Режимы резания: описание и основные параметры. Правила расчета и корректировки скорости, подачи, глубины и силы резания. Необходимые формулы. Зависимость от характеристик оборудования и инструмента.
Режимы резания в механообработке — это совокупность рабочих параметров, определяющих, с какой скоростью, силой и на какую глубину происходит погружение резца в деталь в процессе удаления с ее поверхности слоя металла.
Их базовые значения определяются расчетным путем на основании геометрии режущей кромки инструмента и обрабатываемого изделия, а также скорости их сближения. На реальные процессы обработки металла оказывает влияние множество факторов, связанных с особенностями применяемого инструмента, станочного оборудования и обрабатываемого материала.
Поэтому для расчета технологических режимов резания применяются эмпирические формулы. А базовые значения входят в их состав вместе с такими справочными величинами, как группы поправочных коэффициентов, величина стойкости, параметры условий обработки и пр.
Режимы резания влияют не только на заданную точность и класс обработки изделия. От них зависит сила, с которой кромка инструмента воздействует на металл, что напрямую влияет на потребляемую мощность, уровень выделения тепла и скорость износа инструмента.
Поэтому расчет их параметров является одной из основных задач технологических служб предприятий. Несмотря на множество разновидностей металлорежущего оборудования и инструмента, в основе всей механообработки лежат единые закономерности.
Поэтому методики вычисления режимов резания унифицированы и систематизированы в три основные группы: для токарных работ, для сверления и для фрезерования. Все остальные виды расчетов являются производными.
Оглавление
- 1 Параметры при расчете режима резания
- 1.1 Скорость
- 1.2 Подача
- 1.3 Глубина
- 1.4 Сила
- 2 Как правильно рассчитать режим резания при сверлении
Параметры при расчете режима резания
Основной расчет режимов механообработки ведется на основании трех параметров: скорости резания (V), подачи (S) и глубины резания (t). Для получения практических значений этих параметров, которые можно будет использовать в производстве, на первом этапе определяют их расчетные величины.
После чего по ним с помощью эмпирических формул, справочных таблиц и данных из паспортов оборудования выполняют подбор технологических режимов резания, которые будут наилучшим образом соответствовать виду обрабатываемого материала, возможностям станка, а также типу и характеристикам инструмента.
От правильного расчета и выбора данных параметров зависит не только качество обработки, но и такие показатели, как производительность, себестоимость продукции и эксплуатационные расходы. Кроме того, сила воздействия на инструмент в процессе обработки влияет не только на скорость его износа, но и на состояние оснастки и приспособлений.
Следствием работы на слишком больших скоростях и подачах является недопустимая вибрация и повышенная нагрузка на узлы и механизмы оборудования. А это может привести не только к потере точности, но и к выходу станка из строя.
Как правило, режимы резания проверяют и корректируют при пробной обработке детали. Поэтому их выбор зависит не только от правильности расчетов, но и от опыта технолога и станочника.
Скорость
Временно́й цикл обработки детали состоит из трех базовых компонентов: подготовительно-заключительного, вспомогательного и основного времени. Последнее включает в себя все операции резания металла на заданных режимах. В силу особенностей механообработки основное время — это самая затратная составляющая цикла обработки детали.
При этом его величина, а следовательно, и себестоимость изделия напрямую зависят от скорости резания. Поэтому правильный подбор данного параметра важен не только с технологической, но и с экономической точки зрения.
В общем виде формула расчетной скорости резания выглядит так:
В указанной формуле значение параметра D зависит от вида обработки. Для токарной обработки это диаметр детали, для прочих видов — диаметр режущего инструмента (сверла, фрезы). Параметр n — это скорость вращения шпинделя в оборотах за минуту.
Таким образом происходит определение теоретической величины скорости резания, которая является исходной для последующих вычислений. В частности, она используется для расчета теоретической глубины резания, которая обозначается t. По причине того что реальная скорость резания зависит от множества факторов, ее вычисление осуществляется по эмпирической формуле, в которой единственной расчетной величиной является t:
Здесь Cv — это безразмерная константа, зависящая от различных аспектов обработки; T — нормативное время стойкости инструмента; t — глубина резания; Sо — подача; Кv — сводный коэффициент, являющийся произведением восьми поправочных коэффициентов.
Подача
Подача (обозначается S) — это путь, который проходит режущая кромка за условную единицу. В зависимости от вида механообработки подача может иметь разную размерность. Длина пройденного пути всегда измеряется в миллиметрах, но соотноситься она может либо с одним оборотом (в токарной обработке), либо с одной минутой (при сверлении и фрезеровании).
Таким образом, при сверлении — это величина перемещения кончика сверла в глубь поверхности за одну минуту (мм/мин.), а при токарных операциях — продольное или поперечное перемещение резца за один оборот детали (мм/об.).
В силу специфики отдельных чистовых операций для них используется такой параметр, как «подача на зуб», которая измеряется в мм/зуб. Ее применяют при работе с инструментом, имеющим несколько лезвий, а ее значение показывает, какой путь кромка (зуб) одного лезвия прошла за один оборот шпинделя.
Величину этого параметра также можно вычислить, разделив подачу инструмента за один оборот на количество режущих лезвий.
Поскольку подача напрямую зависит от паспортных параметров конкретного оборудования, ее значение, как правило, не рассчитывают, а выбирают из таблиц в соответствующих технологических справочниках.
Производительность металлорежущего оборудования напрямую зависит от величины подачи. Кроме того, она является базовым параметром для расчета основного времени обработки. Теоретически при мехобработке необходимо задавать предельно возможное значение подачи.
Но в этом случае вступают в силу ограничения по возможностям станочного оборудования и требования к классу чистоты.
Максимальные значения подачи применяют при обдирке и черновой обработке, а минимальные — при выполнении чистовых операций.
Глубина
Глубина резания — это толщина металла, снимаемого на единичный рабочий ход режущей кромки. Его величина зависит от конструкции режущей части инструмента и его прочностных параметров (в том числе предельной тангенциальной силы), а также мощности станка, твердости обрабатываемого материала и требований к чистоте поверхности.
Этот параметр является определяющим при расчете количества рабочих ходов лезвия для полного удаления припуска. Глубина резания обозначается латинской буквой t и измеряется в миллиметрах.
При обточке она равна разности радиусов детали до и после рабочего хода, а при сверлении — половине диаметра режущей части инструмента.
Сила
Процесс обработки детали режущим инструментом сопровождается возникновением пары сил. С первой силой, которая обозначается R, инструмент воздействует на поверхность детали, а вторая сила возникает в результате встречного сопротивления обрабатываемого материала.
Сила R является векторной суммой трех сил: осевой, тангенциальной и радиальной. Их векторы являются проекциями вектора силы R на оси X, Y, Z. На рисунке ниже представлено изображение векторов сил, возникающих при токарном точении.
При технологических расчетах используют не саму силу R, а ее составляющие. Из них самая значимая и большая по величине — эта тангенциальная сила Rz.
На практике она носит название сила резания, т. к. именно от нее зависит расход мощности и крутящий момент шпинделя. Силу резания вычисляют по эмпирическим формулам, данные для которых берут из справочных технологических таблиц.
Расчет для токарной обработки производится по следующей формуле:
Кроме константы Ср, степенных показателей подачи, глубины и скорости резания, в формулу расчета силы резания входит корректирующий коэффициент Кр. Он представляет собой произведение пяти поправочных коэффициентов, учитывающих особенности обработки различных материалов.
Для измерения сил резания в режиме реального времени применяют емкостные, индуктивные и тензометрические датчики. Последние являются самыми компактными и наиболее точными.
При их использовании на станках с ЧПУ сила резания может адаптивно увеличиваться или уменьшаться путем автоматической корректировки величины подачи и числа оборотов.
Это позволяет вести непрерывную обработку без вмешательства оператора, а также предотвращает поломку инструмента и уменьшает его износ.
Как правильно рассчитать режим резания при сверлении
При работе сверла на него воздействует та же совокупность сил, что и на токарный резец. Поэтому для расчета режимов резания при сверлении используется аналогичная методика, но со своей геометрией и соответствующими значениями параметров.
Силы Рz направлены в противоход главному движению и находятся в прямой зависимости от скорости резания (см. рис. ниже). Силы Рх, Рn и Рл воздействуют на конструктивные элементы сверла и определяют значение осевой силы (Ро), соответствующей силе привода станка.
Главные технологические параметры сверла — осевая сила и крутящий момент. Их определяют расчетным путем с помощью эмпирических формул:
Здесь Ср и См — это константы, значение которых зависит от вида сверления, а также свойств материалов и обрабатываемой детали; D — диаметр сверла и S — подача.
Корректирующий коэффициент Кр в данной формуле связан только с характеристиками материала детали.
Условия резания при сверлении гораздо сложнее, чем при токарной обработке, т. к. в этом случае значительно затруднен отвод стружки и тепла. Применение СОЖ дает намного меньший эффект в связи со сложностью подвода жидкости к зоне резания.
К тому же все факторы, которые оказывают влияние на процесс сверления, при подборе режимов по таблицам и формулам учесть невозможно.
Поэтому для проверки и корректировки технологических режимов, как правило, используют пробную обработку детали.
Правильный расчет режимов резания при сверлении производится по сложным формулам с использованием таблиц из технологических справочников.
