Как составить схему электролиза с инертными электродами

Электролиз растворов электролитов с инертными электродами

Напомним, что на катоде протекают процессы восстановления, на аноде – процессы окисления.

Процессы, протекающие на катоде:

В растворе имеются несколько видов положительно заряженных частиц, способных восстанавливаться на катоде:

1) Катионы металла восстанавливаются до простого вещества, если металл находится в ряду напряжений правее алюминия (не включая сам Al). Например:
Zn2+ +2e → Zn0.

2) В случае раствора соли или щелочи: катионы водорода восстанавливаются до простого вещества, если металл находится в ряду напряжений металлов до H2:
2H2O + 2e → H20 + 2OH.
Например, в случае электролиза растворов NaNO3 или KOH.

3) В случае электролиза раствора кислоты: катионы водорода восстанавливаются до простого вещества:
2H+ +2e → H2.
Например, в случае электролиза раствора H2SO4.

Процессы, протекающие на аноде:

На аноде легко окисляются кислотные остатки не содержащие кислород. Например, галогенид-ионы (кроме F), сульфид-анионы, гидроксид-анионы и молекулы воды:

1) Галогенид-анионы окисляются до простых веществ:
2Cl – 2e → Cl2.

2) В случае электролиза раствора щелочи в гидроксид-анионах кислород окисляется до простого вещества. Водород уже имеет степень окисления +1 и не может быть окислен дальше. Также будет выделение воды – почему? Потому что больше ничего написать и не получится: 1) H+ написать не можем, так как OH и H+ не могут стоять по разные стороны одного уравнения; 2) H2 написать также не можем, так как это был бы процесс восстановления водорода (2H+ +2e → H2), а на аноде протекают только процессы окисления.
4OH – 4e → O2 + 2H2O.

3) Если в растворе есть анионы фтора или любые кислородсодержащие анионы, то окислению будет подвергаться вода с подкислением прианодного пространства согласно следующему уравнению:
2H2O – 4e → O2 + 4H+.
Такая реакция идет в случае электролиза растворов кислородсодержащих солей или кислородсодержащих кислот. В случае электролиза раствора щелочи окисляться будут гидроксид-анионы согласно правилу 2) выше.

4) В случае электролиза раствора соли органической кислоты на аноде всегда происходит выделение CO2 и удвоение остатка углеродной цепи:
2R-COO – 2e → R-R + 2CO2.

Примеры:

1. Раствор NaCl

Расписываем диссоциацию на ионы:
NaCl → Na+ + Cl

Металл Na стоит в ряду напряжений до алюминия, следовательно, восстанавливаться на катоде не будет (катионы остаются в растворе). Согласно правилу выше, на катоде восстанавливается водород. Хлорид-анионы будут окисляться на аноде до простого вещества:

К: 2Na+ (в растворе)
     2H2O + 2e → H20 + 2OH
А: 2Cl – 2e → Cl2

Коэффициент 2 перед Na+ появился из-за наличия аналогичного коэффициента перед хлорид-ионами, так как в соли NaCl их соотношение 1:1.

Проверяем, что количество принимаемых и отдаваемых электронов одинаковое, и суммируем левые и правые части катодных и анодных процессов:

2Na+ + 2Cl + 2H2O → H20 + 2Na+ + 2OH + Cl2. Соединяем катионы и анионы:
2NaCl + 2H2O → H20 + 2NaOH + Cl2.

2. Раствор Na2SO4

Расписываем диссоциацию на ионы:
Na2SO4 → 2Na+ + SO42–

Натрий стоит в ряду напряжений до алюминия, следовательно, восстанавливаться на катоде не будет (катионы остаются в растворе). Согласно правилу выше, на катоде восстанавливается только водород. Сульфат-анионы содержат кислород, поэтому окисляться не будут, также оставаясь в растворе. Согласно правилу выше, в этом случае окисляются молекулы воды:

К: 2H2O + 2e → H20 + 2OH
А: 2H2O – 4e → O20 + 4H+.

Уравниваем число принимаемых и отдаваемых электронов на катоде и аноде. Для этого необходимо умножить все коэффициенты катодного процесса на 2:
К: 4H2O + 4e → 2H20 + 4OH
А: 2H2O – 4e → O20 + 4H+.

Складываем левые и правые части катодных и анодных процессов:
6H2O → 2H20 + 4OH + 4H+ + O20.

4OH- и 4H+ соединяем в 4 молекулы H2O:
6H2O → 2H20 + 4H2O + O20.

Сокращаем молекулы воды, находящиеся по обе стороны уравнения, т.е. вычитаем из каждой части уравнения 4H2O и получаем итоговое уравнение гидролиза:
2H2O → 2H20 + O20.

Таким образом, гидролиз растворов кислородсодержащих солей активных металлов (до Al включительно) сводится к гидролизу воды, так как ни катионы металлов, ни анионы кислотных остатков не принимают участие в окислительно-восстановительных процессах, протекающих на электродах.

3. Раствор CuCl2

Расписываем диссоциацию на ионы:
CuCl2 → Cu2+ + 2Cl

Медь находится в ряду напряжений металлов после водорода, следовательно, только она будет восстанавливаться на катоде. На аноде будут окисляться только хлорид-анионы.

К: Cu2+ + 2e → Cu0
A: 2Cl – 2e → Cl2

Записываем суммарное уравнение:
CuCl2 → Cu0 + Cl2.

4. Раствор CuSO4

Расписываем диссоциацию на ионы:
CuSO4 → Cu2+ + SO42–

Медь находится в ряду напряжений металлов после водорода, следовательно, только она будет восстанавливаться на катоде. На аноде будут окисляться молекулы воды, так как кислородсодержащие кислотные остатки в растворах на аноде не окисляются.

К: Cu2+ + 2e → Cu0
A: SO42– (в растворе)
     2H2O – 4e → O2 + 4H+.

Уравниваем количество электронов на катоде и аноде. Для это умножим все коэффициенты катодного уравнения на 2. Количество сульфат-ионов также необходимо удвоить, так как в сульфате меди соотношение Cu2+ и SO42– 1:1.

К: 2Cu2+ + 4e → 2Cu0
A: 2SO42– (в растворе)
     2H2O – 4e → O2 + 4H+.

Записываем суммарное уравнение:
2Cu2+ + 2SO42– + 2H2O → 2Cu0 + O2 + 4H+ + 2SO42–.

Соединив катионы и анионы, получаем итоговое уравнение электролиза:
2CuSO4 + 2H2O → 2Cu0 + O2 + 2H2SO4.

5. Раствор NiCl2

Расписываем диссоциацию на ионы:
NiCl2 → Ni2+ + 2Cl

Никель находится в ряду напряжений металлов после алюминия и до водорода, следовательно, на катоде будут восстанавливаться и металл, и водород. На аноде будут окисляться только хлорид-анионы.

К: Ni2+ + 2e → Ni0
     2H2O + 2e → H20 + 2OH
A: 2Cl – 2e → Cl2

Уравниваем количество электронов, принимаемых и отдаваемых на катоде и аноде. Для этого умножаем все коэффициенты анодного уравнения на 2:

К: Ni2+ + 2e → Ni0
     2H2O + 2e → H20 + 2OH
     Ni2+ (в растворе)
A: 4Cl – 4e → 2Cl2

Замечаем, что согласно формуле NiCl2, соотношение атомов никеля и хлора 1:2, следовательно, в раствор необходимо добавить Ni2+ для получения общего количества 2NiCl2. Также это необходимо сделать, так как в растворе должны присутствовать противоионы для гидроксид-анионов.

