Как составить ряд распределения вероятностей

Составление ряда распределений и вычисление числовых характеристик для подсчета вероятностей числа успехов. Независимые повторные испытания. Схема Бернулли.

Задача
9
. Вероятность
того, что образец бетона выдержит
нормативную нагрузку, равна 0.9. Случайная
величина X
– число образцов, которые выдержат
испытания. Составить ряд распределения,
найти функцию распределения ДСВ X,
построить её график и найти все числовые
характеристики, если в нашем распоряжении
5 образцов.

Решение:

№ п/п

Алгоритмы

Конкретное соответствие задания
заданному алгоритму

1.

Ввести обозначения
для заданных величин

n
– число испытаний

m
– число образцов, выдержавших испытания

p
– вероятность выдержать испытание

p=0.9,
q=1-p=0.1,
n=7

Найти


;

;
;
;
;

2.

Сосчитать
требуемую вероятность, выбрав
соответствующую содержанию задачи
формулу Бернулли.

Так как

,
нужно воспользоваться формулой
Бернулли – пункт а)


;

3

Найти числовые
характеристики ДСВ по формулам
М
X=np

DX=npq

МX=np=5·0.9=0.45

DX=npq=5·0.9·0.1=0.045


.

4

Составить
ряд распределений случайной величины
X
– числа возможных образцов

x

0

1

2

3

4

5

P

0.00001

0.00045

0.0081

0.0729

0.328

0.59

5

Составить
функцию распределения случайной
величины X
– числа возможных образцов

Алгоритм 10

Составление ряда распределений и вычисление числовых характеристик для вычисления вероятностей числа успехов в k-ом испытании

(геометрические
распределения)

Задача
№ 10
. Вероятность
того, что образец бетона выдержит
нормативную нагрузку, равна 0.9. Случайная
величина X
– число возможных испытаний до появления
первого бракованного образца. Составить
ряд распределения, найти функцию
распределения ДСВ X,
построить её график и найти все числовые
характеристики (ограничиться тремя-пятью
испытаниями).

№ п/п

Алгоритмы

Конкретное соответствие задания
заданному алгоритму

1.

Ввести обозначения
для заданных величин

n
– число испытаний

p
– вероятность выдержать испытание

p=0.9,
q=1-p=0.1,

Найти

,

,
,
,
,

2.

Сосчитать
требуемую вероятность, выбрав
соответствующую содержанию задачи
формулу

Т.к. случайная
величина X-число
возможных испытаний до появления
первого бракованного образца, то
воспользуемся геометрической
вероятностью:

и т.д.

3

Найти числовые
характеристики ДСВ по формулам
М
(х)=

D(x)=

М(х)=
,

D(x)=
,


.

4

Составить
ряд распределений случайной величины
X
– числа возможных образцов

x

1

2

3

4

5

P

0.1

0.09

0.0081

0.0729

0.0656

5

Составить
функцию распределения случайной
величины X
– числа возможных образцов и построить
график.

Алгоритм 11

Соседние файлы в предмете [НЕСОРТИРОВАННОЕ]

  • #
  • #
  • #
  • #
  • #
  • #
  • #
  • #
  • #
  • #
  • #

Содержание

  1. I. Определение случайной величины (СВ), дискретной случайной величины (ДСВ). Закон и многоугольник распределения ДСВ
  2. Функция распределения
  3. II. Операции над дискретными случайными величинами

I. Определение случайной величины (СВ), дискретной случайной величины (ДСВ). Закон и многоугольник распределения ДСВ

При бросании игральной кости могут появиться числа 1, 2, 3, 4, 5 и 6. Заранее определить возможные исходы невозможно, так как они зависят от многих случайных причин, которые не могут быть полностью учтены. В данном примере выпавшее число очков есть величина случайная, а числа 1, 2, 3, 4, 5 и 6 есть возможные значения этой величины.

Случайная величина – величина, которая в результате опыта со случайным исходом принимает то или иное числовое значение, причем заранее неизвестно, какое именно. Случайные величины (кратко: СВ) обозначают большими латинскими буквами X,  Y, ..., а принимаемые ими значения — малыми буквами x_1, x_2, cdots , y_1, y_2, cdots

Из приведенного выше  примера, видно, что случайная величина Х может принять одно из следующих возможных значений: 1, 2, 3, 4, 5, 6. Эти значения отделены одно от другого промежутками, в которых нет возможных значений Х. Таким образом, в этом примере СВ принимает отдельные, изолированные возможные значения.

Дискретной (прерывной) называют случайную величину, которая принимает отдельные, изолированные возможные значения с определенными вероятностями. Число возможных значений дискретной случайной величины может быть конечным или бесконечным.

Законом распределения дискретной случайной величины называют соответствие между возможными значениями и их вероятностями; его можно задать таблично, аналитически (в виде формулы) и графически.

Закон распределения ДСВ Х удобно задавать с помощью следующей таблицы

x_i x_1 x_2 cdots x_n cdots
p_i p_n p_n cdots p_n cdots

называемой рядом распределения. При этом возможные значения x_1,quad x_2, cdots СВ Х в верхней строке этой таблицы располагаются в определенном порядке, а в нижней — соответствующие вероятности p_i=P{X=x_i} quad (sum_i p_i=1).

Графически ряд распределения изображают в виде многоугольника (или полигона) распределения.

1.1. В ящике 2 нестандартные и 4 стандартные детали. Из него последовательно вынимают детали до первого появления стандартной детали. Построить ряд и многоугольник распределения ДСВ X — числа извлеченных деталей.

Решение.

Рассмотрим все возможные значения, которые может принимать случайна величина (СЛ) X:

x_1=1 – первой вынули  стандартную деталь;

x_2=2 — первая вынутая деталь нестандартная, вторая стандартная;

x_3=3 — первая деталь нестандартная, вторая деталь нестандартная, третья деталь стандартная.

Соответствующие им вероятности p_1,  p_2, p_3 найдем воспользовавшись правилом умножения вероятностей (заметьте, что события зависимы):

p_1=P{X=x_1=1}=frac{4}{6}=frac{2}{3}

p_2=P{X=x_2=2}=frac{2}{6}cdot frac{4}{5}=frac{4}{15}

p_3=P{X=x_3=3}=frac{2}{6}cdot frac{1}{5}cdot frac{4}{4}=frac{1}{15}

Тогда закон распределения дискретной случайной величины Х примет вид:

Построим многоугольник распределения, отложив на оси абсцисс (ОХ) значения ДСВ Х, а на оси ординат (ОY) соответствующие им вероятности:

Дискретные случайные величины

1.2. В партии, содержащей 20 изделий, имеется четыре изделия с дефектами. Наудачу отобрали три изделия для проверки их качества. Построить ряд распределения числа дефектных изделий, содержащихся в указанной выборке.