А есть ли какой-нибудь упрощенный способ, основанный на количестве оборотов и виде материала сверла, который можно применять в повседневной практике? Если кто-нибудь может посоветовать такой расчет, поделитесь, пожалуйста, информацией в комментариях к данной статье.
В зависимости от
точности (квалитета) заготовки и детали
определяют число стадий обработки
(число проходов) (см. приложение 2).
В зависимости от
решаемых технологических задач выбирают
вид резца, форму пластины, геометрические
элементы резца по справочникам 4,
5, 8
. Если целесообразно использование
одного и того же инструмента на нескольких
переходах, то его выбирают по наиболее
трудоемкому переходу, но следят, чтобы
он был допустимым по остальным переходам.
Выбор инструмента
и режимов резания выполняется в
соответствии с основным параметром
станка – наибольшим диаметром
обрабатываемой заготовки, который
является усредненным показателем
жесткости и виброустойчивости
технологической системы.
Размеры державки
резца выбирают максимально допустимыми
согласно паспорту станка.
Резцы с механическим
креплением пластин имеют большую (в
среднем на 15%) производительность, чем
напаянные резцы. Такие резцы могут быть
применены при меньшей подаче, но при
большей скорости резания, что обеспечивает
рост производительности.
Выбор материала
инструмента осуществляют с учетом
обрабатываемого материала, характера
припуска и поверхности заготовки,
глубины резания (см. приложение 1).
2.1. Глубина резания
t,
мм. При
черновом точении и отсутствии ограничений
по мощности оборудования и жесткости
системы СПИД принимается равной припуску
на обработку; при чистовом точении
припуск срезается за два прохода и
более. На каждом последующем проходе
следует назначить меньшую глубину
резания, чем на предшествующем. При
параметре шероховатости обработанной
поверхности Ra≤3,2
мкм включительно t=0,5
÷ 2,0 мм; Rа
≥ 0,8 мкм, t=0,1
÷ 0,4мм.
Глубина резания
равна
,
где D
– начальный диаметр обработки, d
– получаемый размер.
2.2. Подача s,
мм/об. При
черновом точении принимается максимально
допустимой по мощности оборудования,
жесткости системы СПИД, прочности
режущей пластины и прочности державки.
Рекомендуемые подачи при черновом
наружном точении приведены в табл. 17, а
при черновом растачивании в табл. 18.
Максимальные
величины подач при точении стали 45,
допустимые прочностью пластины из
твердого сплава, приведены в табл. 13.
Подачи при чистовом
точении выбирают в зависимости от
требуемых параметров шероховатости
обработанной поверхности и радиуса при
вершине резца из табл. 12.
При прорезании
пазов и отрезании величина поперечной
подачи зависит от свойств обрабатываемого
материала, размеров паза и диаметра
обработки (табл. 14).
Рекомендуемые
подачи при фасонном точении приведены
в табл. 16.
Выбранные значения
подачи корректируют по паспорту станка.
Паспортные данные некоторых станков
приведены в приложении 3.
2.3. Скорость
резания vр,
м/мин.
При наружном продольном и поперечном
точении и растачивании рассчитывают
по эмпирической формуле
,
а при отрезании,
прорезании и фасонном точении – по
формуле
.
Среднее значение
стойкости Т
при одноинструментной обработке – 60
мин, при точении резцами с дополнительным
лезвием – 3045
мин. Значения коэффициента Сv
, показателей степени х,
у, и m
приведены в табл. 19.
Коэффициент Кv
является произведением коэффициентов,
учитывающих влияние материала заготовки
Кмv
(см. табл. 1, 3, 7, 8), состояния поверхности
Кпv
(табл. 2), материала инструмента Киv
(см. табл. 4), вида обработки Коv
( см. табл.
9), углов в плане резцов Кv
и радиуса при вершине резца Кr
(табл. 20). При многоинструментной обработке
и многостаночном обслуживании период
стойкости увеличивают, вводя соответственно
коэффициенты КТи
(см. табл. 5) и КТс
(см. табл. 6).
Отделочная токарная
обработка имеет ряд особенностей,
отличающих ее от чернового и межоперационного
точения. Поэтому рекомендуемые режимы
резания при тонком (алмазном) точении
на быстроходных токарных станках
повышенной точности и расточных станках
приведены отдельно в табл. 15.
Режимы резания
при точении закаленной стали резцами
из твердого сплава приведены в табл.
21.
2.4. Частоту
вращения n,
об/мин, рассчитывают
по формуле
где vp
– скорость резания, м/мин;
D
– диаметр детали, мм.
После расчета
частоты вращения принимают ее ближайшее
меньшее значение по паспорту станка
(приложение 3). Затем уточняют скорость
резания по принятому значению nпр.
м/мин
2.5. Сила резания
Р,
Н. Силу
резания Р
принято раскладывать на составляющие
силы, направленные по осям координат
станка (тангенциальную Рz
, радиальную
Ру
и осевую Рх).
При наружном продольном и поперечном
точении, растачивании, отрезании,
прорезании пазов и фасонном точении
эти составляющие рассчитывают по формуле
При отрезании,
прорезании и фасонном точении t
– длина
лезвия резца.
Постоянная Ср
и показатели степени х,
у, n для
конкретных (расчетных) условий обработки
для каждой из составляющих силы резания
приведены в табл. 22.
Поправочный
коэффициент Кр
представляет собой произведение ряда
коэффициентов (Кр
= Кмр
Кφр
Кγр
Кλр
Кrр),
учитывающих фактические условия резания.
Численные значения этих коэффициентов
приведены в табл. 10, 11 и 23.
2.6. Мощность
резания Ne,
кВт,
рассчитывают по формуле
.
При одновременной
работе нескольких инструментов
эффективную мощность определяют как
суммарную мощность отдельных инструментов.
Мощность резания
не должна превышать эффективную мощность
главного привода станка Nе<Nэ.
(
,
где Nдв–
мощность двигателя,
– КПД станка).
Если условие не выполняется и NNэ,
уменьшают скорость резания. Определяют
коэффициент перегрузки
Исходя из того, что мощность прямо
пропорциональна скорости резания v
и частоте вращения n,
рассчитывают новое меньшее значение
скорости резания
.
2.7. Основное время
То,
мин, рассчитывают
по формуле
,
где L
– длина
рабочего хода инструмента, мм;
i
– число проходов инструмента.
Длина рабочего
хода, мм, равна L=l+l1+l2,
где l
– длина обрабатываемой поверхности,
мм;
l1
и l2
– величины врезания и перебега
инструмента, мм (см. приложение 4).