Складываем левые и правые части катодных и анодных процессов:
Ni2+ + Ni2+ + 4Cl + 2H2O → Ni0 + H20 + 2OH + Ni2+ + 2Cl2.

Соединяем катионы и анионы для получения итогового уравнения электролиза:
2NiCl2 + 2H2O → Ni0 + H20 + Ni(OH)2 + 2Cl2.

6. Раствор NiSO4

Расписываем диссоциацию на ионы:
NiSO4 → Ni2+ + SO42–

Никель находится в ряду напряжений металлов после алюминия и до водорода, следовательно, на катоде будут восстанавливаться и металл, и водород. На аноде будут окисляться молекулы воды, так как кислородсодержащие кислотные остатки в растворах на аноде не окисляются.

К: Ni2+ + 2e → Ni0
     2H2O + 2e → H20 + 2OH
A: SO42– (в растворе)
     2H2O – 4e → O2 + 4H+.

Проверяем, что количество принятых и отданных электронов совпадает. Также замечаем, что в растворе есть гидроксид-ионы, но в записи электродных процессов для них нет противоионов. Следовательно, нужно добавить в раствор Ni2+. Так как удвоилось количество ионов никеля, необходимо удвоить и количество сульфат-ионов:

К: Ni2+ + 2e → Ni0
     2H2O + 2e → H20 + 2OH
    Ni2+ (в растворе)
A: 2SO42– (в растворе)
     2H2O – 4e → O2 + 4H+.

Складываем левые и правые части катодных и анодных процессов:
Ni2+ + Ni2+ + 2SO42– + 2H2O + 2H2O → Ni0 + Ni2+ + 2OH + H20 + O20 + 2SO42– + 4H+.

Соединяем катионы и анионы и записываем итоговое уравнение электролиза:
2NiSO4 + 4H2O → Ni0 + Ni(OH)2 + H20 + O20 + 2H2SO4.

В других источниках литературы также говорится об альтернативном протекании электролиза кислородсодержащих солей металлов средней активности. Разница состоит в том, что после сложения левых и правых частей процессов электролиза необходимо соединить H+ и OH с образованием двух молекул воды. Оставшиеся 2H+ расходуются на образование серной кислоты. В этом случае не нужно прибавлять дополнительные ионы никеля и сульфат-ионы:

Ni2+ + SO42– + 2H2O + 2H2O → Ni0 + 2OH + H20 + O20 + SO42– + 4H+.

Ni2+ + SO42– + 4H2O → Ni0 + H20 + O20 + SO42– + 2H+ + 2H2O.

Итоговое уравнение:

NiSO4 + 2H2O → Ni0 + H20 + O20 + H2SO4.

7. Раствор CH3COONa

Расписываем диссоциацию на ионы:
CH3COONa → CH3COO + Na+

Натрий стоит в ряду напряжений до алюминия, следовательно, восстанавливаться на катоде не будет (катионы остаются в растворе). Согласно правилу выше, на катоде восстанавливается только водород. На аноде будет происходит окисление ацетат-ионов с образованием углекислого газа и удвоением остатка углеродной цепи:

К: 2Na+ (в растворе)
     2H2O + 2e → H20 + 2OH
А: 2CH3COO – 2e → CH3-CH3 + CO2

Так как количества электронов в процессах окисления и восстановления совпадают, составляем суммарное уравнение:
2Na+ + 2CH3COO + 2H2O → 2Na+ + 2OH + H20 + CH3-CH3 + CO2

Соединяем катионы и анионы:
2CH3COONa + 2H2O → 2NaOH + H20 + CH3-CH3 + CO2.

8. Раствор H2SO4

Расписываем диссоциацию на ионы:
H2SO4 → 2H+ + SO42–

Из катионов в растворе присутствуют только катионы H+, они и будут восстанавливаться до простого вещества. На аноде будет протекать окисление воды, так как кислород содержащие кислотные остатки в растворах на аноде не окисляются.

К: 2H+ +2e → H2
A: 2H2O – 4e → O2 + 4H+

Уравниваем число электронов. Для этого удваиваем каждый коэффициент в уравнении катодного процесса:

К: 4H+ +4e → 2H2
A: 2H2O – 4e → O2 + 4H+

Суммируем левые и правые части уравнений:
4H+ + 2H2O → 2H2 + O2 + 4H+

Катионы H+ находятся в обеих частях реакции, следовательно, их нужно сократить. Получаем, что в случае растворов кислот, электролизу подвергаются только молекулы H2O:
2H2O → 2H2 + O2.

9. Раствор NaOH

Расписываем диссоциацию на ионы:
NaOH → Na+ + OH

Натрий стоит в ряду напряжений до алюминия, следовательно, восстанавливаться на катоде не будет (катионы остаются в растворе). Согласно правилу, на катоде восстанавливается только водород. На аноде будут окисляться гидроксид-анионы с образованием кислорода и воды:

К: Na+ (в растворе)
     2H2O + 2e → H20 + 2OH
А: 4OH – 4e → O2 + 2H2O

Уравниваем число электронов, принимаемых и отдаваемых на электродах:

К: Na+ (в растворе)
     4H2O + 4e → 2H20 + 4OH
А: 4OH – 4e → O2 + 2H2O

Суммируем левые и правые части процессов:
4H2O + 4OH → 2H20 + 4OH + O20 + 2H2O

Сокращая 2H2O и ионы OH, получаем итоговое уравнение электролиза:
2H2O → 2H2 + O2.

Вывод:
При электролизе растворов 1) кислородсодержащих кислот;
                                                2) щелочей;
                                                3) солей активных металлов и кислородсодержащих кислот
на электродах протекает электролиз воды:
2H2O → 2H2 + O2.

Тренировочные тесты в формате ЕГЭ по теме «Электролиз» (задание 20 ЕГЭ по химии) ( с ответами)

Электролиз

  Химические реакции, сопровождающиеся переносом электронов (окислительно-восстановительные реакции) делятся на два типа: реакции, протекающие самопроизвольно и реакции, протекающие при прохождении тока через раствор или расплав электролита.

  Раствор или расплав электролита помещают в специальную емкость — электролитическую ванну.

  Электрический ток — это упорядоченное движение заряженных частиц — ионов, электронов и др. под действием внешнего электрического поля. Электрическое поле в растворе или расплаве электролита создают электроды.

  Электроды — это, как правило, стержни из материала, проводящего электрический ток. Их помещают в раствор или расплав электролита, и подключают к электрической цепи с источником питания.

  При этом отрицательно заряженный электрод катод — притягивает положительно заряженные ионы — катионы. Положительно заряженный электрод (анод) притягивает отрицательно заряженные частицы (анионы). Катод выступает в качестве восстановителя, а анод — в качестве окислителя.

Различают электролиз с активными и инертными электродами. Активные (растворимые) электроды подвергаются химическим превращениям в процессе электролиза. Обычно их изготавливают из меди, никеля и других металлов. Инертные (нерастворимые) электроды химическим превращениям не подвергаются. Их изготавливают из неактивных металлов, например, платины, или графита.

Электролиз растворов

   Различают электролиз раствора или расплава химического вещества. В растворе присутствует дополнительное химическое вещество — вода, которая может принимать участие в окислительно-восстановительных реакциях.