Решение.

X — число дефектных изделий, содержащихся в выборке.

Рассмотрим все возможные значения, которые может принимать случайна величина (СЛ) X:

x_1=0 — ни одно изделие выборки не является дефектным, т.е. все изделия удовлетворяют стандарту;

x_2=1 — выборка содержит одно изделие с дефектом и два стандартных изделия;

x_3=2 — выборка содержит два изделия с дефектом и одно стандартное изделие;

x_4=3 — выборка содержит три изделия с дефектом;

Найдем соответствующие им вероятности p_1,  p_2, p_3, p_4:

    [p_1=P(X=0)=frac{C_{16}^3cdot C_{4}^0}{C_{20}^3}]

    [p_2=P(X=1)=frac{C_{16}^2cdot C_{4}^1}{C_{20}^3}]

    [p_3=P(X=2)=frac{C_{16}^1cdot C_{4}^2}{C_{20}^3}]

    [p_4=P(X=3)=frac{C_{16}^0cdot C_{4}^3}{C_{20}^3}]

Тогда закон распределения дискретной случайной величины Х примет вид:

x_i 0 1 2 3
p_i frac{28}{57} frac{8}{19} frac{8}{95} frac{1}{285}

1.3. Три стрелка, ведущие огонь по цели, сделали по одному выстрелу. Вероятности их попадания в цель соответственно равны 0,5; 0,6; 0,8. Построить ряд и многоугольник  распределения СВ X — числа попаданий в цель.

Решение.

Пусть вероятности попадания для 1-го, 2-го и 3-го стрелков соответственно равны h_1=0,5;quad h_2=0,6;quad h_3=0,8, тогда вероятности их промахов равны g_1=0,5;quad g_2=0,4;quad g_3=0,2. Из предыдущих занятий должны помнить как связаны противоположные события: h_1=1-g_1.

Рассмотрим все значения, которые может принять ДСВ Х – числа попаданий в цель.

x_0=0 – ни один из стрелков не попал в цель;

x_1=1 – один из стрелков попал в цель;

x_2=2 – двое стрелков поразили цель;

x_3=3 – три стрелка поразили цель.

Найдем соответствующие им вероятности p_0, p_1, p_2, p_3:

p_0=P{X=0}=g_1 cdot g_2 cdot g_3 =0,5cdot 0,4 cdot 0,2=0,04;

p_1=P{X=1}=h_1 cdot g_2 cdot g_3+g_1 cdot h_2 cdot g_3 +g_1 cdot g_2 cdot h_3=\ =0,5cdot 0,4 cdot 0,2+0,5cdot 0,6 cdot 0,2+0,5cdot 0,4 cdot 0,8=0,04+0,06+0,16=0,26.

Запись вида h_1 cdot g_2 cdot g_3 означает, что 1-й стрелок попал, два других промахнулись, аналогичные рассуждения применимы к другим слагаемым.

p_2=P{X=2}=h_1 cdot h_2 cdot g_3+g_1 cdot h_2 cdot h_3 +h_1 cdot g_2 cdot h_3=\ =0,5cdot 0,6 cdot 0,2+0,5cdot 0,6 cdot 0,8+0,5cdot 0,4 cdot 0,8=0,06+0,24+0,16=0,46 — (двое из трех поразили цель);

p_3=P{X=3}=h_1 cdot h_2 cdot h_3=0,5cdot 0,6 cdot 0,8=0,24 — (три стрелка поразили цель).

Контроль: sum_{i=0}^3=0,04+0,26+0,46+0,24=1

x_i 0 1 2 3
p_i 0,04 0,26 0,46 0,24

Многоугольник распределения:

Дискретные случайные величины

Функция распределения F(x)

Функцией распределения называют функцию F(x) , определяющую вероятность того, что случайная величина X в результате испытания примет значение, меньшее некоторого фиксированного значения x

    [F(x)=P(X<x)]

Свойства функции распределения:

  1.  0 le F(x) le 1;
  2.  F(x) – неубывающая функция, т.е. F(x_2) ge F(x_1),  если x_2>x_1;
  3.  F(-infty)=0, quad F(+infty)=1;
  4.  F(x) непрерывна слева в любой точке x, т.е. F(x-0)=F(x), quad x in R;
  5.  P{ale X <b}=F(b)-F(a).

Функция распределения ДСВ имеет вид

    [F(x)=sum_{x_i<x} p_i]

где суммирование ведется по всем индексам i, для которых x_i<x.

1.4. Задан закон распределения ДСВ Х:

x_i -2 -1 0 2 3
p_i 0,1 0,2 0,3 0,3 0,1

Найти функцию распределения и построить ее график.

Решение.

По определению функции распределения находим:

если xle -2, то F(x)=P{X<x}=0, так как значения меньше -2 ДСВ Х не принимает;

если -2<xle -1, то F(x)=P{X<x}=P{X=-2}=0,1

если -1<xle 0, то F(x)=P{X<x}=P{X=-2}+P{X=-1}=0,1+0,2=0,3, так как X может принять значения -2 или -1

если 0<xle 2, то F(x)=P{X<x}=P{X=-2}+P{X=-1}+P{X=0}=0,1+0,2+0,3=0,6

если 2<xle 3, то F(x)=P{X<x}=P{X=-2}+P{X=-1}+P{X=0}+P{X=2}=0,1+0,2+0,3+0,3=0,9

если xge 3, то F(x)=P{X<x}=P{X=-2}+P{X=-1}+P{X=0}+\+P{X=2}+P{X=3}=0,1+0,2+0,3+0,3+0,1=1

Таким образом, функция распределения F(x) имеет вид:

    begin{displaymath} F(x) = left{ begin{array}{ll} 0, qquad  xle -2 , \ 0,1,  qquad -2< x le -1,\ 0,3, qquad  -1< x le 0,\ 0,6, qquad 0< x le 2,\ 0,9, qquad  2< x le 3, \ 1, qquad  x>3. end{array} right. end{displaymath}

Дискретные случайные величины

II. Операции над дискретными случайными величинами

Суммой (соответственно, разностью или произведением) ДСВ Х, принимающей значения x_i с вероятностями p_i=P{X=x_i}, quad i=1,2, ... , n и ДСВ Y, принимающей значения y_j с вероятностями q_j=P{Y=y_j}, quad j=1,2, ... , m называется ДСВ, принимающая все значения вида x_i+y_j (соответственно, x_i-y_j или x_icdot y_j) с вероятностями p_{ij}=P{{X=x_i}cdot {Y=y_j}}=P{X=x_i,quad Y=y_j}.