Таблица 12
Подачи, мм/об, при чистовом точении
Параметр шероховатости поверхностити, |
Радиус при вершине резца r, |
||||||
0,4 |
0,8 |
1,2 |
1,6 |
2,0 |
2,4 |
||
Ra |
Rz |
||||||
0,63 1,25 2,50 |
— |
0,07 0,10 0,144 0,25 0,35 0,47 |
0,10 0,13 0,20 0,33 0,51 0,66 |
0,12 0,165 0,246 0,42 0,63 0,81 |
0,14 0,19 0,29 0,49 0,72 0,94 |
0,15 0,21 0,32 0,55 0,80 1,04 |
0,17 0,23 0,35 0,60 0,87 1,14 |
— |
20 40 80 |
||||||
Примечание. Подачи даны для обработки |
Таблица 13
Подачи,
мм/об, допустимые прочностью пластины
из твердого сплава, при точении
конструкционной стали резцами с главным
углом в плане
= 45
Толщина пластины, мм |
Глубина резания t, |
|||
4 |
7 |
13 |
22 |
|
4 6 8 10 |
1,3 2,6 4,2 6,1 |
1,1 2,2 3,6 5,1 |
0,9 1,8 3,6 4,2 |
0,8 1,5 2,5 3,6 |
Примечания: 1. В зависимости от
2. При обработке чугуна табличное
3. Табличное значение подачи умножать
4. При обработке с ударами подачу |
Таблица 14
Подачи,
мм/об, при прорезании пазов и отрезании
Диаметр обработки, мм |
Ширина резца, мм |
Обрабатываемый материал |
|
Сталь конструкционная углеродистая ванная, |
Чугун, медные и алюминивые сплавы |
||
Токарно-револьверные станки |
|||
До 20 Св. 20 до 40 » 40 » 60 » 60 » 100 » 100 » 150 » 150 |
3 3 – 4 4 – 5 5 – 8 6 – 10 10 – 15 |
0,06 – 0,08 0,1 – 0,12 0,13 – 0,16 0,16 – 0,23 0,18 – 0,26 0,28 – 0,36 |
0,11 – 0,14 0,16 – 0,19 0,20 – 0,24 0,24 – 0,32 0,3 – 0,4 0,4 – 0,55 |
Карусельные станки |
|||
До 2500 Св. 2500 |
10 – 15 16 – 20 |
0,35 – 0,45 0,45 – 0,60 |
0,55 – 0,60 0,60 – 0,70 |
Примечания: 1. При отрезании сплошного
2. Для закаленной конструкционной
3. При работе резцами, установленными |
Таблица
15
Режимы резания
при тонком точении и растачивании
Обрабатываемый материал |
Материал рабочей части режущего |
Параметр шероховатости поверхности |
Подача, мм/об |
Скорость резания, мм/мин |
Сталь: в в = в |
Т30К4 |
1,25 – 0,63 |
0,06 – 0,12 |
250 – 300 150 – 200 120 – 170 |
Чугун: НВ 149 – 163 НВ 156 – НВ 170 – |
ВК3 |
2,5 – 1,25 |
150 – 200 120 – 150 100 – 120 |
|
Алюминиевые сплавы и баббит |
1,25 – 0,32 |
0,04 – 0,1 |
300 – 600 |
|
Бронза и латунь |
0,04 – 0,08 |
180 – 500 |
||
Примечания: 1. Глубина резания 0,1 –
2. Предварительный проход с глубиной
3. Меньшие значения параметра |
Таблица 16
Подачи, мм/об, при фасонном точении
Ширина резца |
Диаметр обработки, мм |
|||
20 |
25 |
40 |
60 и более |
|
8 10 15 20 30 40 50 и более |
0,03 – 0,09 0,03 – 0,07 0,02 – 0,05 – – – – |
0,04 – 0,09 0,04 – 0,085 0,035 – 0,075 0,03 – 0,06 – – – |
0,04 – 0,09 0,04 – 0,085 0,04 – 0,08 0,04 – 0,08 0,035 – 0,07 0,03 – 0,06 – |
0,04 – 0,09 0,04 – 0,085 0,04 – 0,08 0,04 – 0,08 0,035 – 0,07 0,03 – 0,06 0,025 – 0,055 |
Примечание: Меньшие подачи брать для |
Таблица 17
Подачи при черновом наружном точении
резцами с пластинами из твердого сплава
и быстрорежущей стали
Диаметр детали, мм |
Размер державки резца, мм |
Обрабатываемый материал |
|||||||||
Сталь конструкционная углеродистая, |
Чугун и медные сплавы |
||||||||||
Подача s, мм/об, при |
|||||||||||
До 3 |
Св. 3 до 5 |
Св. 5 до 8 |
Св. 8 до 12 |
Св. 12 |
До 3 |
Св. 3 до 5 |
Св.5 до 8 |
Св.8 до 12 |
Св. 12 |
||
До 20 Св. 20 до 40 Св. 40 до Св. 60 до 100 Св. 100 до 400 Св. 400 до 500 Св. 500 до 600 Св. 600 до 1000 Св. 1000 до 2500 |
От 16 × 25 до 25 × 25 От 16 × 25 до 25 × 25 От 16 × 25 до 25 × 40 От 16 × 25 до 25 × 40 От 16 × 25 до 25 × 40 От 20 × 30 до 40 × 60 От 20 × 30 до 40 × 60 От 25 × 40 до 40 × 60 От 30 × 45 до 40 × 60 |
0,3–0,4 0,4–0,5 0,5-0,9 0,6-1,2 0,8-1,3 1,1-1,4 1,2-1,5 1,2-1,8 1,3-2,0 |
– 0,3-0,4 0,4-0,8 0,5-1,1 0,7-1,2 1,0-1,3 1,0-1,4 1,1-1,5 1,3-1,8 |
– – 0,3-0,7 0,5-0,9 0,6-1,0 0,7-1,2 0,8-1,3 0,9-1,4 1,2-1,6 |
– – – 0,4-0,8 0,5-0,9 0,6-1,2 0,6-1,3 0,8-1,4 1,1-1,5 |
– – – – – 0,4-1,1 0,1-1,2 0,7-1,3 1,0-1,5 |
— 0,4-0,5 0,6-0,9 0,8-1,4 1,0-1,5 1,3-1,6 1,5-1,8 1,5-2,0 1,6-2,4 |
– – 0,5-0,8 0,7-1,2 0,8-1,9 1,2-1,5 1,2-1,6 1,3-1,8 1,6-2,0 |
– – 0,4-0,7 0,6-1,0 0,8-1,1 1,0-1,2 1,0-1,4 1,0-1,4 1,4-1,8 |
– – – 0,5-0,9 0,6-0,9 0,7-0,9 0,9-1,2 1,0-1,3 1,3-1,7 |
– – – – – – 0,8-1,0 0,9-1,2 1,2-1,7 |
Примечания: 1. При обработке жаропрочных 2.
3. При обработке закаленных сталей |
Таблица 18
Подачи
при черновом растачивании на токарных
и токарно-револьверных станках резцами
с пластинами из твердого сплава и
быстрорежущей стали
Резец или оправка |
Обрабатываемый материал |
||||||||
Диаметр круглого сечения резца или |
Вылет резца или оправки, мм |
Сталь конструкционная углеродистая, |
Чугун и медные сплавы |
||||||
Подача s, мм/об, при |
|||||||||
2 |
3 |
5 |
8 |
2 |
3 |
5 |
8 |
||
10 12 16 20 25 30 40 |
50 60 80 100 125 150 200 150 300 150 300 300 500 800 |
0,08 0,10 0,1-0,2 0,5-0,3 0,25-0,5 0,4 – – – – – – – – |
– 0,08 0,15 0,15-0,25 0,15-0,4 0,2-0,5 0,25-0,6 0,6-1,0 0,4-0,7 0,9-1,2 0,7-1,0 0,9-1,3 0,7-1,0 – |
– – 0,1 0,12 0,12-0,2 0,12-0,3 0,15-0,4 0,5-0,7 0,3-0,6 0,8-1,0 0,5-0,8 0,8-1,1 0,6-0,9 0,4-0,7 |
– – – – – – – – – 0,6-0,8 0,4-0,7 0,7-0,9 0,5-0,7 – |
0,12-0,16 0,12-0,20 0,20-0,30 0,3-0,4 0,4-0,6 0,5-0,8 – – – – – – – – |
– 0,12-0,18 0,15-0,25 0,25-0,35 0,3-0,5 0,4-0,6 0,6-0,8 0,7-1,2 0,6-0,9 1,0-1,5 0,9-1,2 1,1-1,6 – – |
– – 0,1-0,18 0,12-0,25 0,25-0,35 0,25-0,45 0,3-0,8 0,5-0,9 0,4-0,7 0,8-1,2 0,7-0,9 0,9-1,3 0,7-1,1 0,6-0,8 |
– – – – – – – 0,4-0,5 0,3-0,4 0,6-0,9 0,5-0,7 0,7-1,0 0,6-0,8 – |
40 40 |
|||||||||
60 60 |
|||||||||
75 75 |
|||||||||
Примечания: Верхние пределы подач |
Таблица 19
Значения
коэффициента Сv
и показателей степени в формулах скорости
резания при обработке резцами
Вид обработки |
Материал режущей части резца |
Характеристика подачи |
Коэффициент и показатели степени |
|||
Сv |
x |
y |
m |
|||
Обработка конструкционной углеродистой |
||||||
Наружное продольное точение проходными |
Т15К6* |
s до 0,3 s до 0,7 s |
420 350 340 |
0,15 |
0,20 0,35 0,45 |
0,20 |
То же, резцами с дополнительным лезвием |
Т15К6* |
s s |
292 |
0,30 0,15 |
0,15 0,30 |
0,18 |
Отрезание |
Т5К10* Р18** |
– – |
47 23,7 |
– – |
0,80 0,66 |
0,20 0,25 |
Фасонное точение |
Р18** |
– |
22,7 |
– |
0,50 |
0,30 |
Нарезание крепежной резьбы |
Т15К6* |
– |
244 |
0,23 |
0,30 |
0,20 |
Р6М5 |
Черновые ходы: Р Р |
14,8 30 |
0,70 0,60 |
0,30 0,25 |
0,11 0,08 |
|
Чистовые ходы |
41,8 |
0,45 |
0,30 |
0,13 |
||
Вихревое нарезание резьбы |
Т15К6* |
– |
2330 |
0,50 |
0,50 |
0,50 |
Обработка серого чугуна, НВ 190 |
||||||
Наружное продольное точение проходными |
ВК6* |
s s |
292 243 |
0,15 |
0,20 0,40 |
0,20 |
Наружное продольное точение резцами |
ВК6** |
s s |
324 324 |
0,40 0,20 |
0,20 0,40 |
0,28 0,28 |
Отрезание |
ВК6* |
– |
68,5 |
– |
0,40 |
0,20 |
Нарезание крепежной резьбы |
– |
83 |
0,45 |
– |
0,33 |
|
Обработка ковкого чугуна, НВ 150 |
||||||
Наружное продольное точение проходными |
ВК8* |
s s |
317 215 |
0,15 0,15 |
0,20 0,45 |
0,20 0,20 |
Отрезание |
ВК6* |
– |
86 |
– |
0,4 |
0,20 |
Обработка медных гетерогенных сплавов |
||||||
Наружное продольное точение проходными |
Р18* |
s s |
270 182 |
0,12 |
0,25 0,30 |
0,23 |
Обработка силумина и литейных Дюралюминия, |
||||||
Наружное продольное точение проходными |
Р18* |
s s |
485 328 |
0,12 |
0,25 0,50 |
0,28 |
* Без охлаждения ** С охлаждением Примечания: 2.