Катодные процессы

  В растворе солей катод притягивает катионы металлов. Катионы металлов могут выступать в качестве окислителей. Окислительные способности ионов металлов различаются. Для оценки окислительно-восстановительных способностей металлов применяют электро-химический ряд напряжений:

     Каждый металл характеризуется значением электрохимического потен-циала. Чем меньше потенциал, тем больше восстановительные свойства металла и тем меньше окислительные свойства соответствующего иона этого металла. Разным ионам соответствуют разные значения этого потенциала. Электрохимический потенциал — относительная величина. Электрохимический потенциал водорода принят равным нулю.

   Также около катода находятся молекулы воды Н2О. В составе воды есть окислитель — ион H+

При электролизе растворов солей на катоде наблюдаются следующие закономерности:

1. Если металл в соли — активный (до Al3+ включительно в ряду напряжений), то вместо металла на катоде восстанавливается (разряжается) водород, т.к. потенциал водорода намного больше. Протекает процесс восстановления молекулярного водорода из воды, при этом образуются ионы OH, среда возле катода — щелочная:

2H2O +2ē → H2 + 2OH

Например, при электролизе раствора хлорида натрия на катоде будет вос-станавливаться только водород из воды.

2. Если металл в соли –  средней активности (между Al3+ и Н+), то на катоде восстанавливается (разряжается) и металл, и водород, так как потенциал таких металлов сравним с потенциалом водорода:

Men+ + nē → Me0

2H+2O +2ē → H20 + 2OH

Например, при электролизе раствора сульфата железа (II) на катоде будет восстанавливаться (разряжаться) и железо, и водород:

Fe2+ + 2ē → Fe0

2H+2O +2ē → H20 + 2OH

3. Если металл в соли — неактивный (после водорода в ряду стандартных электрохимических металлов), то ион такого металла является более сильным окислителем, чем ион водорода, и на катоде восстанавливается только металл:

Men+ + nē → Me0

Например, при электролизе раствора сульфата меди (II) на катоде будет восстанавливаться медь:

Cu2+ + 2ē → Cu0

4. Если на катод попадают катионы водорода H+, то они и восстанавливаются до молекулярного водорода:

2H+ + 2ē → H20

Анодные процессы

Положительно заряженный анод притягивает анионы и молекулы воды. Анод – окислитель. В качестве восстановителей выступаю либо анионы кислотных остаток, либо молекулы воды (за счет кислорода в степени окисления -2: H2O-2).

При электролизе растворов солей на аноде наблюдаются следующие закономерности:

1. Если на анод попадает бескислородный кислотный остаток, то он окисляется до свободного состояния (до степени окисления  0):

неМеn- – nē = неМе0

Например: при электролизе раствора хлорида натрия на аноде окисляют-ся хлорид-ионы:

2Cl – 2ē = Cl20

Действительно, если вспомнить Периодический закон: при увеличении электроотрицательности неметалла его восстановительные свойства уменьшаются. А кислород – второй по величине электроотрицательности элемент. Таким образом, проще окислить практически любой неметалл, а не кислород. Правда, есть одно исключение. Наверное, вы уже догадались. Конечно же, это фтор. Ведь электроотрицательность фтора больше, чем у кислорода. Таким образом, при электролизе растворов фторидов окисляться будут именно молекулы воды, а не фторид-ионы:

2H2O-2 – 4ē → O20+ 4H+

2. Если на анод попадает кислородсодержащий кислотный остаток, либо фторид-ион, то окислению подвергается вода с выделением молекулярно-го кислорода:

2H2O-2 – 4ē → O20 + 4H+

3. Если на анод попадает гидроксид-ион, то он окисляется и происходит выделение молекулярного кислорода:

 4O-2H – 4ē → O20 + 2H2O

4. При электролизе растворов солей карбоновых кислот окислению под-вергается атом углерода карбоксильной группы, выделяется углекислый газ и соответствующий алкан. 

Например, при электролизе растворов ацетатов выделяется углекислый газ и этан:

2CH3C+3OO 2ē → 2C+4O2+ CH3-CH3

Суммарные процессы электролиза

Рассмотрим электролиз растворов различных солей.

Например, электролиз раствора сульфата меди. На катоде восстанавливаются ионы меди:

Катод (–): Cu2+ + 2ē → Cu0

На аноде окисляются молекулы воды:

Анод (+): 2H2O-2 – 4ē → O2 + 4H+

Сульфат-ионы в процессе не участвуют. Мы их запишем в итоговом уравнении с ионами водорода в виде серной кислоты:

2Cu2+SO4 + 2H2O-2 → 2Cu0 + 2H2SO4 + O20

Электролиз раствора хлорида натрия выглядит так:

На катоде восстанавливается водород:

Катод (–): 2H+2O +2ē → H20 + 2OH

На аноде окисляются хлорид-ионы:

Анод (+): 2Cl – 2ē → Cl20

Ионы натрия в процессе электролиза не участвуют. Мы записываем их с гидроксид-анионами в суммарном уравнении электролиза раствора хлорида натрия:

2H+2O +2NaClH20 + 2NaOH + Cl20

Следующий пример: электролиз водного раствора карбоната калия.

На катоде восстанавливается водород из воды:

Катод (–): 2H+2O +2ē → H20 + 2OH

На аноде окисляются молекулы воды до молекулярного кислорода:

Анод (+): 2H2O-2 – 4ē → O20 + 4H+

Таким образом, при электролизе раствора карбоната калия ионы калия и карбонат-ионы в процессе не участвуют. Происходит электролиз воды:

2H2+O-2 →  2H20 + O20 

Еще один пример: электролиз водного раствора хлорида меди (II).

На катоде восстанавливается медь:

Катод (–): Cu2+ + 2ē → Cu0

На аноде окисляются хлорид-ионы до молекулярного хлора:

Анод (+): 2Cl – 2ē → Cl20

Таким образом, при электролизе раствора карбоната калия происходит электролиз воды:

Cu2+Cl2– Cu0 + Cl20

Еще несколько примеров: электролиз раствора гидроксида натрия.

На катоде восстанавливается водород из воды:

Катод (–): 2H+2O +2ē → H20 + 2OH

На аноде окисляются гидроксид-ионы до молекулярного кислорода:

Анод (+): 4O-2H – 4ē → O20 + 2H2O

Таким образом, при электролизе раствора гидроксида натрия происходит разложение воды, катионы натрия в процессе не участвуют:

2H2+O-2 →  2H20 + O20 

Электролиз расплавов

  При электролизе расплава на аноде окисляются анионы кислотных остатков, а на катоде восстанавливаются катионы металлов. Молекул воды в системе нет.

Например: электролиз расплава хлорида натрия. На катоде восстанавливаются катионы натрия:

Катод (–): Na+ + ē → Na0

На аноде окисляются анионы хлора:

Анод (+): 2Cl – 2ē → Cl20

Суммарное уравнение электролиза расплава хлорида натрия:

2Na+Cl →  2Na0 + Cl20 

Еще один пример: электролиз расплава гидроксида натрияНа катоде восстанавливаются катионы натрия:

Катод (–): Na+ + ē → Na0

На аноде окисляются гидроксид-ионы:

Анод (+): 4OH – 4ē → O20 + 2H2O

Суммарное уравнение электролиза расплава гидроксида натрия:

4Na+OH →  4Na0 + O20 + 2H2O 

Многие металлы получают в промышленности электролизом расплавов.

Например, алюминий получают электролизом раствора оксида алюминия в расплаве криолита. Криолит – Na3[AlF6] плавится при более низкой температуре (1100оС), чем оксид алюминия (2050оС). А оксид алюминия отлично растворяется в расплавленном криолите.