Обозначение: X+Y (соответственно, X-Y или Xcdot Y).

Произведением ДСВ Х на число c называется ДСВ  cX, принимающая значения cx_i с вероятностями p_i=P{X=x_i}.

Квадратом (соответственно, m-ой степенью) ДСВ Х называется ДСВ, принимающая значения x_i^2 (соответственно, x_i^m) с вероятностями p_i=P{X=x_i}. Обозначение: X^2 (соответственно, X^m).

Дискретные СВ Х и Y называются независимыми, если независимы события {X=x_i} и {Y=y_j} при любых i=1, 2, 3, ... , n, quad j=1, 2, ..., m.

2.1. Задано распределение ДСВ Х

x_i -2 -1 1 2 3
p_i 0,2 0,25 0,3 0,15 0,1

Построить ряд распределения случайных величин:

а) Y=2X

б) Z=X^2

Решение.

Возможные значения СВ Y таковы:

    [y_1=2 cdot (-2)=-4]

    [y_2=2 cdot (-1)=-2]

    [y_3=2]

    [y_4=4]

    [y_5=6]

Вероятности значений СВ Y равны вероятностям соответствующих значений СВ Х (например, P{Y=-4}=P{X=-2}=0,20 и т. д.), т.е. каждое значение СВ Х мы умножаем на 2, а вероятности оставляем прежними. Таким образом

y_i -4 -2 2 4 6
p_i 0,2 0,25 0,3 0,15 0,1

б) Значения СВ Z таковы (возведем каждое значение СВ Х в квадрат): 

    [z_1={(-2)}^2=4;  z_2={(-1)}^2=1,]

    [z_3=1^2=1;  z_4=2^2=4;  z_5=3^2=9]

Составим вспомогательную таблицу для распределения СВ X^2

x_i^2 4 1 1 4 9
p_i 0,2 0,25 0,3 0,15 0,1

При этом мы должны помнить, что при одинаковых значениях СВ Z, соответствующие им вероятности нужно сложить, т.е.

    [P{Z=1}=P{X^2=1}=P{X=-1}+P{X=1}=0,25+0,3=0,55;]

    [P{Z=4}=P{X^2=4}=P{X=-2}+P{X=2}=0,20+0,15=0,35.]

Поэтому ряд распределения СВ Z имеет вид

2.2. Дискретная случайная величина Х имеет ряд распределения:

x_i 0 frac{pi}{4} frac{pi}{2} frac{3pi}{4} pi frac{5pi}{4} frac{3pi}{2}
p_i frac{1}{16} frac{1}{8} frac{3}{16} frac{1}{4} frac{3}{16} frac{1}{8} frac{1}{16}

Построить:

а) ряд распределения СВ Y=sin(X-frac{pi}{4});

б) График функции распределения СВ Y

Решение.

а) Вычисляем все значения y_i СВ Y,  подставляя соответствующие значения x_i в формулу Y=sin(X-frac{pi}{4}):

y_1=sinleft(0-frac{pi}{4}right)=sin(-frac{pi}{4})=-frac{sqrt{2}}{2}

y_2=sin(frac{pi}{4}-frac{pi}{4})=sin(0)=0

y_3=sin(frac{pi}{2}-frac{pi}{4})=sin(frac{pi}{4})=frac{sqrt{2}}{2}

y_4=sin(frac{3pi}{4}-frac{pi}{4})=sin(frac{pi}{2})=1

y_5=sin(pi-frac{pi}{4})=sin(frac{pi}{4})=frac{sqrt{2}}{2}

y_6=sin(frac{5pi}{4}-frac{pi}{4})=sin(pi)=0

y_7=sin(frac{3pi}{2}-frac{pi}{4})=-cos(frac{pi}{4})=-frac{sqrt{2}}{2}

Составим вспомогательную таблицу ряда распределения:

y_i -frac{sqrt{2}}{2} 0 frac{sqrt{2}}{2} 1 frac{sqrt{2}}{2} 0 -frac{sqrt{2}}{2}
p_i frac{1}{16} frac{1}{8} frac{3}{16} frac{1}{4} frac{3}{16} frac{1}{8} frac{1}{16}

Составим ряд распределения.

При этом

P{Y=-frac{sqrt{2}}{2}}=P{X=0}+P{X=frac{3pi}{2}}=frac{1}{16}+frac{1}{16}=frac{1}{8}

P{Y=0}=P{X=frac{pi}{4}}+P{X=frac{5pi}{4}}=frac{1}{8}+frac{1}{8}=frac{1}{4}

P{Y=frac{sqrt{2}}{2}}=P{X=frac{pi}{2}}+P{X=pi}=frac{3}{16}+frac{3}{16}=frac{3}{8}

Т. е. записываем значения ДСВ Y в таблицу в порядке возрастания. При одинаковых значениях ДСВ соответствующие вероятности складываем.

Итак, получаем

y_i -frac{sqrt{2}}{2} 0 frac{sqrt{2}}{2} 1
p_i frac{1}{8} frac{1}{4} frac{3}{8} frac{1}{4}

б) Самостоятельно.

2.3. Заданы распределения двух независимых случайных величин X и Y:

Найти:

а) функцию распределения СВ Х;

б) ряд распределения случайных величин Z=X+Y,  quad W=X-Y, quad V=X cdot Y;

в) P(|X-Y|le 2);

г) построить многоугольники распределения СВ Z ,W и V.

Решение.

а) Найдите функцию распределения СВ Х самостоятельно.

б) Найдем всевозможные значения z_{ij}=x_{i}+y_{j}, т. е. просуммируем все значения, которые принимает ДСВ Х, со всеми значениями ДСВ Y.

Предлагаю сделать это так, первое значение ДСВ Х сложить  последовательно с каждым значением ДСВ Y, потом то же самое проделать со вторым значением ДСВ Х и с третьим. Все операции показаны в таблице ниже.