3. При отрезании и прорезании с
4. При фасонном точении глубокого и
5. При обработке резцами из быстрорежущей 6. Подача s в мм/об. |
Таблица
20
Поправочные
коэффициенты, учитывающие влияние
параметров резца на
скорость
резания
Главный угол в плане |
Коэффициент Кv |
Вспомогательный угол в плане 1 |
Коэффициент К1v |
Радиус при вершине резца r*, |
Коэффициент Кrv |
20 30 45 60 75 90 |
1,4 1,2 1,0 0,9 0,8 0,7 |
10 15 20 30 45 – |
1,0 0,97 0,94 0,91 0,87 – |
1 2 3 – 5 – |
0,94 1,0 1,03 – 1,13 – |
* Учитывают только для
резцов из быстрорежущей стали.
Таблица 21
Режимы
резания при точении закаленной стали
резцами с
пластинами
из твердого сплава
Подача s, мм/об |
Ширина прорезания, мм |
Твердость обрабатываемого материала |
|||||||||
35 |
39 |
43 |
46 |
49 |
51 |
53 |
56 |
59 |
62 |
||
Скорость резания v, |
|||||||||||
Наружное продольное точение |
|||||||||||
0,2 0,3 0,4 0,5 0,6 |
– – – – – |
157 140 125 116 108 |
135 118 104 95 88 |
116 100 88 79 73 |
107 92 78 71 64 |
83 70 60 53 48 |
76 66 66 – – |
66 54 45 – – |
48 39 33 – – |
32 25 – – – |
26 20 – – – |
Прорезание паза |
|||||||||||
0,05 0,08 0,12 0,16 0,20 |
3 4 6 8 12 |
131 89 65 51 43 |
110 75 55 43 36 |
95 65 47 37 31 |
83 56 41 32 27 |
70 47 35 27 23 |
61 41 30 23 20 |
54 37 27 – – |
46 31 23 – – |
38 25 18 – – |
29 19 14 – – |
Примечания: 1. В зависимости от глубины
резания на табличное значение скорости
резания вводить поправочный коэффициент:
1,15 при t = 0,4
0,9 мм; 1,0 при t = 1
2 мм и 0,91 при t = 2
3 мм.
2. В зависимости от параметра шероховатости
на табличное значение скорости резания
вводить поправочный коэффициент: 1,0 Rz
= 10 мкм; 0,9 для Rа = 2,5 мкм и
0,7 для Rа = 1,25 мкм.
3. В зависимости от марки твердого сплава
на скорость резания вводить поправочный
коэффициент Киv:
Твердость обрабатываемого материала |
НRСэ |
НRСэ |
|||||
Марка твердого сплава коэффициент |
Т30К4 1,25 |
Т15К6 1,0 |
ВК6 0,85 |
ВК8 0,83 |
ВК4 1,0 |
ВК6 0,92 |
ВК8 0,74 |
4. В зависимости от главного угла в плане
вводить поправочные коэффициенты: 1,2
при = 30о ;
1,0 при
= 45о;
0,9 при = 60о
; 0,8 при = 75о
; 0,7 при = 90о.
5. При работе
без охлаждения вводить на скорость
резания поправочный коэффициент 0,9.
Таблица 22
Значения
коэффициента Ср
и показателей степени в формулах силы
резания
при
точении
Обрабатываемый материал |
Материал рабочей части резца |
Вид обработки |
Коэффициент и показатели степени в |
|||||||||||
тангенциальной Рz |
радиальной Ру |
осевой Рх |
||||||||||||
Ср |
x |
y |
n |
Ср |
x |
y |
n |
Ср |
x |
y |
n |
|||
Конструкционная |
Твердый |
Наружное продольное и поперечное |
300 |
1,0 |
0,75 |
-0,15 |
243 |
0,9 |
0,6 |
-0,3 |
339 |
1,0 |
0,5 |
-0,4 |
Наружное продольное точение резцами |
384 |
0,90 |
0,90 |
355 |
0,6 |
0,8 |
241 |
1,05 |
0,2 |
|||||
Отрезание и прорезание |
408 |
0,72 |
0,8 |
0 |
173 |
0,73 |
0,67 |
0 |
– |
– |
– |
– |
||
Нарезание резьбы |
148 |
– |
1,7 |
0,71 |
– |
– |
– |
– |
– |
– |
– |
– |
||
Быстрорежущая |
Наружное продольное точение, подрезание |
200 |
1,0 |
0,75 |
0 |
125 |
0,9 |
0,75 |
0 |
67 |
1,2 |
0,65 |
0 |
|
Отрезание и прорезание |
247 |
1,0 |
– |
– |
– |
– |
– |
– |
– |
– |
||||
Фасонное точение |
212 |
0,75 |
||||||||||||
Сталь |
Твердый |
Наружное продольное и поперечное |
204 |
|||||||||||
Серый чугун, НВ |
Твердый |
Наружное продольное и поперечное |
92 |
1,0 |
0,75 |
0 |
54 |
0,9 |
0,75 |
0 |
46 |
1,0 |
0,4 |
0 |
Серый чугун, НВ 190 |
Твердый |
Наружное продольное точение резцами |
123 |
1,0 |
0,85 |
0 |
61 |
0,6 |
0,5 |
0 |
24 |
1,05 |
0,2 |
0 |
Нарезание резьбы |
103 |
– |
1,8 |
0,82 |
– |
– |
– |
– |
– |
– |
– |
– |
||
Продолжение |
||||||||||||||
Обрабатываемый материал |
Материал |
Вид обработки |
Коэффициент и показатели степени в |
|||||||||||
тангенциальной Рz |
радиальной Ру |
осевой Рх |
||||||||||||
Ср |
x |
y |
n |
Ср |
x |
y |
n |
Ср |
x |
y |
n |
|||
Серый чугун, НВ 190 |
Быстрорежущая сталь |
Отрезание |
158 |
1,0 |
1,0 |
0 |
– |
– |
– |
– |
– |
– |
– |
– |
Ковкий чугун, НВ 150 |
Твердый |
Наружное продольное и поперечное |
81 |
0,75 |
43 |
0,9 |
0,75 |
0 |
38 |
1,0 |
0,4 |
0 |
||
100 |
88 |
40 |
1,2 |
0,65 |
||||||||||
Отрезание и прорезание |
139 |
1,0 |
– |
– |
– |
– |
– |
– |
– |
– |
||||
Медные НВ 120 |
Быстрорежущая |
Наружное продольное и поперечное |
55 |
1,0 |
0,66 |
|||||||||
Отрезание и прорезание |
75 |
1,0 |
||||||||||||
Алюминий и |
Наружное продольное и поперечное |
40 |
1,0 |
0,75 |
0 |
– |
– |
– |
– |
– |
– |
– |
– |
|
Отрезание и прорезание |
50 |
1,0 |
Таблица 23
Поправочные
коэффициенты, учитывающие влияние
геометрических параметров режущей
части инструмента на составляющие силы
резания при
обработке
стали и чугуна
Параметры |
Материал режущей части инструмента |
Поправочные коэффициенты |
||||
Наименование |
Величина |
Обозначение |
Величина коэффициента для составляющих |
|||
тангенциальной Рz |
радиальной Рy |
осевой Рx |
||||
Главный угол |
30 45 60 90 |
Твердый |
К |
1,08 1,0 0,94 0,89 |
1,30 1,0 0,77 0,50 |
0,78 1,0 1,11 1,17 |
30 45 60 90 |
Быстрорежущая |
1,08 1,0 0,98 1,08 |
1,63 1,0 0,71 0,44 |
0,70 1,00 1,27 1,82 |
||
Передний Угол γº |
-15 0 10 |
Твердый |
Кγρ |
1,25 1,1 1,0 |
2,0 1,4 1,0 |
2,0 1,4 1,0 |
12 – 15 20 – 25 |
Быстрорежущая сталь |
1,15 1,0 |
1,6 1,0 |
1,7 1,0 |
||
Продолжение |
||||||
Параметры |
Материал режущей части инструмента |
Поправочные коэффициенты |
||||
Наименование |
Величина |
Обозначение |
Величина коэффициента для составляющих |
|||
тангенциальной Рz |
радиальной Рy |
осевой Рx |
||||
Угол наклона главного лезвия λº |
-5 0 5 15 |
Твердый |
Кλρ |
1,0 |
0,75 1,0 1,25 1,7 |
1,07 1,0 0,85 0,65 |
Радиус при |
0,5 1,0 2,0 3,0 4,0 |
Быстрорежущая |
Кrρ |
0,87 0,93 1,0 1,04 1,10 |
0,66 0,82 1,0 1,14 1,33 |
1,0 |
Возможно, вы уже задавались вопросом расчёта режимов резания, но при этом продолжали ломать фрезы и не понимать, что происходит? Почему так? Почему, например, вы уменьшаете подачу, а фреза всё равно работает в неправильном режиме? Звенит, издает нехарактерный звук и, как результат, быстро тупится и ломается. В этой статье вы найдете ответы на интересующие вас вопросы:
- Почему не стоит полагаться на режимы резания из каталогов
- Какие параметры входят в расчёт режимов резания
- Как назначать обороты и подачу по внешнему виду инструмента
- Как работать с различными материалами
- Какой методики расчёта режимов резания придерживаться
Сразу оговорюсь, что в начале статьи будет некоторая вводная информация, предназначенная для общего понимания. Рекомендую читать все по порядку, чтобы не только пользоваться методикой расчёта режимов резания, но и понимать, что откуда берется, и почему именно так. Данная статья в первую очередь рассказывает о расчёте режимов резания для ЧПУ станков, так как на них нет возможности «пощупать» усилие в процессе работы, как это делают на универсальных станках. На ЧПУ оборудовании нужно изначально назначать правильный режим, и только потом вносить небольшие коррективы в пределах ±20%.