В растворе криолите оксид алюминия диссоциирует на ионы:

Al2O3 = Al3+ + AlO33-

На катоде восстанавливаются катионы алюминия:

Катод (–): Al3+ + 3ē → Al0

На аноде окисляются алюминат-ионы:

Анод (+): 4AlO33 – 12ē → 2Al2O3 + 3O20 

 Общее уравнение электролиза раствора оксида алюминия в расплаве криолита:

2Al2О3 = 4Al0 + 3О20

В промышленности при электролизе оксида алюминия в качестве электродов используют графитовые стержни. При этом электроды частично окисляются (сгорают) в выделяющемся кислороде:

C0О20 = C+4O2-2 

Электролиз с растворимыми электродами

Если материал электродов выполнен из того же металла, который присутствует в растворе в виде соли, или из более активного металла, то на аноде разряжаются не молекулы воды или анионы, а окисляются частицы самого металла в составе электрода.

Например, рассмотрим электролиз раствора сульфата меди (II) с медными электродами.

На катоде разряжаются ионы меди из раствора:

Катод (–): Cu2+ + 2ē → Cu0

На аноде окисляются частицы меди из электрода:

Анод (+): Cu0 – 2ē → Cu2+

Тренировочные тесты в формате ЕГЭ по теме «Электролиз» (задание 20 ЕГЭ по химии) ( с ответами)

221

Создан на
11 января, 2022 От Admin

Электролиз

Тренажер задания 20 ЕГЭ по химии

1 / 10

Установите соответствие между солью и продуктами электролиза водного раствора этой соли, которые выделились ка инертных электродах: к каждой позиции, обозначенной буквой, подберите соответствующую позицию, обозначенную цифрой.

СОЛЬ ПРОДУКТЫ ЭЛЕКТРОЛИЗА

А) сульфат меди(II)

Б) фторид калия

В) хлорид меди(II)

Г) нитрат натрия

1) металл, галоген

2) кислород, галоген

3) металл, кислород

4) водород, галоген

5) водород, кислород

2 / 10

Установите соответствие между названием вещества и электролитическим способом получения этого вещества: к каждой позиции, обозначенной буквой, подберите соответствующую позицию, обозначенную цифрой.

НАЗВАНИЕ ВЕЩЕСТВА ЭЛЕКТРОЛИЗ

А) водород

Б) алюминий

В) калий

Г) фтор

1) расплава КF

2) водного раствора СuCl2

3) раствора Аl2O3 в расплавленном криолите

4) водного раствора Аl2(SO4)3

5) водного раствора АgF

3 / 10

Установите соответствие между формулой вещества и продуктами электролиза водного раствора этого вещества на инертных электродах: к каждой позиции, обозначенной буквой, подберите соответствующую позицию, обозначенную цифрой.

ФОРМУЛА ВЕЩЕСТВА ПРОДУКТЫ ЭЛЕКТРОЛИЗА

А) АlBr3

Б) CuCl2

В) NaNO3

Г) MgSO4

1) металл и азот

2) металл и кислород

3) металл и галоген

4) водород и сера

5) водород и галоген

6) водород и кислород

4 / 10

Установите соответствие между формулой соли и продуктами, образующимися на инертных электродах при электролизе его водного раствора.

К каждой позиции, обозначенной буквой, подберите соответствующую позицию, обозначенную цифрой.

ФОРМУЛА СОЛИ

ПРОДУКТЫ ЭЛЕКТРОЛИЗА

А) KCl

Б) CuCl2

В) NaF

Г) ZnBr2

1) металл, галоген

2) металл, кислород

3) водород, галоген

4) водород, кислород

5) металл, водород, кислород

6) металл, водород, галоген

5 / 10

Установите соответствие между веществом и продуктами электролиза водного раствора этого вещества, которые образовались на инертных электродах: к каждой позиции, обозначенной буквой, подберите соответствующую позицию, обозначенную цифрой.

ВЕЩЕСТВО ПРОДУКТЫ ЭЛЕКТРОЛИЗА
A) KBr

Б) CuBr2

B) Li2SO4

1) Li, SO2

2) Cu, Br2

3) H2, Br2

4) H2, O2

6 / 10

Установите соответствие между формулой вещества и продуктами электролиза водного раствора этого вещества на инертных электродах: к каждой позиции, обозначенной буквой, подберите соответствующую позицию, обозначенную цифрой.

ФОРМУЛА ВЕЩЕСТВА ПРОДУКТЫ ЭЛЕКТРОЛИЗА

А) К3РО4

Б) К2SO4

В) К2S

Г) HgCl2

1) Н2, S

2) Нg, Сl2

3) Н2, О2

4) Н2, Сl2

5) К, SO2

6) Н2, SO2

7 / 10

Установите соответствие между солью и продуктами электролиза водного раствора этого вещества, которые образовались на инертных электродах: к каждой позиции, обозначенной буквой, подберите соответствующую позицию, обозначенную цифрой.

СОЛЬ ПРОДУКТЫ ЭЛЕКТРОЛИЗА
A) Nal

Б) Ca(NO3)2

B) K2SO4

1) металл, галоген

2) металл, кислород

3) водород, галоген

4) водород, кислород

8 / 10

Установите соответствие между формулой вещества и продуктами электролиза его водного раствора, которые образуются на инертных электродах: к каждой позиции, обозначенной буквой, подберите соответствующую позицию, обозначенную цифрой.

ФОРМУЛА ВЕЩЕСТВА ПРОДУКТЫ ЭЛЕКТРОЛИЗА

А) АlCl3

Б) RbОН

В) Нg(NО3)2

Г) АuCl3

1) металл, галоген

2) кислород, галоген

3) металл, кислород

4) водород, галоген

5) водород, кислород

9 / 10

Установите соответствие между названием вещества и электролитическим способом получения этого вещества: к каждой позиции, обозначенной буквой, подберите соответствующую позицию, обозначенную цифрой.

НАЗВАНИЕ ВЕЩЕСТВА ЭЛЕКТРОЛИЗ

А) кислород

Б) хлор

В) водород

Г) бром

1) расплава КI

2) водного раствора КСlO3

3) расплава NaF

4) водного раствора СuBr2

5) расплава SiO2

6) водного раствора СuCl2

10 / 10

Установите соответствие между формулой вещества и продуктами электролиза его водного раствора, которые образуются на инертных электродах: к каждой позиции, обозначенной буквой, подберите соответствующую позицию, обозначенную цифрой.

ФОРМУЛА ВЕЩЕСТВА ПРОДУКТЫ ЭЛЕКТРОЛИЗА

А) Мg(NО3)2

Б) АgNО3

В) МgI2

Г) СаВr2

1) Мg, NO2

2) Аg, O2

3) Н2, Вr2

4) Н2, О2

5) Н2, I2

Ваша оценка

The average score is 45%

Схемы электролиза водных растворов солей на нерастворимых (инертных) электродах

1. Электролиз
раствора хлорида цинка.

Катод / – /
Zn2+ H2O
Cl
Анод /+ /

Zn2+
+ 2e = Zn0
2Cl
– 2e = Cl2

2. Электролиз
раствора сульфата калия.

Катод / – /
+ Н2О
SO42-
Анод / + /

2О
+ 2е = Н2 + 2ОН
2H2O
– 4e = O2
+ 4H+

Опыт 5 Электролиз
водных растворов солей.

Заполните
электролизер раствором соли, добавьте
в него несколько

капель метилового
оранжевого. Вставьте в электролизер
графитовые

электроды и
подсоедините их к источнику постоянного
тока.