0+2=2 1+2=3 2+2=4
0+3=3 1+3=4 2+3=5
0+4=4 1+4=5 2+4=6

Т. е. случайная величина Z принимает значения:

    [z_1=2, quad z_2=3, quad z_3=4, quad z_4=5, quad z_5=6]

Найдем вероятности этих значений:

    [p_1=P{Z=2}=P{X=0,Y=2}]

Запись вида P{X=0,Y=2} означает вероятность наступления 2-х независимых событий {X=0} и {Y=2}, т. е.

p_1=P{X=0,Y=2}=P{{X=0}cdot {Y=2}}=P{X=0}cdot P{Y=2}=0,2cdot 0,3=0,06

Для нахождения вероятностей p_2, quad p_3, quad p_4 воспользуемся правилом сложения несовместных событий:

p_2=P{Z=3}=P{X=0,Y=3}+P{X=1,Y=2}=0,2cdot 0,3+0,4cdot 0,3=0,06+0,12=0,18;

p_3=P{Z=4}=P{X=0,Y=4}+P{X=1,Y=3}+P{X=2,Y=2}=0,2cdot 0,4+ \ +0,4cdot 0,3+0,4cdot 0,3=0,08+0,12+0,12=0,32;

p_4=P{Z=5}=P{X=1,Y=4}+P{X=2,Y=3}=0,4cdot 0,4+0,4cdot 0,3=0,16+0,12=0,28;

p_5=P{Z=6}=P{X=2,Y=4}=0,4cdot 0,4=0,16

Запишем ряд распределения ДСВ Z

z_i 2 3 4 5 6
p_i 0,06 0,18 0,32 0,28 0,16

Сделаем проверку:

sum_{i=1}^{5} p_{i}=0,06+0,18+0,32+0,28+0,16=1.

Многоугольник распределения СВ Z представлен ниже:

Дискретные случайные величины

Далее рассмотрим ДСВ W=X-Y

Найдем всевозможные значения w_{ij}=x_{i}-y_{j}.

Все вычисления сведены в  таблицу ниже.

0-2=-2 1-2=-1 2-2=0
0-3=-3 1-3=-2 2-3=-1
0-4=-4 1-4=-3 2-4=-2

Таким образом случайная величина W принимает значения:

    [w_1=-4, quad w_2=-3, quad w_3=-2, quad w_4=-1, quad w_5=0]

Замечание. Как вы видите, я выписал для удобства все значения СДВ W в порядке возрастания, так как при составления ряда распределения их (значения случайной величины) нужно располагать по возрастанию.

Найдем вероятности этих значений:

p_1=P{W=-4}=P{X=0,Y=4}=0,2cdot 0,4=0,08

p_2=P{W=-3}=P{X=0,Y=3}+P{X=1,Y=4}=0,2cdot 0,3+0,4cdot 0,4=0,06+0,16=0,22;

p_3=P{W=-2}=P{X=0,Y=2}+P{X=1,Y=3}+P{X=2,Y=4}=0,2cdot 0,3+ \ +0,4cdot 0,3+0,4cdot 0,4=0,06+0,12+0,16=0,34;

p_4=P{W=-1}=P{X=1,Y=2}+P{X=2,Y=3}=0,4cdot 0,3+0,4cdot 0,3=0,12+0,12=0,24;

p_5=P{W=0}=P{X=2,Y=4}=0,4cdot 0,3=0,12

Запишем ряд распределения ДСВ W

w_i -4 -3 -2 -1 0
p_i 0,08 0,22 0,34 0,24 0,12

Сделаем проверку: sum_{i=1}^{5} p_{i}=0,08+0,22+0,34+0,24+0,12=1

Многоугольник распределения СВ W представлен ниже:

Дискретные случайные величины

По аналогии с предыдущими пунктами найдем все значения ДСВ V :  v_{ij}=x_{i}cdot y_{j}.  Все вычисления сведены в  таблицу ниже.

0·2=0 1·2=2 2·2=4
0·3=0 1·3=3 2·3=6
0·4=0 1·4=4 2·4=8

Таким образом случайная величина V принимает значения: 

    [v_1=0, quad v_2=2, quad v_3=3, quad v_4=4, quad v_5=6 quad v_6=8]

Найдем вероятности этих значений:

p_1=P{V=0}=P{X=0,Y=2}+P{X=0,Y=3}+P{X=0,Y=4}=0,2cdot 0,3+0,2cdot 0,3+0,2cdot 0,4=0,06+0,06+0,08=0,2;

p_2=P{V=2}=P{X=1,Y=2}=0,4cdot 0,3=0,12

p_3=P{V=3}=P{X=1,Y=3}=0,4cdot 0,3=0,12

p_4=P{V=4}=P{X=1,Y=4}+P{X=2,Y=2}=0,4cdot 0,4+0,4cdot 0,3=0,16+0,12=0,28;

p_5=P{V=6}=P{X=2,Y=3}=0,4cdot 0,3=0,12

p_6=P{V=8}=P{X=2,Y=4}=0,4cdot 0,4=0,16

Запишем ряд распределения ДСВ V

v_i 0 2 3 4 6 8
p_i 0,2 0,12 0,12 0,28 0,12 0,16

Сделаем проверку: sum_{i=1}^{5} p_{i}=0,2+0,12+0,12+0,28+0,12+0,16=1

Многоугольник распределения СВ V представлен ниже:

Дискретные случайные величины

в) Найдем  P{|X-Y| le 2}. Пусть M=|X-Y|.

Построим ряд распределения ДСВ М, используя абсолютные величины значений ДСВ W=X-Y, иными словами возьмем по модулю все значения ДСВ W, например, m_1=|w_1|=|-4|=4.

Получим ряд

m_i 0 1 2 3 4
p_i 0,12 0,24 0,34 0,22 0,08

Найдем вероятности всех значений ДСВ М, которые меньше, либо равны 2

P{|X-Y| le 2}=P{M le 2}=P{M =0}+P{M=1}+P{M=2}=0,12+0,24+0,34=0,7.

Список использованной литературы:

  1. Лунгу, К. Н. Сборник задач по высшей математике, 2 курс [Текст]/ К.Н. Лунгу, В.П. Норин, Д.Т. Письменный, Ю.А. Шевченко, Е.Д. Куланин; под редакцией С.Н. Федина.7-е изд. — М.: Айрис-пресс, 2009. — 592с.
  2. Гмурман, В.Е. Теория вероятностей и математическая статистика [Текст]/ В.Е. Гмурман, 12-е изд., перераб. — М.: Высшее образование, Юрайт-Издат, 2009. — 479с.