Режимы резания из каталогов.
Мы часто слышим вопрос от наших клиентов: «Какие обороты и подачу поставить на ту или иную фрезу?» Можно ответить кратко: «Посмотрите по каталогу производителя!» Но к сожалению, это не является правильной рекомендацией по нескольким причинам:
- Продавец зачастую завышает режимы резания на свою продукцию на 20-40%, чтобы иметь конкурентное преимущество перед другими поставщиками.
- Продавец в большинстве случаев не имеет практического опыта работы с режущим инструментом и различными материалами.
- И самое главное – когда вы соберетесь фрезеровать, каталога под рукой не окажется, а интернет предательским образом отключится!
На что тогда полагаться? На методику расчёта режимов резания, которую мы для вас подготовили! Она является результатом личного опыта работы на фрезерных ЧПУ станках с различными материалами. Возможно, что полученные режимы будут не самыми выигрышными в плане времени обработки, но они точно сохранят ваш инструмент и позволят работать в безопасном для него режиме, что наиболее важно для начинающих операторов ЧПУ!
Параметры режимов резания.
Как видно из рисунка, в режимы резания для фрезы входит 3 параметра:
- S – обороты (частота вращения шпинделя)
- F – подача (скорость, с которой движется инструмент)
- P – величина съема (слой материала, срезаемый фрезой)
Это именно та последовательность, с которой мы производим расчёт режимов резания для фрезы – далее будем её придерживаться. Данные буквенные обозначения используются в том числе и в самой программе на ЧПУ станок. Например, чтобы включить шпиндель на 1500 об/мин по часовой стрелке, мы записываем в программу «S1500 M3». Или, чтобы сделать проход вправо на 50 мм с подачей 300 мм/мин, мы пишем в программе «G1 X50 F300».
Внешний вид инструмента.
Дадим краткую характеристику фрез по внешнему виду, которую следует учитывать при расчёте режимов резания. Рассмотрим три примера:
Данная фреза имеет острые режущие кромки, большой угол завивки винтовой канавки, она 2-х зубая и не имеет покрытия. Все эти факторы свидетельствуют о том, что перед нами инструмент, идеально подходящий для фрезерования цветных металлов, а также вязких материалов (меди, пластиков), которые подвержены сильному нагреву и оплавлению в процессе резания. Такая фреза хорошо подходит для чистовых обработок с небольшими усилиями резания, но не подходит для сталей и черновых обдирок заготовок с большими съёмами.
Данные фрезы имеют более тупые углы заточки режущих кромок, они 4-х зубые (более жесткие) и имеют слой покрытия, уменьшающего трение и увеличивающего твёрдость поверхностного слоя. Всё это свидетельствует о том, что этот инструмент идеально подходит для обработки сталей, они достаточно прочные для работы с большими подачами, подходят в том числе и для черновых обдирок, при этом позволяют достичь хорошей чистоты поверхности.
На этом рисунке мы видим составную фрезу, состоящую из корпуса и твердосплавных пластинок. Как правило, такие фрезы имеют диаметр от 20 мм и более, так как цельный твердосплавный инструмент такого размера становится экономически не выгодным. Предназначение и поведение данных фрез зависит от установленных на них пластинок. Если пластинки без покрытия (блестящие) и имеют остро заточенные режущие кромки, значит, они предназначены для обработки цветных металлов. Если пластинки имеют покрытие и на ощупь кажутся тупыми, то они предназначены для сталей. По опыту использования, покрытие «золотистого» цвета хорошо подходит под нержавеющие стали, а покрытие черного цвета – под обычные конструкционные стали. Фрезы с твердосплавными пластинками «любят» большие подачи.
Вывод: не обязательно заглядывать в каталог или на сайт производителя режущего инструмента и искать у них калькулятор расчёта режимов резания – учитесь идентифицировать фрезы по их внешнему виду. Разновидностей не так много.
Особенности работы с различными материалами.
Здесь мы не будем вдаваться в подробности, а просто дадим список распространённых материалов и опишем особенности работы с ними. Список составлен по принципу от легкообрабатываемых (некапризных) материалов к более сложным.
- Пластики (модулан, капролон, фторопласт) – наиболее легкообрабатываемые материалы. Можно обрабатывать как на высоких, так и на низких оборотах, как с высокими, так и с низкими подачами. На инструмент действуют небольшие силы резания, можно давать большое заглубление. Обращать внимание нужно только на оплавление материала и в случае нагрева снижать обороты.
- Цветные металлы (дюраль, латунь, бронза) – также очень легко обрабатываемые материалы. Обрабатываются на высоких скоростях, стружка сходит легко, не перегреваются, на инструмент действуют небольшие силы резания. Можно обрабатывать без СОЖ (смазочно-охлаждающая жидкость). Режимы резания можно корректировать в большом диапазоне без боязни повредить инструмент.
- Медь, алюминий (мягкие алюминиевые сплавы типа АМГ) – всё то же самое, что и для цветных металлов, но с одной особенностью. В случае превышения скорости происходит резкий нагрев и оплавление материала, что моментально забивает фрезу – она перестаёт резать и сразу ломается. Для предотвращения этого явления нужно применять СОЖ.
- Конструкционные стали – для них обязательно применение фрез именно под стали с 3/4-мя зубьями и желательно с покрытием. Обработка ведется легко, если станок имеет достаточную жёсткость. Для сталей не стоит применять большие обороты, а также не стоит сильно снижать подачу, так как в этом случае фреза не режет материал, а «зализывает», что приводит к нагреву и ухудшению качества обрабатываемой поверхности. Величина снимаемого материала одним зубом (подача на зуб фрезы) должна быть достаточной.
- Нержавеющая сталь, титановые сплавы – наиболее капризные материалы в обработке. Требуют применения специального инструмента, подходящего для обработки этих материалов. Не «любят» большие обороты и подачу, требуют интенсивного охлаждения СОЖ. Не стоит усердствовать с глубиной врезания и снимать более чем 1/3 от диаметра фрезы.
Методика расчётов режимов резания при фрезеровании.
1. Определяемся с первым параметром – оборотами фрезы (S).
Обороты рассчитываются исходя из оптимальной скорости резания для того или иного материала. Скорость резания – это не обороты! Это скорость, с которой режущая кромка движется относительно материала в метрах в минуту. Скорость резания – это отправная величина для расчёта, но не конечное знание оборотов, которое нам нужно. Условно разделим материалы на цветные металлы и стали, а фрезы на монолитные и с пластинками. Привожу рекомендуемые (подобранные опытным путем) скорости резания.
Монолитные:
- Цветные металлы 120-160 м/мин
- Стали 60-100 м/мин
С пластинками:
- Цветные металлы 180-220 м/мин
- Стали 120-160 м/мин
Формула расчёта скорости резания выглядит так:
Но нас всё-таки интересуют обороты, поэтому выразим S и получим формулу расчёта оборотов шпинделя:
где:
- S – обороты шпинделя (об/мин)
- V – скорость резания (м/мин)
- D – диаметр фрезы (мм)
Точности тут не требуется, полученные обороты можно округлять в любую сторону. Также стоит оговориться, что если Ваш станок не выдает высокие обороты, то не стоит беспокоиться – ставьте те, которые выдает, и работайте. Просто это будет немного медленнее, чем могло бы быть, так как подача будет напрямую зависеть от оборотов – чем меньше обороты, тем меньше будет подача.
Исходя из этих параметров, можно составить таблицу с рекомендациями оборотов для наиболее распространённых диаметров фрез.
2. Определяемся со вторым параметром – подачей (F).
В первую очередь это актуально для концевых монолитных фрез, так как они наиболее подвержены поломке в случае завышения или занижения скорости подачи. Для фрез с твердосплавными пластинками подачу можно брать исходя из расчёта 0.1-0.2 мм на зуб. При этом подача 0.1 мм на зуб будет идеальна для инструмента небольшого диаметра (20-30 мм), а 0.2 мм стоит применять только для более крупных фрез (от 40 мм в диаметре и более).
Для определения скорости подачи воспользуемся простой формулой:
F = D * k * N * S
где:
- F – подача (мм/мин)
- D – диаметр фрезы (мм)
- K – коэффициент 0.006-0.008
- N – количество зубьев фрезы
- S – обороты (об/мин)
Поясняю:
Умножая диаметр инструмента на коэффициент k, мы получаем допустимую подачу на один зуб фрезы. Например, возьмем инструмент диаметром 8 мм – у нас получится 8*0.007 = 0.056 мм/зуб. Если один зуб фрезы будет снимать меньше, то может произойти «зализывание» материала, нагрев и поломка. Если на один зуб будет приходиться больше, то возможна поломка фрезы из-за значительного увеличения сил резания. Далее, подачу на один зуб фрезы мы умножаем на количество зубьев (например, 3 зуба), получаем: 0.056*3 = 0.168 мм/об. Это тот путь фрезы, который она будет проходить за один оборот. Нам остаётся только умножить это значение на ранее выбранные исходя из обрабатываемого материала обороты, и готово! 0.168*5600 = 940 мм/мин.