Наблюдайте
изменение окраски индикатора. Составьте
схему

электролиза.

а) электролиз
сульфата натрия

Схема электролиза

Наблюдения: на
катоде выделяется______________________

на аноде
выделяется _______________________

Изменение окраски
___________________________________

б) электролиз
сульфата меди

Схема электролиза

Наблюдения: на
катоде выделяется______________________

на аноде
выделяется _______________________

Изменение окраски
___________________________________

в) электролиз
иодида калия

Схема электролиза

Наблюдения: на
катоде выделяется______________________

на аноде
выделяется _______________________

Изменение окраски
___________________________________

Упражнение

1. При электролизе
какой соли будет восстанавливаться
водород из воды:

сульфата никеля,
хлорида натрия, фосфата калия (подчеркните)?

2. Какой процесс
произойдет на катоде при электролизе
нейтрального

раствора нитрата
алюминия: а) Al3+ + 3e
= Al; б) 2Н2О + 2е = Н2
+ 2ОН;

в) 2Н+ + 2е
= Н2 (подчеркните) ?

3.Составьте схему
электролиза водного раствора нитрата
свинца с

инертным анодом.

Лабораторная
работа №5

Коллоидные растворы

Коллоидными
называются растворы, в которых линейные
размеры частиц дисперсной фазы
лежат в пределах от 1 до 100 нм.

Коллоидные
растворы получают либо из истинных
растворов путем

укрупнения частиц
молекулярной дисперсности до определенного
предела (максимум до 100 нм) конденсационными
методоми
, либо из взвеси путем
дробления грубодисперсных частиц до
определенного предела (минимум до 1нм)
методами диспергирования.

Коллоидные
растворы обладают высокой агрегативной
устойчивостью, которая обусловлена
наличием одноименного электрического
заряда частиц дисперсной фазы, вызывающего
их взаимное отталкивание. Процесс
укрупнения частиц, потеря агрегативной
устойчивости называется коаугуляцией,
а вызывающие ее вещества – коагулянтами.
Процесс, обратный коагуляции, а именно
распад агрегатов частиц в дисперсной
системе называется пептизацией, а
вызывающие ее вещества – пептизаторами.

Опыт 1. Получение
золя гидроксида железа (III)
методом конденсации.

Пробирку
заполните водой до ½ объема и поставьте
в горячую водяную баню. Через 5-7 минут
внесите в пробирку 2-3 капли концентрированного
раствора хлорида железа (III).
Наблюдайте образование красно-оранжевого
золя Fe(OH)3.

Пользуясь
осветительной установкой, убедитесь в
том, что получен коллоидный раствор.
Сохраните полученный коллоидный раствор
для проведения опыта 3.

Укажите:

Состав ядра
коллоидной частицы полученного золя:

Состав коллоидной
частицы полученного золя:

Состав мицеллы
полученного золя:

Опыт 2. Получение
золя гидроксида железа (III)

методом
диспергирования осадка Fe(OH)3.

В стакан
объемом 50 мл к 25 мл воды добавьте 10
капель 20% раствора FeCl3.
Перемешайте содержимое стакана и после
этого по каплям (!) добавляйте раствор
NH4OH
до полного осаждения Fe(OH)3.

После того как
осадок уплотнится на дне стакана,
осторожно слейте с него избыток раствора.
Осадок промойте 2-3 раза, добавляя к нему
небольшие порции воды и сливая эту воду
после того, как между ней и осадком
четко обозначится граница раздела.

К осадку
гидроксида железа (III)
прилейте 25 мл воды и 3 капли 20 % раствора
FeCl3. Смесь хорошо
перемешайте. Для ускорения процесса
пептизации нагрейте раствор на водяной
бане. Прекратите нагревание тогда,
когда раствор приобретет устойчивую
красно- оранжевую окраску.

Пользуясь
осветительной установкой, убедитесь
в том, что получен коллоидный раствор.
Сохраните полученный коллоидный раствор
для проведения опыта 3.

Укажите:

Состав ядра
коллоидной частицы полученного золя:

Состав коллоидной
частицы полученного золя:

Состав мицеллы
полученного золя:

Вывод: _______,
добавляемый к осадку _________, является
пептизатором. В составе коллоидной
частицы зарядообразующими ионами
являются ______, противоионами ______.

Опыт 3. Коагуляция
золя действием электролита.

К коллоидным
растворам, полученным в опыте 2 и 3 ,
добавьте

несколько капель
концентрированного раствора сульфата
алюминия.

Через 2-3 минуты
наблюдайте укрупнение частиц и образование
осадка.

Укажите:

Состав частицы
дисперсной фазы коллоидной системы

а) до введения
Al2(SO4)3:

б) после введения
Al2(SO4)3:

Состав образовавшегося
осадка:

Роль Al2(SO4)3
в процессе коагуляции золя:

Лабораторная
работа №6

Соседние файлы в предмете [НЕСОРТИРОВАННОЕ]

  • #
  • #
  • #
  • #
  • #
  • #
  • #
  • #
  • #
  • #
  • #

Электролиз водных растворов солей

12-Окт-2012 | комментария 63 | Лолита Окольнова

Электролиз водных растворов  солей

Тема электролиза довольна большая, формул в ней много и, как мне кажется, больше ее изучают на уроках физики… Я хочу рассмотреть ту часть, которая касается химии, и при этом только формат ЕГЭ — электролиз водных  растворов солей.

Электролиз водных растворов солей

Для начала давайте представим себе систему, в которой происходит электролиз.

электролиз растворов солей

Электролиз — физико-химический процесс, состоящий в выделении на электродах составных частей растворённых веществ или других веществ, который возникает при прохождении электрического тока через раствор либо расплав электролита.

Электроды — это такие пластинки или стержни, опущенные в раствор, они подключены к источнику тока.

  • Анод — положительно заряженный электрод
  • Катод — отрицательно заряженный электрод

Мы будем рассматривать случай инертных электродов — т.е. они не будут вступать ни в какие химические реакции.

При пропускании электрического тока, вещество раствора будет претерпевать химические изменения, т.е. буду образовываться новые химические вещества. Они будут притягиваться к электродам следующим образом:

  •  Неметаллы и их производны, анионы — к аноду
  • Металлы и их производный, катионы — к катоду

Теперь рассмотрим электролиз водных растворов различных солей

Для этого нам понадобится ряд активности металлов электрохимический ряд напряжений:

ряд напряжений

электролиз растворов солей

Разберем сначала катионы:

  • Если металл стоит до Н, то вместо него электролизу подвергается вода:
    2H2O + 2е = H2 + 2OH      Образовавшийся водород H2 идет к катоду
  • Если металл стоит после Н, то он сам восстанавливается:
    Cu2+ + 2е = Cu0    Медь осаждается на катоде
  • Катионы металлов, стоящие в ряду напряжений после алюминия до водорода, могут восстанавливаться вместе с молекулами воды:
    2О + 2е = Н2 + 2ОНZn2+ + 2e = Zn0

Электролиз водных растворов солей

Теперь анионы-кислотные остатки:

  • Кислородсодержащие кислотные остатки — вместо них электролизу подвергается вода:
    2H2O — 4e = O2 + 4H+  Образовавшийся O2 выделяется на аноде
  • Бескислородные кислотные остатки — окисляются до простого вещества:
    Cl — 1e = Cl20  Хлор выделяется на аноде
  • Исключение:   F — вместо него будет выделяться кислород.