Функция распределения случайной величины

  • Краткая теория
  • Примеры решения задач
  • Задачи контрольных и самостоятельных работ

Краткая теория


Пусть

 – действительное число. Вероятность события,
состоящего в том, что

 примет значение, меньшее

, то есть вероятность
события

 обозначим через

. Разумеется, если

 изменяется, то, вообще говоря, изменяется и

, то есть

 – функция от

.

Функцией распределения называют функцию

, определяющую вероятность
того, что случайная величина

 в результате испытания примет значение,
меньшее

, то есть:

Геометрически
это равенство можно истолковать так:

 есть вероятность того, что случайная величина примет
значение, которое изображается на числовой оси точкой, лежащей левее точки

.

Иногда
вместо термина «функция распределения» используют термин «интегральная
функция».

Функцию
распределения дискретной случайной величины

 можно представить следующим соотношением:

Это
соотношение можно переписать в развернутом виде:

Функция
распределения дискретной случайной величины есть разрывная ступенчатая функция,
скачки которой происходят в точках, соответствующих возможным значениям
случайной величины и равны вероятностям этих значений. Сумма всех скачков
функции

 равна 1.

Свойства функции распределения

Свойство 1.

Значения
функции распределения принадлежат отрезку

:


Свойство 2.

 – неубывающая функция, то есть:

,
если


Свойство 3.

Если возможные значения случайной величины
принадлежат интервалу

,
то:

1)

 при

;

2)

 при


Свойство 4.

Справедливо равенство:


Свойство 5.

Вероятность того, что непрерывная случайная
величина

 примет одно определенное значение, равна нулю.

Таким образом, не представляет интереса говорить о
вероятности того, что непрерывная случайная величина примет одно определенное
значение, но имеет смысл рассматривать вероятность попадания ее в интервал,
пусть даже сколь угодно малый.

Заметим, что было бы неправильным думать, что
равенство нулю вероятности

 означает, что событие

 невозможно (если, конечно, не ограничиваться
классическим определением вероятности). Действительно, в результате испытания
случайная величина обязательно примет одно из возможных значений; в частности,
это значение может оказаться равным

.


Свойство 6.

Если возможные значения непрерывной случайной величины
расположены на всей оси

,
то справедливы следующие предельные соотношения:


Свойство 7.

Функция распределения непрерывная слева, то есть:

Смежные темы решебника:

  • Дискретная случайная величина
  • Непрерывная случайная величина
  • Математическое ожидание
  • Дисперсия и среднее квадратическое отклонение

Примеры решения задач


Пример 1

Дан ряд
распределения случайной величины

:

1 2 6 8

0,2 0,3 0,1 0,4

Найти и изобразить ее функцию распределения.

Решение

На сайте можно заказать решение контрольной или самостоятельной работы, домашнего задания, отдельных задач. Для этого вам нужно только связаться со мной:

ВКонтакте
WhatsApp
Telegram

Мгновенная связь в любое время и на любом этапе заказа. Общение без посредников. Удобная и быстрая оплата переводом на карту СберБанка. Опыт работы более 25 лет.

Подробное решение в электронном виде (docx, pdf) получите точно в срок или раньше.

Будем задавать различные значения

 и находить для них

1. Если

,
то, очевидно,

в том числе и при

2. Пусть

 (например

)

Очевидно, что и

3. Пусть

 (например

);

Очевидно, что и

4. Пусть

Очевидно, что и

5. Пусть

Итак:

График функции распределения


Пример 2

Случайная
величина

 задана функцией распределения:

Найти
вероятность того, что в результате испытания

 примет значение:

а) меньше
0,2;

б) меньше
трех;

в) не
меньше трех;

г) не
меньше пяти.

Решение

а) Так
как при

 функция

, то

то есть
при

б)

в)
События

 и

 противоположны, поэтому

Отсюда:

г) сумма
вероятностей противоположных событий равна единице, поэтому

Отсюда, в
силу того что при

 функция

, получим:


Пример 3

Задана
непрерывная случайная величина X своей плотностью
распределения вероятностей f(x). Требуется:

1)
определить коэффициент A;

2) найти
функцию распределения F(x);

3)
схематично построить графики функций f(x) и F(x);

4)
вычислить математическое ожидание и дисперсию X;

5)
определить вероятность того, что X примет значение из
интервала (a,b).

Решение

На сайте можно заказать решение контрольной или самостоятельной работы, домашнего задания, отдельных задач. Для этого вам нужно только связаться со мной:

ВКонтакте
WhatsApp
Telegram

Мгновенная связь в любое время и на любом этапе заказа. Общение без посредников. Удобная и быстрая оплата переводом на карту СберБанка. Опыт работы более 25 лет.

Подробное решение в электронном виде (docx, pdf) получите точно в срок или раньше.

1)
Постоянный параметр

 найдем из
свойства плотности вероятности:

В
нашем случае эта формула имеет вид:

Получаем:

2)
Функцию распределения

 найдем из
формулы:

Учитывая
свойства

,  сразу можем отметить,
что:

и

Остается
найти выражение для

, когда х принадлежит интервалу

:

Получаем:  

3) Построим графики функций:

График плотности распределения

График функции распределения

4) Вычислим
математическое ожидание:

В нашем случае:

Вычислим дисперсию:

Искомая дисперсия:

5) Вероятность того, что

 примет значение из интервала

:

Задачи контрольных и самостоятельных работ


Задача 1

Закон
распределения случайной величины X задан таблицей.

Найти ее
математическое ожидание, дисперсию и значение функции распределения в заданной
точке.

F(1)=

M[X]=

D[X]=


Задача 2

Случайная
величины X задана функцией распределения

Найти
плотность распределения вероятностей, математическое ожидание и дисперсию
случайной величины. Построить графики дифференциальной и интегральной функций.
Найти вероятность попадания случайной величины X в интервалы (1,2; 1,8),
(1,8; 2,3)


Задача 3

Дискретная
случайная величина X задана рядом распределения. Найти:

1)
функцию распределения F(x) и ее график;

2)
математическое ожидание M(X);

3)
дисперсию D(X).

-5 5 25 45 65

0.2 0.15 0.3 0.25 0.1

На сайте можно заказать решение контрольной или самостоятельной работы, домашнего задания, отдельных задач. Для этого вам нужно только связаться со мной:

ВКонтакте
WhatsApp
Telegram

Мгновенная связь в любое время и на любом этапе заказа. Общение без посредников. Удобная и быстрая оплата переводом на карту СберБанка. Опыт работы более 25 лет.