Таким образом, для обработки цветных металлов 3-х зубой фрезой диаметром 8 мм нам необходимо поставить на нее 5600 об/мин и подачу около 900 мм/мин. Вот и весь расчёт!
3. Определяемся с третьим параметром – величиной съёма (P).
Или, другими словами, глубиной фрезерования. Тут всё просто, достаточно придерживаться правила: 1/3 от диаметра инструмента. Например, для фрезы диаметром 6 мм мы выберем величину съёма 2 мм, а для инструмента диаметром 12 мм допустимая глубина фрезерования составит уже 4 мм.
Но есть и нюансы:
- Если вы работаете только краем фрезы, то глубину фрезерования можно значительно увеличивать. Например, при использовании новомодного высокоскоростного фрезерования инструмент входит в материал на всю глубину режущей кромки, при этом величина перекрытия составляет всего около 5%.
- Если вы работаете с труднообрабатываемыми материалами, то правило 1/3 от диаметра может быть губительным для инструмента, возможно величину съёма придется значительно уменьшить.
- Если у вас скоростной шпиндель и нет возможности поставить на инструмент малые (расчётные) обороты, то ставьте больше, которые станок в состоянии выдать. Но при этом значительно уменьшайте глубину резания – это убережет фрезу от поломки, а шпиндель от перегрузки.
- Если у вас недостаточно жёсткий станок, то забудьте про большие съёмы по глубине в принципе. Самым оптимальным будет съём по 0.5-1 мм при рабочем диаметре фрезы не более 6 мм.
Заключение:
Для расчёта режимов резания при фрезеровании действуйте следующим образом:
- Определитесь с обрабатываемым материалом и внимательно осмотрите фрезу.
- Выберите из таблицы подходящие для нее обороты исходя из материала, типа фрезы и её диаметра.
- По формуле расчёта режимов резания посчитайте необходимую подачу. Для труднообрабатываемых материалов выбирайте коэффициент 0.006, а для легкообрабатываемых – 0.008.
- Определитесь с глубиной фрезерования, учитывая наши рекомендации.
Задача для закрепления:
– необходимо фрезеровать паз шириной 10 мм на глубину 6 мм
– концевой 3-х зубой фрезой диаметром 10 мм
– обрабатываемый материал: сталь
Ответ:
S (обороты) = 2500 об/мин
Кол-во проходов = 2
P (съём) = 3 мм
F (подача) = 525 мм/мин
Режимы резания при токарной обработке и точении: таблицы формул, расчет подачи и скорость
25.08.2020
Подготовимся к проведению одной из наиболее распространенных операций. Рассмотрим расчет подачи и режимов резания при токарной обработке. Его важность сложно переоценить, ведь если он проведен правильно, то помогает сделать техпроцесс эффективным, снизить себестоимость производства, повысить качество поверхностей деталей. Когда он выбран оптимально, это самым положительным образом влияет на продолжительность работы и целостность инструментов, что особенно важно в перспективе длительной эксплуатации станков с поддержанием их динамических и кинематических характеристик. И наоборот, если его неверно выбрать и взять не те исходные показатели, ни о каком высоком уровне исполнения продукции говорить не придется, возможно, вы даже столкнетесь с браком.
Режимы резания: что это такое
Это целый комплекс характеристик, задающих условия проведения токарной операции. Согласно технологическим маршрутам, обработка любого элемента (особенно сложного по форме) проводится в несколько переходов, для каждого из которых требуются свои чертежи, размеры и допуски, оборудование и оснастка. Вычислив и/или подобрав все эти параметры один раз для первой заготовки, в дальнейшем вы сможете подставлять их по умолчанию – при выпуске второй, пятой, сотой детали – и таким образом минимизируете время на подготовку станка и упростите контроль качества, то есть оптимизируете процесс производства.
В число основных показателей входит глубина, скорость, подача, в список дополнительных – масса объекта, припуски, частота, с которой вращается шпиндель, и в принципе любая характеристика, влияющая на результат обработки. И важно взять те из них, что обеспечат лучшую итоговую точность, шероховатость и экономическую целесообразность.
Есть несколько способов провести расчет режимов резания при точении:
- • аналитический;
- • программный;
- • табличный.
Первый достаточно точный и до появления мощной компьютерной техники считался самым удобным. По нему все вычисления осуществлялись на основании паспортных данных оборудования: мощность двигателя, частоту вращения шпинделя и другие показатели подставляли в уже проверенные эмпирические выражения и получали нужные характеристики.
С разработкой специализированного ПО задача калькуляции существенно упростилась – все операции выполняет машина, быстрее человека и с гораздо меньшей вероятностью совершения ошибок.
Когда под рукой нет компьютера или формул, зато есть опыт, можно определить подходящие критерии на основании нормативных и справочных данных из таблиц. Но для этого необходимо учитывать все изменения значений, даже малейшие, что не всегда удобно в условиях производства.
Особенности определения режимов резания при точении
В первую очередь нужно выбрать глубину обработки, после нее – подачу и скорость. Важно соблюсти именно такую последовательность – в порядке увеличения степени воздействия на инструмент. Сначала вычисляются те характеристики, которые могут лишь минимально изменить износ резца, в конце те, что влияют на ресурс по максимуму.
Параметры следует определять для предельных возможностей оборудования, в обязательном порядке учитывая размеры, металл исполнения, конструкцию инструмента.
Важным пунктом является нахождение подходящей шероховатости. Плюс, правильнее всего взять лезвие под конкретный материал, ведь у того же чугуна одна прочность и твердость, а у алюминия – совсем другая. Не забывайте также, что в процессе происходит нагрев детали и возрастает риск ее деформации.
Выбор режима резания при точении на токарном станке продолжается установлением типа обработки. Какой она будет, черновой или чистовой? Первая грубая, для нее подойдут инструменты, выполненные из твердых сталей и способные выдержать высокую интенсивность техпроцесса. Вторая тонкая, осуществляется на малых оборотах, со снятием минимального слоя металла.
Глубина определяется количеством проходов, за которые убирается припуск. Подача представляет собой расстояние, преодолеваемое кромкой за вращение заготовки, и может быть одного из трех типов:
- • минутная;
- • на зуб;
- • на оборот.
Скорость в значительной степени зависит от того, какая именно операция выполняется, например, при торцевании она должна быть высокой.
Характеристики режимов резания
Прежде чем подробно рассмотреть все основные параметры, скажем еще несколько слов о методах вычислений. Точнее, о том, как от графики перешли к аналитике и компьютеризации.
По мере совершенствования производства даже самые подробные таблицы оказывались все менее удобными: столбцы, колонки, соотношения – на изучение этого и поиск нужного значения уходило огромное количество времени. И это при том, что основные показатели связаны между собой, и уменьшение/увеличение одного из них провоцировало менять остальные.
Установив столь очевидную зависимость, инженеры стали пользоваться аналитическим способом, то есть продумали эмпирические формулы, и начали подставлять в них частоту вращения шпинделя, мощность силового агрегата и подачу и находить нужные характеристики. Ну а развитие компьютеров и появление вычислительного ПО серьезно упростило задачу и защитило итоговые результаты от ошибок человеческого фактора.
Схема расчетов режима резания на токарном станке
Порядок действий следующий:
- • Выбираете, каким инструментом будете пользоваться в данной ситуации; для хрупких материалов подойдет лезвие со сравнительно небольшими показателями прочности, но для твердых – с максимальными.
- • Определяете толщину снимаемого слоя и число проходов, исходя из актуального метода обработки. Здесь важно обеспечить оптимальную точность, чтобы изготовить изделие с минимальными погрешностями геометрических габаритов и поверхностей.
Теперь переходим к рассмотрению конкретных характеристик, играющих важную роль, и к способам их практического нахождения или изменения.
Глубина резания при токарной обработке на станке
Ключевой показатель для обеспечения качества исполнения детали, показывающий, сколько материала нужно убрать за один проход. Общее количество последних вычисляется с учетом следующего соотношения припусков:
- • 60% – черновая;
- • от 20 до 30% – смешанная;
- • от 10 до 20% – чистовая.
Также свою роль играет то, какая форма у заготовки и что за операция выполняется. Например, при торцевании рассматриваемый параметр приравнивается к двойному радиусу предмета, а для цилиндрических деталей он находится так:
k = (D-d)/2, где:
- D и d – диаметры, начальный и итоговый соответственно;
- k – глубина снятия.
Если же изделие плоское, используются обычные линейные значения длины – 2, 1-2 и до 1 мм соответственно. Здесь же есть зависимость от поддерживаемого класса точности: чем он меньше, тем больше нужно совершить подходов для получения результата.
Как определить подачу при точении
Фактически она представляет собой то расстояние, на которое резец передвигается за один оборот, совершаемый заготовкой. Наиболее высока она при черновой обработке, наименее – при чистовой, когда действовать следует аккуратно, и в дело также вступает квалитет шероховатости. В общем случае ее делают максимально возможной (для операции) с учетом ограничивающих факторов, в числе которых:
- • мощность станка;
- • жесткость системы;
- • стойкость и ресурс лезвия.