Примеры:

1.1. Катион стоит в ряду до Н, кислотный остаток содержит кислород О:

K2SO4↔2K++SO42−

K(-): 2H2O + 2e = H2 + 2OH

A(+): 2H2O — 4e = O2 + 4H+

2H2O (электролиз) → 2H2 + O2

1.2. Катион стоит в ряду до Н, кислотный остаток беcкислородный:

LiCl ↔ Li+ + Cl

катод (-): 2H2O + 2e = H2 + 2OH

анод (+): Cl — 1e = Cl0; Cl0+Cl0=Cl2

2LiCl + 2H2O(электролиз) → H2 + Cl2 +2LiOH

2.1. Катион стоит в ряду после Н, кислотный остаток содержит кислород О:

СuSO4 ↔ Cu2++SO42−

K(-): Cu2+ + 2e = Cu0

A(+): 2H2O — 4e = O2 + 4Н+

2CuSO4 + 2H2O(электролиз) → 2Cu + 2H2SO4 + O2

2.2. Катион стоит в ряду после Н, кислотный остаток беcкислородный:

катод (-): Cu2+ + 2e = Cu0

анод (+): 2Cl — 2e = 2Cl0

CuCl2 (электролиз) →Cu + Cl2

электролиз водных растворов солей

Электролиз водных растворов солей отличается от электролиза расплавов.

 Отличие — в наличии растворителя. При электролизе водных растворов солей кроме ионов самого вещества в процессе участвуют ионы растворителя. При электролизе расплавов — только ионы самого вещества.


 

  • ЕГЭ это вопрос Части B № 3

 

[TESTME 56]

Категории:
|

Обсуждение: “Электролиз водных растворов солей”

(Правила комментирования)

Правила составления окислительно-восстановительных реакций

Электролиз растворов электролитов с инертными электродами

Напомним, что на катоде протекают процессы восстановления, на аноде – процессы окисления.

Процессы, протекающие на катоде:

В растворе имеются несколько видов положительно заряженных частиц, способных восстанавливаться на катоде:

1) Катионы металла восстанавливаются до простого вещества, если металл находится в ряду напряжений правее алюминия (не включая сам Al). Например:
Zn 2+ +2e → Zn 0 .

2) В случае раствора соли или щелочи: катионы водорода восстанавливаются до простого вещества, если металл находится в ряду напряжений металлов до H2:
2H2O + 2e → H2 0 + 2OH – .
Например, в случае электролиза растворов NaNO3 или KOH.

3) В случае электролиза раствора кислоты: катионы водорода восстанавливаются до простого вещества:
2H + +2e → H2.
Например, в случае электролиза раствора H2SO4.

Процессы, протекающие на аноде:

На аноде легко окисляются кислотные остатки не содержащие кислород. Например, галогенид-ионы (кроме F – ), сульфид-анионы, гидроксид-анионы и молекулы воды:

1) Галогенид-анионы окисляются до простых веществ:
2Cl – – 2e → Cl2.

2) В случае электролиза раствора щелочи в гидроксид-анионах кислород окисляется до простого вещества. Водород уже имеет степень окисления +1 и не может быть окислен дальше. Также будет выделение воды – почему? Потому что больше ничего написать и не получится: 1) H + написать не можем, так как OH – и H + не могут стоять по разные стороны одного уравнения; 2) H2 написать также не можем, так как это был бы процесс восстановления водорода (2H + +2e → H2), а на аноде протекают только процессы окисления.
4OH – – 4e → O2 + 2H2O.

3) Если в растворе есть анионы фтора или любые кислородсодержащие анионы, то окислению будет подвергаться вода с подкислением прианодного пространства согласно следующему уравнению:
2H2O – 4e → O2 + 4H + .
Такая реакция идет в случае электролиза растворов кислородсодержащих солей или кислородсодержащих кислот. В случае электролиза раствора щелочи окисляться будут гидроксид-анионы согласно правилу 2) выше.

4) В случае электролиза раствора соли органической кислоты на аноде всегда происходит выделение CO2 и удвоение остатка углеродной цепи:
2R-COO – – 2e → R-R + 2CO2.

Примеры:

1. Раствор NaCl

Расписываем диссоциацию на ионы:
NaCl → Na + + Cl –

Металл Na стоит в ряду напряжений до алюминия, следовательно, восстанавливаться на катоде не будет (катионы остаются в растворе). Согласно правилу выше, на катоде восстанавливается водород. Хлорид-анионы будут окисляться на аноде до простого вещества:

К: 2Na + (в растворе)
2H2O + 2e → H2 0 + 2OH –
А: 2Cl – – 2e → Cl2

Коэффициент 2 перед Na + появился из-за наличия аналогичного коэффициента перед хлорид-ионами, так как в соли NaCl их соотношение 1:1.

Проверяем, что количество принимаемых и отдаваемых электронов одинаковое, и суммируем левые и правые части катодных и анодных процессов:

2Na + + 2Cl – + 2H2O → H2 0 + 2Na + + 2OH – + Cl2. Соединяем катионы и анионы:
2NaCl + 2H2O → H2 0 + 2NaOH + Cl2.

2. Раствор Na2SO4

Расписываем диссоциацию на ионы:
Na2SO4 → 2Na + + SO4 2–

Натрий стоит в ряду напряжений до алюминия, следовательно, восстанавливаться на катоде не будет (катионы остаются в растворе). Согласно правилу выше, на катоде восстанавливается только водород. Сульфат-анионы содержат кислород, поэтому окисляться не будут, также оставаясь в растворе. Согласно правилу выше, в этом случае окисляются молекулы воды:

К: 2H2O + 2e → H2 0 + 2OH –
А: 2H2O – 4e → O2 0 + 4H + .

Уравниваем число принимаемых и отдаваемых электронов на катоде и аноде. Для этого необходимо умножить все коэффициенты катодного процесса на 2:
К: 4H2O + 4e → 2H2 0 + 4OH –
А: 2H2O – 4e → O2 0 + 4H + .

Складываем левые и правые части катодных и анодных процессов:
6H2O → 2H2 0 + 4OH – + 4H + + O2 0 .

4OH- и 4H+ соединяем в 4 молекулы H2O:
6H2O → 2H2 0 + 4H2O + O2 0 .

Сокращаем молекулы воды, находящиеся по обе стороны уравнения, т.е. вычитаем из каждой части уравнения 4H2O и получаем итоговое уравнение гидролиза:
2H2O → 2H2 0 + O2 0 .

Таким образом, гидролиз растворов кислородсодержащих солей активных металлов (до Al включительно) сводится к гидролизу воды, так как ни катионы металлов, ни анионы кислотных остатков не принимают участие в окислительно-восстановительных процессах, протекающих на электродах.

3. Раствор CuCl2

Расписываем диссоциацию на ионы:
CuCl2 → Cu 2+ + 2Cl –

Медь находится в ряду напряжений металлов после водорода, следовательно, только она будет восстанавливаться на катоде. На аноде будут окисляться только хлорид-анионы.

К: Cu 2+ + 2e → Cu 0
A: 2Cl – – 2e → Cl2

Записываем суммарное уравнение:
CuCl2 → Cu 0 + Cl2.

4. Раствор CuSO4

Расписываем диссоциацию на ионы:
CuSO4 → Cu 2+ + SO4 2–

Медь находится в ряду напряжений металлов после водорода, следовательно, только она будет восстанавливаться на катоде. На аноде будут окисляться молекулы воды, так как кислородсодержащие кислотные остатки в растворах на аноде не окисляются.