Подробное решение в электронном виде (docx, pdf) получите точно в срок или раньше.

Задача 4

В задаче
дискретная случайная величина задана рядом распределения.

Найти

; M(X), D(X), P(0≤X≤2); F(x).
Начертить график F(x)


Задача 5

В задаче
непрерывная случайная величина X задана функцией
распределения F(x).

Найти  a; f(x); M(X); D(X); P(X<0.2)

Начертить
графики функций f(x);F(x).


Задача 6

Функция
распределения непрерывной случайной величины X (времени безотказной работы
некоторого устройства) равна

 (

). Найти вероятность безотказной
работы устройства за время x больше либо равно T.


Задача 7

Функция
распределения непрерывной случайной величины задана выражением:

Найдите:

1)
параметр a;

2)
плотность вероятностей;

4) P(0<x<1)

Постройте
графики интегральной и дифференциальной функции распределения.


Задача 8

Дана
интегральная функция распределения. Найти: дифференциальную функцию f(x),M(X),σ(X),D(X).


Задача 9

Дана
функция распределения F(х) случайной величины Х.

Найти плотность
распределения вероятностей f(x), математическое ожидание M(X),
дисперсию D(X) и вероятность попадания X на
отрезок [a,b]. Построить графики
функций F(x) и f(x).


Задача 10

НСВ X имеет
плотность вероятности (закон Коши)

Найти:

а)
постоянную C=const;

б)
функцию распределения F(x);

в)
вероятность попадания в интервал -1<x<1

г)
построить графики f(x), F(x).

  • Краткая теория
  • Примеры решения задач
  • Задачи контрольных и самостоятельных работ

Интервальный вариационный ряд и его характеристики

  1. Построение интервального вариационного ряда по данным эксперимента
  2. Гистограмма и полигон относительных частот, кумулята и эмпирическая функция распределения
  3. Выборочная средняя, мода и медиана. Симметрия ряда
  4. Выборочная дисперсия и СКО
  5. Исправленная выборочная дисперсия, стандартное отклонение выборки и коэффициент вариации
  6. Алгоритм исследования интервального вариационного ряда
  7. Примеры

п.1. Построение интервального вариационного ряда по данным эксперимента

Интервальный вариационный ряд – это ряд распределения, в котором однородные группы составлены по признаку, меняющемуся непрерывно или принимающему слишком много значений.

Общий вид интервального вариационного ряда

Интервалы, (left.left[a_{i-1},a_iright.right)) (left.left[a_{0},a_1right.right)) (left.left[a_{1},a_2right.right)) (left.left[a_{k-1},a_kright.right))
Частоты, (f_i) (f_1) (f_2) (f_k)

Здесь k – число интервалов, на которые разбивается ряд.

Размах вариации – это длина интервала, в пределах которой изменяется исследуемый признак: $$ F=x_{max}-x_{min} $$

Правило Стерджеса
Эмпирическое правило определения оптимального количества интервалов k, на которые следует разбить ряд из N чисел: $$ k=1+lfloorlog_2 Nrfloor $$ или, через десятичный логарифм: $$ k=1+lfloor 3,322cdotlg Nrfloor $$

Скобка (lfloor rfloor) означает целую часть (округление вниз до целого числа).

Шаг интервального ряда – это отношение размаха вариации к количеству интервалов, округленное вверх до определенной точности: $$ h=leftlceilfrac Rkrightrceil $$

Скобка (lceil rceil) означает округление вверх, в данном случае не обязательно до целого числа.

Алгоритм построения интервального ряда
На входе: все значения признака (left{x_jright}, j=overline{1,N})
Шаг 1. Найти размах вариации (R=x_{max}-x_{min})
Шаг 2. Найти оптимальное количество интервалов (k=1+lfloorlog_2 Nrfloor)
Шаг 3. Найти шаг интервального ряда (h=leftlceilfrac{R}{k}rightrceil)
Шаг 4. Найти узлы ряда: $$ a_0=x_{min}, a_i=1_0+ih, i=overline{1,k} $$ Шаг 5. Найти частоты (f_i) – число попаданий значений признака в каждый из интервалов (left.left[a_{i-1},a_iright.right)).
На выходе: интервальный ряд с интервалами (left.left[a_{i-1},a_iright.right)) и частотами (f_i, i=overline{1,k})

Заметим, что поскольку шаг h находится с округлением вверх, последний узел (a_kgeq x_{max}).

Например:
Проведено 100 измерений роста учеников старших классов.
Минимальный рост составляет 142 см, максимальный – 197 см.
Найдем узлы для построения соответствующего интервального ряда.
По условию: (N=100, x_{min}=142 см, x_{max}=197 см).
Размах вариации: (R=197-142=55) (см)
Оптимальное число интервалов: (k=1+lfloor 3,322cdotlg ⁡100rfloor=1+lfloor 6,644rfloor=1+6=7)
Шаг интервального ряда: (h=lceilfrac{55}{5}rceil=lceil 7,85rceil=8) (см)
Получаем узлы ряда: $$ a_0=x_{min}=142, a_i=142+icdot 8, i=overline{1,7} $$

(left.left[a_{i-1},a_iright.right)) cм (left.left[142;150right.right)) (left.left[150;158right.right)) (left.left[158;166right.right)) (left.left[166;174right.right)) (left.left[174;182right.right)) (left.left[182;190right.right)) (left[190;198right])

п.2. Гистограмма и полигон относительных частот, кумулята и эмпирическая функция распределения

Относительная частота интервала (left.left[a_{i-1},a_iright.right)) – это отношение частоты (f_i) к общему количеству исходов: $$ w_i=frac{f_i}{N}, i=overline{1,k} $$

Гистограмма относительных частот интервального ряда – это фигура, состоящая из прямоугольников, ширина которых равна шагу ряда, а высота – относительным частотам каждого из интервалов.
Площадь гистограммы равна 1 (с точностью до округлений), и она является эмпирическим законом распределения исследуемого признака.

Полигон относительных частот интервального ряда – это ломаная, соединяющая точки ((x_i,w_i)), где (x_i) – середины интервалов: (x_i=frac{a_{i-1}+a_i}{2}, i=overline{1,k}).