При фрезеровании отдают предпочтение варианту «на зуб», при зачистке отверстий – рекомендованному для текущего инструмента, в учебных целях – самую распространенную, то есть 0,05-0,5 об/мин.
Формула расчета подачи при точении, связывающая между собой все ее виды, выглядит так:
SM = S*n = SZ*Z*n, где:
n – частота вращения резца,
Z – число зубцов.
Для упрощения вычислений можно брать данные отсюда:
Диаметр, заготовки, мм |
Размер инструмента, мм |
Подача, мм/об, с выбранной глубиной резания, мм |
||||
до 3 |
3-5 |
5-8 |
8-12 |
от 12 |
||
Для стали |
||||||
до 20 |
16х25-25х25 |
0,3-0,4 |
– |
|||
20-40 |
0,4-0,5 |
0,3-0,4 |
– |
|||
40-60 |
16х25-25х40 |
0,5-0,9 |
0,4-0,8 |
0,3-0,7 |
– |
|
60-100 |
0,6-1,2 |
0,5-1,1 |
0,5-0,9 |
0,4-0,8 |
– |
|
100-400 |
0,8-1,3 |
0,7-1,2 |
0,6-1 |
0,5-0,9 |
– |
|
400-500 |
20х30-40х60 |
1,1-1,4 |
1-1,4 |
0,7-1,2 |
0,6-1,2 |
0,4-1,1 |
500-600 |
20х30 |
1,2-1,5 |
1-1,4 |
0,8-1,3 |
0,6-1,3 |
0,4-3,2 |
Для чугуна |
||||||
до 20 |
16х25-25х25 |
– |
||||
20-40 |
0,4-0,5 |
– |
||||
40-60 |
16х25-25х40 |
0,6-0,9 |
0,5-0,8 |
0,4-0,7 |
– |
|
60-100 |
0,8-1,4 |
0,7-1,2 |
0,6-1 |
0,5-0,9 |
– |
|
100-400 |
1-1,3 |
0,9-1,4 |
0,8-1,1 |
0,6-0,9 |
||
400-500 |
20х30-40х60 |
1,3-1,6 |
1,2-1,5 |
1,1-1,3 |
0,8-1 |
0,7-0,9 |
500-600 |
20х30 |
1,5-1,8 |
1,2-1,6 |
1-1,4 |
0,9-1,2 |
0,8-1 |
Если операции осуществляются под серьезными ударными нагрузками, выбранное значение необходимо помножить на 0,85. Если металлом детали является жаропрочная конструкционная сталь, следует ограничиться 1 мм/об.
Расчет скорости резания при токарной обработке
Это показатель с сильнейшим влиянием, зависящий от следующих факторов:
- • тип работы;
- • вид используемого инструмента;
- • материал исполнения заготовки.
Так, торцы отрезаются так быстро, как только возможно, в то время как сверление выполняется уже гораздо медленнее. Для решения стандартных задач параметр можно без труда вычислить, умножив диаметр будущего изделия на число оборотов в минуту и на тт, а затем разделив на поправочный коэффициент в 1000. Для упрощения можно воспользоваться специальным программным обеспечением.
Но если под рукой нет компьютера с установленным ПО или даже калькулятора, есть альтернативный вариант – уже подсчитанная скорость резания при точении из таблицы (ее мы отдельно приведем ниже). Также представим вашему вниманию две формулы – чтобы вы могли воспользоваться любой из них на основе уже имеющихся значений, а после обратили свое внимание на нормированные показатели.
Проверка принятых характеристик
Оборудование необходимо эксплуатировать подходящим образом – это нужно не только для производительности, но и с точки зрения эксплуатации.
Допустим, что вы остановились на каких-то значениях, что предпринять дальше? Прежде чем настраивать по ним станок, необходимо убедиться, что они правильные, так сказать, подтвердить правильность выбора режимов резания при токарной обработке.
Для этого нужно лишь заглянуть в паспорт оборудования и свериться с рекомендованными параметрами. Нормированные показатели должны быть выше тех, что взяли вы. Если это условие не выполняется, следует скорректировать величины, иначе техника вполне может выйти из строя в процессе изготовления деталей.
Какой инструмент использовать
Такой, что обеспечит:
- • необходимую форму и геометрические параметры заготовки;
- • достаточное качество готовой поверхности;
- • технологичность и безопасность процесса выпуска;
- • минимальные энергетические затраты при хорошей производительности;
- • экономичный расход дорогих и/или редких материалов;
- • ремонтопригодность изделия.
Выше мы уже писали, что длина обработки (резания) и подача на оборот при точении зависят лезвия, поэтому его тоже нужно рассмотреть подробнее. Сделаем это прямо сейчас, сгруппировав все разнообразие вариантов по главным признакам и выделив их особенности.
Классификация инструментов
Разделить их можно по трем показателям, каждый из которых оказывает достаточно сильное влияние на результаты проведения операций. Если установить неподходящий, это обернется недостаточной продуктивностью труда, ухудшением точности, повышением износа функциональных узлов или даже нарушением техники безопасности. Поэтому так важно правильно определиться и использовать то, что подходит для станка.
По способу обработки
Чтобы вам было проще выбирать рекомендуемые режимы резания при точении, таблицы составлены для таких разновидностей лезвий:
- • проходные;
- • резьбовые;
- • галтельные;
- • расточные;
- • фасонные;
- • резьбовые;
- • прорезные;
- • подрезные;
- • отрезные.
Между собой они различаются формой, размерами и исполнением кромок.
По материалу рабочей части
Они бывают:
- инструментальные;
- быстрорежущие;
- минералокерамические;
- твердосплавные – одно-, двух- и трехкарбидные (вольфрамовые, титановольфрамовые и титанотанталовольфрамовые соответственно).
Конкретный вариант подбирается, исходя из твердости поверхности детали – понятно, что он должен быть еще прочнее, чтобы не разрушаться при механическом контакте, а снимать стружку.
По исполнению
Есть один момент, о котором стоит помнить, выбирая любой параметр, например, обороты токарного станка по металлу: таблица составлена сразу для всех видов инструмента. При этом конструкция у него может быть:
- сборная;
- цельная;
- комбинированная.
У каждого типа свои преимущества. Первый отличается наибольшей ремонтопригодностью, ведь можно заменить лишь один деформированный элемент, а не весь резец. Зато второй гораздо лучше выдерживает повышенные нагрузки, так как равномерно воспринимает все силовые воздействия. Третий же сочетает в себе преимущества двух предыдущих, но стоит дороже всего.
Определяться вам, в зависимости от характера и твердости поверхности, точности снятия слоя, тех геометрических параметров, которые нужно получить в результате.
Формула подачи и режимов резания при токарной обработке
Для вычислений воспользуйтесь следующим выражением:
Vt = n x f (мм/мин), где:
- n – частота вращения;
- f – величина подачи на 1 оборот.
Также есть другие полезные соотношения, например, для нахождения эффективной мощности:
N (э) = (PZ x V)/(1020 x 60), причем:
P (z) – это максимальная нагрузка (тангенциальная сила), и она в свою очередь представлена в виде:
P (z) = 10Ср x t1 x S2 x V3 x Kp
Зная все эти величины, можно определить необходимую производительность станка:
N (п) = N(э)/η,
где η представляет собой заложенный заводом-изготовителем КПД (коэффициент полезного действия) оборудования.
Для выяснения оптимальной скорости резания при токарной обработке таблица необязательна – нужный показатель не составляет труда найти по следующей формуле:
VC = (DC x π x n)/1000 м/мин, где:
- DC – двойной радиус детали;
- n – частота вращения.
Или в качестве альтернативы можно воспользоваться таким соотношением:
- • V = CV/((T1 x t2 x S3) x KV, в котором:
- • T – стойкость инструмента;
- • CV – коэффициент, применяемый как к заготовке, так и к лезвию;
- • 1, 2, 3 – параметры степеней;
- • KV – поправочное значение, зависящее от материала кромки, качества (точности) и особенностей поверхностного слоя.
Опять же, все полученные данные нужно сверить со стандартным рядом, актуальным для имеющегося станка, и убедиться, что они разница между ними не больше 5% и что они не превышают нормированные значения.
Таблица режимов резания при токарной обработке на станке
Материал |
Операция |
Показатели степени |
СР |
|||
Детали |
Лезвия |
n |
x |
y |
||
Сталь конструкционная |
Твердая |
Наружное растачивание |
-0,15 |
1 |
0,75 |
300 |
Прорезание и отрезание |
0 |
0,72 |
0,8 |
408 |
||
Быстрорежущая |
Наружное растачивание |
0 |
1 |
0,75 |
200 |
|
Прорезание и отрезание |
0 |
1 |
1 |
247 |
||
Чугун серый |
Твердый сплав |
Наружное растачивание |
0 |
1 |
0,75 |
92 |
Быстрорежущая сталь |
Прорезание и отрезание |
– |
1 |
1 |
158 |
|
Чугун кованый |
Твердый сплав |
Наружное растачивание |
0 |
1 |
0,75 |
81 |
Прорезание и отрезание |
– |
1 |
1 |
139 |
Теперь вы понимаете, насколько важно верно определить параметры эксплуатации оборудования. Хорошо, что это не будет проблемой теперь, когда вы знаете, как рассчитать режимы резания при токарной обработке. А станок, который эффективно решит любые ваши производственные задачи, вы всегда можете заказать у ижевского производителя – завода «Сармат».