К: Cu 2+ + 2e → Cu 0
A: SO4 2– (в растворе)
2H2O – 4e → O2 + 4H + .

Уравниваем количество электронов на катоде и аноде. Для это умножим все коэффициенты катодного уравнения на 2. Количество сульфат-ионов также необходимо удвоить, так как в сульфате меди соотношение Cu 2+ и SO4 2– 1:1.

К: 2Cu 2+ + 4e → 2Cu 0
A: 2SO4 2– (в растворе)
2H2O – 4e → O2 + 4H + .

Записываем суммарное уравнение:
2Cu 2+ + 2SO4 2– + 2H2O → 2Cu 0 + O2 + 4H + + 2SO4 2– .

Соединив катионы и анионы, получаем итоговое уравнение электролиза:
2CuSO4 + 2H2O → 2Cu 0 + O2 + 2H2SO4.

5. Раствор NiCl2

Расписываем диссоциацию на ионы:
NiCl2 → Ni 2+ + 2Cl –

Никель находится в ряду напряжений металлов после алюминия и до водорода, следовательно, на катоде будут восстанавливаться и металл, и водород. На аноде будут окисляться только хлорид-анионы.

К: Ni 2+ + 2e → Ni 0
2H2O + 2e → H2 0 + 2OH –
A: 2Cl – – 2e → Cl2

Уравниваем количество электронов, принимаемых и отдаваемых на катоде и аноде. Для этого умножаем все коэффициенты анодного уравнения на 2:

К: Ni 2+ + 2e → Ni 0
2H2O + 2e → H2 0 + 2OH –
Ni 2+ (в растворе)
A: 4Cl – – 4e → 2Cl2

Замечаем, что согласно формуле NiCl2, соотношение атомов никеля и хлора 1:2, следовательно, в раствор необходимо добавить Ni 2+ для получения общего количества 2NiCl2. Также это необходимо сделать, так как в растворе должны присутствовать противоионы для гидроксид-анионов.

Складываем левые и правые части катодных и анодных процессов:
Ni 2+ + Ni 2+ + 4Cl – + 2H2O → Ni 0 + H2 0 + 2OH – + Ni 2+ + 2Cl2.

Соединяем катионы и анионы для получения итогового уравнения электролиза:
2NiCl2 + 2H2O → Ni 0 + H2 0 + Ni(OH)2 + 2Cl2.

6. Раствор NiSO4

Расписываем диссоциацию на ионы:
NiSO4 → Ni 2+ + SO4 2–

Никель находится в ряду напряжений металлов после алюминия и до водорода, следовательно, на катоде будут восстанавливаться и металл, и водород. На аноде будут окисляться молекулы воды, так как кислородсодержащие кислотные остатки в растворах на аноде не окисляются.

К: Ni 2+ + 2e → Ni 0
2H2O + 2e → H2 0 + 2OH –
A: SO4 2– (в растворе)
2H2O – 4e → O2 + 4H + .

Проверяем, что количество принятых и отданных электронов совпадает. Также замечаем, что в растворе есть гидроксид-ионы, но в записи электродных процессов для них нет противоионов. Следовательно, нужно добавить в раствор Ni 2+ . Так как удвоилось количество ионов никеля, необходимо удвоить и количество сульфат-ионов:

К: Ni 2+ + 2e → Ni 0
2H2O + 2e → H2 0 + 2OH –
Ni 2+ (в растворе)
A: 2SO4 2– (в растворе)
2H2O – 4e → O2 + 4H + .

Складываем левые и правые части катодных и анодных процессов:
Ni 2+ + Ni 2+ + 2SO4 2– + 2H2O + 2H2O → Ni 0 + Ni 2+ + 2OH – + H2 0 + O2 0 + 2SO4 2– + 4H + .

Соединяем катионы и анионы и записываем итоговое уравнение электролиза:
2NiSO4 + 4H2O → Ni 0 + Ni(OH)2 + H2 0 + O2 0 + 2H2SO4.

В других источниках литературы также говорится об альтернативном протекании электролиза кислородсодержащих солей металлов средней активности. Разница состоит в том, что после сложения левых и правых частей процессов электролиза необходимо соединить H + и OH – с образованием двух молекул воды. Оставшиеся 2H + расходуются на образование серной кислоты. В этом случае не нужно прибавлять дополнительные ионы никеля и сульфат-ионы:

Ni 2+ + SO4 2– + 2H2O + 2H2O → Ni 0 + 2OH – + H2 0 + O2 0 + SO4 2– + 4H + .

Ni 2+ + SO4 2– + 4H2O → Ni 0 + H2 0 + O2 0 + SO4 2– + 2H + + 2H2O.

NiSO4 + 2H2O → Ni 0 + H2 0 + O2 0 + H2SO4.

7. Раствор CH3COONa

Расписываем диссоциацию на ионы:
CH3COONa → CH3COO – + Na +

Натрий стоит в ряду напряжений до алюминия, следовательно, восстанавливаться на катоде не будет (катионы остаются в растворе). Согласно правилу выше, на катоде восстанавливается только водород. На аноде будет происходит окисление ацетат-ионов с образованием углекислого газа и удвоением остатка углеродной цепи:

К: 2Na + (в растворе)
2H2O + 2e → H2 0 + 2OH –
А: 2CH3COO – – 2e → CH3-CH3 + CO2

Так как количества электронов в процессах окисления и восстановления совпадают, составляем суммарное уравнение:
2Na + + 2CH3COO – + 2H2O → 2Na + + 2OH – + H2 0 + CH3-CH3 + CO2

Соединяем катионы и анионы:
2CH3COONa + 2H2O → 2NaOH + H2 0 + CH3-CH3 + CO2.

8. Раствор H2SO4

Расписываем диссоциацию на ионы:
H2SO4 → 2H + + SO4 2–

Из катионов в растворе присутствуют только катионы H+, они и будут восстанавливаться до простого вещества. На аноде будет протекать окисление воды, так как кислород содержащие кислотные остатки в растворах на аноде не окисляются.

К: 2H + +2e → H2
A: 2H2O – 4e → O2 + 4H +

Уравниваем число электронов. Для этого удваиваем каждый коэффициент в уравнении катодного процесса:

К: 4H + +4e → 2H2
A: 2H2O – 4e → O2 + 4H +

Суммируем левые и правые части уравнений:
4H + + 2H2O → 2H2 + O2 + 4H +

Катионы H + находятся в обеих частях реакции, следовательно, их нужно сократить. Получаем, что в случае растворов кислот, электролизу подвергаются только молекулы H2O:
2H2O → 2H2 + O2.

9. Раствор NaOH

Расписываем диссоциацию на ионы:
NaOH → Na + + OH –

Натрий стоит в ряду напряжений до алюминия, следовательно, восстанавливаться на катоде не будет (катионы остаются в растворе). Согласно правилу, на катоде восстанавливается только водород. На аноде будут окисляться гидроксид-анионы с образованием кислорода и воды:

К: Na+ (в растворе)
2H2O + 2e → H2 0 + 2OH –
А: 4OH – – 4e → O2 + 2H2O

Уравниваем число электронов, принимаемых и отдаваемых на электродах:

К: Na + (в растворе)
4H2O + 4e → 2H2 0 + 4OH –
А: 4OH – – 4e → O2 + 2H2O

Суммируем левые и правые части процессов:
4H2O + 4OH – → 2H2 0 + 4OH – + O2 0 + 2H2O

Сокращая 2H2O и ионы OH – , получаем итоговое уравнение электролиза:
2H2O → 2H2 + O2.