Накопленные относительные частоты – это суммы: $$ S_1=w_1, S_i=S_{i-1}+w_i, i=overline{2,k} $$ Ступенчатая кривая (F(x)), состоящая из прямоугольников, ширина которых равна шагу ряда, а высота – накопленным относительным частотам, является эмпирической функцией распределения исследуемого признака.
Кумулята – это ломаная, которая соединяет точки ((x_i,S_i)), где (x_i) – середины интервалов.

Например:
Продолжим анализ распределения учеников по росту.
Выше мы уже нашли узлы интервалов. Пусть, после распределения всех 100 измерений по этим интервалам, мы получили следующий интервальный ряд:

i 1 2 3 4 5 6 7
(left.left[a_{i-1},a_iright.right)) cм (left.left[142;150right.right)) (left.left[150;158right.right)) (left.left[158;166right.right)) (left.left[166;174right.right)) (left.left[174;182right.right)) (left.left[182;190right.right)) (left[190;198right])
(f_i) 4 7 11 34 33 8 3

Найдем середины интервалов, относительные частоты и накопленные относительные частоты:

(x_i) 146 154 162 170 178 186 194
(w_i) 0,04 0,07 0,11 0,34 0,33 0,08 0,03
(S_i) 0,04 0,11 0,22 0,56 0,89 0,97 1

Построим гистограмму и полигон:
Гистограмма
Полигон
Построим кумуляту и эмпирическую функцию распределения:
Кумулята
Эмпирическая функция распределения
Эмпирическая функция распределения (относительно середин интервалов): $$ F(x)= begin{cases} 0, xleq 146\ 0,04, 146lt xleq 154\ 0,11, 154lt xleq 162\ 0,22, 162lt xleq 170\ 0,56, 170lt xleq 178\ 0,89, 178lt xleq 186\ 0,97, 186lt xleq 194\ 1, xgt 194 end{cases} $$

п.3. Выборочная средняя, мода и медиана. Симметрия ряда

Выборочная средняя интервального вариационного ряда определяется как средняя взвешенная по частотам: $$ X_{cp}=frac{x_1f_1+x_2f_2+…+x_kf_k}{N}=frac1Nsum_{i=1}^k x_if_i $$ где (x_i) – середины интервалов: (x_i=frac{a_{i-1}+a_i}{2}, i=overline{1,k}).
Или, через относительные частоты: $$ X_{cp}=sum_{i=1}^k x_iw_i $$

Модальным интервалом называют интервал с максимальной частотой: $$ f_m=max f_i $$ Мода интервального вариационного ряда определяется по формуле: $$ M_o=x_o+frac{f_m-f_{m-1}}{(f_m-f_{m-1})+(f_m+f_{m+1})}h $$ где
(h) – шаг интервального ряда;
(x_o) – нижняя граница модального интервала;
(f_m,f_{m-1},f_{m+1}) – соответственно, частоты модального интервала, интервала слева от модального и интервала справа.

Медианным интервалом называют первый интервал слева, на котором кумулята превысила значение 0,5. Медиана интервального вариационного ряда определяется по формуле: $$ M_e=x_o+frac{0,5-S_{me-1}}{w_{me}}h $$ где
(h) – шаг интервального ряда;
(x_o) – нижняя граница медианного интервала;
(S_{me-1}) накопленная относительная частота для интервала слева от медианного;
(w_{me}) относительная частота медианного интервала.

Расположение выборочной средней, моды и медианы в зависимости от симметрии ряда аналогично их расположению в дискретном ряду (см. §65 данного справочника).

Например:
Для распределения учеников по росту получаем:

(x_i) 146 154 162 170 178 186 194
(w_i) 0,04 0,07 0,11 0,34 0,33 0,08 0,03 1
(x_iw_i) 5,84 10,78 17,82 57,80 58,74 14,88 5,82 171,68

$$ X_{cp}=sum_{i=1}^k x_iw_i=171,68approx 171,7 text{(см)} $$ На гистограмме (или полигоне) относительных частот максимальная частота приходится на 4й интервал [166;174). Это модальный интервал.
Данные для расчета моды: begin{gather*} x_o=166, f_m=34, f_{m-1}=11, f_{m+1}=33, h=8\ M_o=x_o+frac{f_m-f_{m-1}}{(f_m-f_{m-1})+(f_m+f_{m+1})}h=\ =166+frac{34-11}{(34-11)+(34-33)}cdot 8approx 173,7 text{(см)} end{gather*} На кумуляте значение 0,5 пересекается на 4м интервале. Это – медианный интервал.
Данные для расчета медианы: begin{gather*} x_o=166, w_m=0,34, S_{me-1}=0,22, h=8\ \ M_e=x_o+frac{0,5-S_{me-1}}{w_me}h=166+frac{0,5-0,22}{0,34}cdot 8approx 172,6 text{(см)} end{gather*} begin{gather*} \ X_{cp}=171,7; M_o=173,7; M_e=172,6\ X_{cp}lt M_elt M_o end{gather*} Ряд асимметричный с левосторонней асимметрией.
При этом (frac{|M_o-X_{cp}|}{|M_e-X_{cp}|}=frac{2,0}{0,9}approx 2,2lt 3), т.е. распределение умеренно асимметрично.

п.4. Выборочная дисперсия и СКО

Выборочная дисперсия интервального вариационного ряда определяется как средняя взвешенная для квадрата отклонения от средней: begin{gather*} D=frac1Nsum_{i=1}^k(x_i-X_{cp})^2 f_i=frac1Nsum_{i=1}^k x_i^2 f_i-X_{cp}^2 end{gather*} где (x_i) – середины интервалов: (x_i=frac{a_{i-1}+a_i}{2}, i=overline{1,k}).
Или, через относительные частоты: $$ D=sum_{i=1}^k(x_i-X_{cp})^2 w_i=sum_{i=1}^k x_i^2 w_i-X_{cp}^2 $$

Выборочное среднее квадратичное отклонение (СКО) определяется как корень квадратный из выборочной дисперсии: $$ sigma=sqrt{D} $$

Например:
Для распределения учеников по росту получаем:

$x_i$ 146 154 162 170 178 186 194
(w_i) 0,04 0,07 0,11 0,34 0,33 0,08 0,03 1
(x_iw_i) 5,84 10,78 17,82 57,80 58,74 14,88 5,82 171,68
(x_i^2w_i) – результат 852,64 1660,12 2886,84 9826 10455,72 2767,68 1129,08 29578,08

$$ D=sum_{i=1}^k x_i^2 w_i-X_{cp}^2=29578,08-171,7^2approx 104,1 $$ $$ sigma=sqrt{D}approx 10,2 $$

п.5. Исправленная выборочная дисперсия, стандартное отклонение выборки и коэффициент вариации

Исправленная выборочная дисперсия интервального вариационного ряда определяется как: begin{gather*} S^2=frac{N}{N-1}D end{gather*}

Стандартное отклонение выборки определяется как корень квадратный из исправленной выборочной дисперсии: $$ s=sqrt{S^2} $$

Коэффициент вариации это отношение стандартного отклонения выборки к выборочной средней, выраженное в процентах: $$ V=frac{s}{X_{cp}}cdot 100text{%} $$

Подробней о том, почему и когда нужно «исправлять» дисперсию, и для чего использовать коэффициент вариации – см. §65 данного справочника.