Расчет режимов резания осуществляется при механизированной и ручной обработке металла. По результатам вычислений подбирается оснастка, определяется оптимальный способ проведения работ и размер производственных расходов.
В материале:
- Способы проведения расчетов
- Параметры, учитываемые при проведении расчетов
- Обработка резцами
- Сверление
- Зенкерование
- Работа с развертками
- Фрезерование
- Шлифование
- Заключение
Ключевые задачи процедуры:
- повышение скорости и качества операций;
- снижение материалоемкости производства;
- уменьшение нагрузки на персонал;
- снижение процента брака;
- внедрение ресурсосберегающих технологий;
- повышение рентабельности.
Подбор режимов резания происходит для каждой технологической операции. Работы проводятся комплексно, предполагают использование справочников режимов резания, отраслевых нормативов и прочей документации.
Способы проведения расчетов
Режимы резания металлов рассчитываются одним из двух способов.
- Аналитический. Вычисления производятся эмпирически. Специалисты выполняют тестовые операции на основе формул теории резания. В результате подбираются оптимальные режимы обработки для конкретного материала или заготовки.
- Статистический. Способ обработки подбирается по справочнику режимов резания. Такой подход не предполагает проведения экспериментов, ориентирован на работу с общими отраслевыми нормативами.
Применяемый инструмент должен иметь рациональную конструкцию, обеспечивать максимальное использование всех возможностей оборудования.
Параметры, учитываемые при проведении расчетов
При расчете режимов резания инструментов используются следующие показатели.
- Глубина реза. Расстояние, на которое погружается инструмент в процессе обработки заготовки.
- Подача. Степень перемещения инструмента в рамках одного рабочего такта.
- Скорость режима резания. Отношение скорости перемещения режущей кромки ко времени, затрачиваемому на обработку детали.
- Расчетные размеры. Параметры заготовки. К ним относится диаметр, длина и ширина обрабатываемой поверхности.
В ходе подбора режимов резания металлов учитываются припуски на обработку, затрачиваемое время и количество проходов.
Обработка резцами
При назначении режимов резцового резания определяется порядок обработки материала, учитывается специфика воздействия инструмента на заготовку.
Рис. 1 Обработка металла резцом (принципиальная схема)
На рисунке 1 представлены показатели, влияющие на токарный режим резания:
- t – глубина реза;
- s – подача;
- f – площадь номинально срезанного слоя;
- Н – высота остаточного сечения;
- ϕ − главный угол;
- ϕ1− вспомогательный угол.
Подбор режимов подачи осуществляется по специальным таблицам.
Таблица 1. Расчет подачи для незакаленных сталей и чугунов
Таблица 2. Расчет подачи для закаленных сталей
Ознакомиться с ассортиментом токарных резцов, используемых при расчете режима резания металлов, поможет представленная ссылка.
Рис. 2 Работа резца по металлу
Сверление
Режимы работы со сверлами определяются с учетом конфигурации инструмента, параметров заготовок и специфики применяемого оборудования. Как правило, используются формулы и табличные значения. Они позволяют подобрать режим резания для сверл с высокой точностью.
Для расчета подачи сверла применяется формула s = C х D0,6, в которой:
- s – подача;
- D – диаметр применяемого сверла;
- С – нормативный коэффициент.
Значения коэффициента представлены в таблице.
Таблица 3. Значения коэффициента С для сверл
Сила, подача и момент резания рассчитываются по типовым формулам с применением соответствующих коэффициентов.
Таблица 4. Коэффициенты, позволяющие рассчитать режимы резания для сверл
Корректное использование таблиц и формул расчета резания позволит подобрать оптимальный режим. Он обеспечит высокую эффективность инструмента и минимальные затраты на последующую обработку детали.
Для ознакомления со сверлами, участвующими в различных режимах резания стали, посетите раздел сверла по металлу.
Рис. 3 Работа сверла по металлу
Зенкерование
Геометрия режущей части зенкеров не нормирована. Производители применяют различные технологические решения, с целью повысить эффективность и продлить срок службы продукции.
При определении режима резания стали зенкером специалисты учитывают следующие параметры:
- задний и передний угол зенкера;
- угол наклона винтовой канавки;
- угол при навершии;
- угол при наклоне режущей кромки.
Как и в случае с прочим режущим инструментом, расчетные процедуры выполняются по базовым формулам и рекомендациям нормативов по режимам резания.
Рис. 4 Работа зенкера по металлу
Ознакомиться с инструментами, для которых рассчитываются технологические режимы резания, поможет раздел «Зенкеры и зенковки». В нем представлен широкий спектр продуктов, присутствуют решения для различных вариантов обработки.
Работа с развертками
Развертки используются для предварительной и окончательной обработки заготовок. Они позволяют создать отверстия требуемого качества и формы. Инструмент востребован на производстве и в быту.
Расчет параметров режимов резания осуществляется с учетом следующих показателей разверток:
- угол наклона канавок;
- задний угол;
- передний угол;
- угол конуса заборной части.
При работе с пластинами из твердого сплава подача определяется по таблице.
Таблица 5. Подача разверток с пластинками из твердого сплава
Определить стойкость изделий также помогают нормативные значения.
Таблица 6. Стойкость разверток в минутах
Полный перечень разверток, используемых при организации технологических операций, представлен в соответствующем разделе. Специалистам доступен инструмент для ручного и механизированного труда. В ассортименте решения, работающие с чугуном, цветными металлами, конструкционными и легированными сталями.
Рис. 5 Работа развертки
Фрезерование
При расчете общемашинных режимов резания посредством фрез учитываются геометрические параметры режущей части инструмента:
- задний и передний угол;
- угол наклона винтовой канавки зубцов;
- главный и вспомогательный угол в плане угловой кромки;
- дополнительный угол в плане, в случае двойной заточки кромок;
- угол наклона режущей кромки.
Получить дополнительные сведения о характеристиках фрезерного инструмента можно посредством справочников и производственных документов. Последние предоставляется заводом-изготовителем по запросу покупателя.
Рассчитать подачу фрез при работе со сталями, стальным литьем и чугунами поможет следующая таблица.
Таблица 7. Расчет подачи фрез при работе с различными материалами
Показатели стойкости фрез также представлены справочными значениями.
Таблица 8. Стойкость фрез в минутах
В случае скоростного фрезерования на механизированном оборудовании применяются дополнительные значения и коэффициенты.
Таблица 9. Средние значения скорости резания при работе с чугунами, углеродистыми и легированными сталями
При определении параметров режима резания учитывается расчетная мощность, сила и момент резания, а также основное технологическое время.
Получить дополнительную информацию касательно работы с фрезерным инструментом поможет статья «Фрезерование концевыми фрезами». Для знакомства с перечнем фрез по металлу перейдите в соответствующий раздел каталога.
Рис. 6 Работа фрезы по металлу
Шлифование
Посредством шлифовального инструмента осуществляется первичная, вторичная и финишная обработка заготовок. При наличии соответствующей оснастки мастеру доступен широкий спектр работ:
- шлифование центральной части заготовки;
- внутреннее и наружное шлифование бесцентрового типа;
- внутреннее шлифование с использованием патрона;
- плоское шлифование периферией или торцом инструмента;
- фасонное шлифование.
Возможна заточка режущего инструмента различной конфигурации.
При проведении расчетов учитывается скорость вращения шлифовальных кругов. Некорректное применение данного параметра приведет к снятию избыточного объема материала, преждевременному износу инструмента и увеличению продолжительности операций.
Таблица 10. Скорость вращение шлифовального инструмента в процессе обработки заготовки
Продолжительность эксплуатации кругов при выполнении различных процедур также имеет нормированное значение.
Таблица 11. Стойкость шлифовальных кругов
Режимы резания зависят от параметров шлифования и специфики применяемого оборудования.
Таблица 12. Подбор режимов резания при работе с абразивным инструментом
В случае работы с резьбовыми соединениями применяются особые режимы резания.
Таблица 13. Режимы резания при работах по шлифованию резьбы
При шлифовании выделяется большое количество тепла. Для его рассеивания применяются охлаждающие жидкости. Допускается использование водных растворов 5 типов:
- 1% кальцинированной соды и 0,15 нитрита натрия;
- 2-3% кальцинированной соды;
- 2% мыльного порошка;
- 5-7% раствор эмульсола;
- 3,5% раствор эмульсола с добавлением олеиновой кислоты.
Качественное охлаждение исключит температурную деформацию заготовки, предотвратит преждевременный износ инструмента и нарушение технологии обработки.
Рис. 7 Работа абразивного круга
Для получения подробной информации касательно абразивного инструмента посетите соответствующий раздел каталога. В нем представлены круги, шлифовальные шкурки на тканевой и бумажной основе, сетки и приспособления для шлифования.
Заключение
Расчет режимов резания – обязательное условие для большинства технологических операций. Однако, для корректного выполнения работ недостаточно вычислений. Важно использовать качественный инструмент, способный выполнить необходимые действия. Последний можно приобрести у нас. Магазин «РИНКОМ» реализует широкий спектр продукции для работы с деревом и металлом. Мы гарантируем высокое качество товара, приемлемые цены и строгое соблюдение сроков поставки.