по числу ячеек.

  • Представление дигибридного скрещивания (два гена) Поделите каждую ячейку реше...

    7 слайд

    Представление дигибридного скрещивания (два гена) Поделите каждую ячейку решетки 2×2 еще на четыре квадрата.

  • Основное правило применения решетки Пеннета в том случае, когда генов больше,...

    8 слайд

    Основное правило применения решетки Пеннета в том случае, когда генов больше, чем один, состоит в следующем: для каждого дополнительного гена следует удваивать число ячеек.
    Определите гены со стороны родителей.

  • Запишите различные комбинации генов вдоль верхнего и левого краев решетки.

    9 слайд

    Запишите различные комбинации генов вдоль верхнего и левого краев решетки.

  • Заполните ячейки соответствующими комбинациями аллелей. 

    10 слайд

    Заполните ячейки соответствующими комбинациями аллелей. 

  • Найдите фенотипы для каждого возможного варианта потомства. Определите по яче...

    11 слайд

    Найдите фенотипы для каждого возможного варианта потомства. Определите по ячейкам вероятность каждого фенотипа. 

Найдите материал к любому уроку, указав свой предмет (категорию), класс, учебник и тему:

6 252 634 материала в базе

  • Выберите категорию:

  • Выберите учебник и тему

  • Выберите класс:

  • Тип материала:

    • Все материалы

    • Статьи

    • Научные работы

    • Видеоуроки

    • Презентации

    • Конспекты

    • Тесты

    • Рабочие программы

    • Другие методич. материалы

Найти материалы

Другие материалы

  • 05.08.2021
  • 211
  • 5

«Биология», Пасечник В.В., Суматохин С.В., Калинова Г.С. и др. / Под ред. Пасечника В.В.

  • 05.08.2021
  • 558
  • 41
  • 05.08.2021
  • 212
  • 2

«Биология. Бактерии, грибы, растения», Д. И. Трайтак, Н. Д. Трайтак; под редакцией В. В. Пасечника

«Биология. Бактерии, грибы, растения», Д. И. Трайтак, Н. Д. Трайтак; под редакцией В. В. Пасечника

  • 05.08.2021
  • 175
  • 1

«Биология. Бактерии, грибы, растения», Д. И. Трайтак, Н. Д. Трайтак; под редакцией В. В. Пасечника

Вам будут интересны эти курсы:

  • Курс повышения квалификации «Организация и руководство учебно-исследовательскими проектами учащихся по предмету «Биология» в рамках реализации ФГОС»

  • Курс повышения квалификации «ФГОС общего образования: формирование универсальных учебных действий на уроке биологии»

  • Курс повышения квалификации «Медико-биологические основы безопасности жизнедеятельности»

  • Курс повышения квалификации «Методические аспекты реализации элективного курса «Антропология и этнопсихология» в условиях реализации ФГОС»

  • Курс повышения квалификации «Государственная итоговая аттестация как средство проверки и оценки компетенций учащихся по биологии»

  • Курс повышения квалификации «Нанотехнологии и наноматериалы в биологии. Нанобиотехнологическая продукция»

  • Курс повышения квалификации «Основы биоэтических знаний и их место в структуре компетенций ФГОС»

  • Курс повышения квалификации «Гендерные особенности воспитания мальчиков и девочек в рамках образовательных организаций и семейного воспитания»

  • Курс профессиональной переподготовки «Биология и химия: теория и методика преподавания в образовательной организации»

  • Курс профессиональной переподготовки «Организация производственно-технологической деятельности в области декоративного садоводства»

  • Курс повышения квалификации «Составление и использование педагогических тестов при обучении биологии»

  • Курс профессиональной переподготовки «Организация и выполнение работ по производству продукции растениеводства»

  • Скачать материал (медленно)

    Настоящий материал опубликован пользователем Медведева Елена Ахмедовна. Инфоурок является
    информационным посредником и предоставляет пользователям возможность размещать на сайте
    методические материалы. Всю ответственность за опубликованные материалы, содержащиеся в них
    сведения, а также за соблюдение авторских прав несут пользователи, загрузившие материал на сайт

    Если Вы считаете, что материал нарушает авторские права либо по каким-то другим причинам должен быть удален с
    сайта, Вы можете оставить жалобу на материал.

    Удалить материал

  • Медведева Елена Ахмедовна

    • На сайте: 6 лет и 4 месяца
    • Подписчики: 0
    • Всего просмотров: 64637
    • Всего материалов:

      20

Добавить комментарий