Например:
Для распределения учеников по росту получаем: begin{gather*} S^2=frac{100}{99}cdot 104,1approx 105,1\ sapprox 10,3 end{gather*} Коэффициент вариации: $$ V=frac{10,3}{171,7}cdot 100text{%}approx 6,0text{%}lt 33text{%} $$ Выборка однородна. Найденное значение среднего роста (X_{cp})=171,7 см можно распространить на всю генеральную совокупность (старшеклассников из других школ).

п.6. Алгоритм исследования интервального вариационного ряда

На входе: все значения признака (left{x_jright}, j=overline{1,N})
Шаг 1. Построить интервальный ряд с интервалами (left.right[a_{i-1}, a_ileft.right)) и частотами (f_i, i=overline{1,k}) (см. алгоритм выше).
Шаг 2. Составить расчетную таблицу. Найти (x_i,w_i,S_i,x_iw_i,x_i^2w_i)
Шаг 3. Построить гистограмму (и/или полигон) относительных частот, эмпирическую функцию распределения (и/или кумуляту). Записать эмпирическую функцию распределения.
Шаг 4. Найти выборочную среднюю, моду и медиану. Проанализировать симметрию распределения.
Шаг 5. Найти выборочную дисперсию и СКО.
Шаг 6. Найти исправленную выборочную дисперсию, стандартное отклонение и коэффициент вариации. Сделать вывод об однородности выборки.

п.7. Примеры

Пример 1. При изучении возраста пользователей коворкинга выбрали 30 человек.
Получили следующий набор данных:
18,38,28,29,26,38,34,22,28,30,22,23,35,33,27,24,30,32,28,25,29,26,31,24,29,27,32,24,29,29
Постройте интервальный ряд и исследуйте его.

1) Построим интервальный ряд. В наборе данных: $$ x_{min}=18, x_{max}=38, N=30 $$ Размах вариации: (R=38-18=20)
Оптимальное число интервалов: (k=1+lfloorlog_2⁡ 30rfloor=1+4=5)
Шаг интервального ряда: (h=lceilfrac{20}{5}rceil=4)
Получаем узлы ряда: $$ a_0=x_{min}=18, a_i=18+icdot 4, i=overline{1,5} $$

(left.left[a_{i-1},a_iright.right)) лет (left.left[18;22right.right)) (left.left[22;26right.right)) (left.left[26;30right.right)) (left.left[30;34right.right)) (left.left[34;38right.right))

Считаем частоты для каждого интервала. Получаем интервальный ряд:

(left.left[a_{i-1},a_iright.right)) лет (left.left[18;22right.right)) (left.left[22;26right.right)) (left.left[26;30right.right)) (left.left[30;34right.right)) (left.left[34;38right.right))
(f_i) 1 7 12 6 4

2) Составляем расчетную таблицу:

(x_i) 20 24 28 32 36
(f_i) 1 7 12 6 4 30
(w_i) 0,033 0,233 0,4 0,2 0,133 1
(S_i) 0,033 0,267 0,667 0,867 1
(x_iw_i) 0,667 5,6 11,2 6,4 4,8 28,67
(x_i^2w_i) 13,333 134,4 313,6 204,8 172,8 838,93

3) Строим полигон и кумуляту
Пример 1
Пример 1
Эмпирическая функция распределения: $$ F(x)= begin{cases} 0, xleq 20\ 0,033, 20lt xleq 24\ 0,267, 24lt xleq 28\ 0,667, 28lt xleq 32\ 0,867, 32lt xleq 36\ 1, xgt 36 end{cases} $$ 4) Находим выборочную среднюю, моду и медиану $$ X_{cp}=sum_{i=1}^k x_iw_iapprox 28,7 text{(лет)} $$ На полигоне модальным является 3й интервал (самая высокая точка).
Данные для расчета моды: begin{gather*} x_0=26, f_m=12, f_{m-1}=7, f_{m+1}=6, h=4\ M_o=x_o+frac{f_m-f_{m-1}}{(f_m-f_{m-1})+(f_m+f_{m+1})}h=\ =26+frac{12-7}{(12-7)+(12-6)}cdot 4approx 27,8 text{(лет)} end{gather*}
На кумуляте медианным является 3й интервал (преодолевает уровень 0,5).
Данные для расчета медианы: begin{gather*} x_0=26, w_m=0,4, S_{me-1}=0,267, h=4\ M_e=x_o+frac{0,5-S_{me-1}}{w_{me}}h=26+frac{0,5-0,4}{0,267}cdot 4approx 28,3 text{(лет)} end{gather*} Получаем: begin{gather*} X_{cp}=28,7; M_o=27,8; M_e=28,6\ X_{cp}gt M_egt M_0 end{gather*} Ряд асимметричный с правосторонней асимметрией.
При этом (frac{|M_o-X_{cp}|}{|M_e-X_{cp}|} =frac{0,9}{0,1}=9gt 3), т.е. распределение сильно асимметрично.

5) Находим выборочную дисперсию и СКО: begin{gather*} D=sum_{i=1}^k x_i^2w_i-X_{cp}^2=838,93-28,7^2approx 17,2\ sigma=sqrt{D}approx 4,1 end{gather*}
6) Исправленная выборочная дисперсия: $$ S^2=frac{N}{N-1}D=frac{30}{29}cdot 17,2approx 17,7 $$ Стандартное отклонение (s=sqrt{S^2}approx 4,2)
Коэффициент вариации: (V=frac{4,2}{28,7}cdot 100text{%}approx 14,7text{%}lt 33text{%})
Выборка однородна. Найденное значение среднего возраста (X_{cp}=28,7) лет можно распространить на всю генеральную совокупность (пользователей коворкинга).

Добавить комментарий