Вывод:
При электролизе растворов 1) кислородсодержащих кислот;
2) щелочей;
3) солей активных металлов и кислородсодержащих кислот
на электродах протекает электролиз воды:
2H2O → 2H2 + O2.

Написать уравнения электродных процессов и суммарной реакции процесса коррозии.

По таблице 11.1 находим значение стандартных электродных потенциалов железа и цинка:

= – 0,44В, = – 0,76В.

Так как 2+ 2

2Zn + 2H2O + O2 = 2Zn(OH)2 – суммарное молекулярное уравнение процесса коррозии.

б) Коррозия в кислой среде (H2SO4)

Составляем схему коррозионного ГЭ:

А (-) Zn │ H + │ Fe (+) K

Составляем уравнения электродных процессов и суммарной реакции процесса коррозии:

На A(-) Zn – 2ē = Zn 2+ 1

На К(+) 2H + + 2ē = H2 1

Zn + 2H + = Zn 2+ + H2 – суммарное ионно-молекулярное уравнение процесса коррозии;

Zn + H2SO4 = ZnSO4 + H2 – суммарное молекулярное уравнение процесса коррозии.

в) Коррозия в кислой среде в присутствии кислорода (HCl+O2).

Составляем схему коррозионного ГЭ:

А (-) Zn │ HCl + O2 │ Fe (+) K

А (-) Zn │ H + + O2 │ Fe (+) K

Составляем уравнения электродных процессов и суммарной реакции процесса коррозии:

НОК ДМ

На A (-) Zn – 2ē = Zn 2+ 2

На К (+) 4H + + O2 + 4ē = 2H2O 1

2Zn + 4H + + O2 = 2Zn 2+ + 2H2O – суммарное ионно-молекулярное уравнение процесса коррозии

2Zn + 4HCl + O2 = 2ZnCl2 + 2H2O – суммарное молекулярное уравнение процесса коррозии.

Во всех случаях коррозионному разрушению будет подвергаться более активный металл – цинк.

УРОВЕНЬ В

1. Составить схему гальванического элемента (ГЭ), образованного цинковым электродом, погруженным в 1М раствор хлорида цинка, и хромовым электродом, погруженным в 1·10 -3 М раствор хлорида хрома (III). Рассчитать напряжение ГЭ, написать уравнения электродных процессов и суммарной токообразующей реакции.

РЕШЕНИЕ: Для составления схемы ГЭ необхо-димо знать величины электродных потенциалов металлов – цинка и хрома. По таблице 11.1 определяем стан-дартные электродные потенциалы металлов:

= – 0,76 В, = – 0,74В.

Хлорид цинка диссоциирует по уравнению:

= ∙α∙ = 1∙1∙1 = 1 моль/л,

α = 1 (ZnCl2 – сильный электролит), = 1, поскольку условия стандартные = -0,76В.

Хлорид хрома (III) диссоциирует по уравнению:

= ∙α∙ = 10 -3 ∙1∙1 = 10 -3 моль/л,

α = 1 (CrCl3 – сильный электролит), = 1, поскольку условия отличны от стандартных, рассчитываем электродный потенциал хрома:

= + = -0,74 + lg10 -3 = -0,80В

Так как 3+ ││ Zn 2+ │ Zn (+) K

Составляем уравнения электродных процессов и суммарной токообразующей реакции:

НОК ДМ

На A(-)Cr – 3ē = Cr 3+ 2

На К(+)Zn 2+ + 2ē = Zn 3

2Cr + 3Zn 2+ = 2Cr 3+ + 3Zn – суммарное ионно-молекулярное уравнение токообразующей реакции

2Cr + 3ZnCl2 = 2CrCl3 + 3Zn – суммарное молекулярное уравнение токообразующей реакции.

Рассчитываем напряжение ГЭ:

= = -0,76-(-0,80)= 0,04В

2. Составить схему ГЭ, в котором протекает химическая реакция Fe + Ni 2+ = Fe 2+ + Ni. Написать уравнения электродных процессов. На основании стандартных значений энергий Гиббса образования ионов ∆fG 0 (298К, Me n + ) рассчитать стандартное напряжение ГЭ и константу равновесия реакции при 298К.

= – 64,4 кДж/моль;

=– 84,94 кДж/моль.

На A(-)Fe – 2ē = Fe 2+ 1 – окисление

На К(+)Ni 2+ + 2ē = Ni 1 – восстановление

Анодом ГЭ является электрод, на котором происходит процесс окисления. Катодом – электрод, на котором происходит процесс восстановления. Тогда в рассматриваемом ГЭ анодом будет являться железо, катодом – никель.

Составляем схему ГЭ:

А(-) Fe │ Fe 2+ ║ Ni 2+ │ Ni(+)K

Рассчитываем стандартное напряжение ГЭ:

= – z∙F∙ε 0 ,
= =
= -84,94-(-64,4) = -20,54 кДж,

ε 0 =

z = 2, F = 96500 Кл/моль.

Рассчитываем константу равновесия токообразующей реакции (Кc).

= – 2,303∙R∙T∙lgKc;

lgKс =

Ответ: ε 0 = 0,106В, Kс = 3981.

3. Составить схему коррозионного ГЭ, возникающего при контакте железной пластинки площадью 20 см 2 с никелевой в растворе соляной кислоты HCl. Написать уравнения электродных процессов и суммарной реакции процесса коррозии.

а) Вычислить объемный и весовой показатели коррозии, если за 40 минут в процессе коррозии выделилось 0,5 см 3 газа (н.у.).

б) Вычислить весовой и глубинный показатели коррозии, если за 120 минут потеря массы железной пластинки составила 3,7∙10 -3 г. Плотность железа равна 7,9 г/см3 .

По таблице 11.1 находим значения стандартных электродных потенциалов железа и никеля:

= – 0,44В, = – 0,26В.

Так как + │ Ni (+) K

Cоставляем уравнения электродных процессов и суммарной реакции процесса коррозии:

На A Fe – 2ē = Fe 2+

На К 2Н + + 2ē = Н2

Fe + 2H + = Fe 2+ + H2 – суммарное ионно-молекулярное уравнение процесса коррозии.

Fe + 2HCl = FeCl2 + H2 – суммарное молекулярное уравнение процесса коррозии.

Дано: τ = 40 мин V(газа) = 0,5 см 3 S = 20 см 2 KV -? Km – ?

Рассчитываем объемный показатель коррозии KV по формуле: KV = , см 3 /м 2 ∙час. При расчете KV принимаем: S – [м 2 ], τ – [час], V(газа) – [см 3 ].

Из уравнения суммарной реакции процесса коррозии следует, что при коррозии выделяется водород.

Следовательно, V(газа) = .

Тогда, KV = = 375 см 3 /м 2 ∙час.

10 -4 – коэффициент пересчета, см 2 в м 2 .

Рассчитываем весовой показатель коррозии Km по формуле:

Km = , г/м 2 ∙час.

В процессе коррозии разрушению подвергается железо и выделяется водород.

Мэк(Ме) = Мэк(Fe) = =28 г/моль,

= 11200 см 3 /моль.

Km = = 0,94 г/м 2 ∙час.

Ответ: KV = 375 см 3 /м 2 ∙час, Km = 0,94 г/м 2 ∙час.

При расчете Km принимаем: – [г]; S – [м 2 ], τ – [час].

Тогда: Km = = = 0,925 г/м 2 ∙час.

Рассчитываем глубинный показатель коррозии по формуле:

П = = мм/год.

Ответ: Km = 0,925 г/м 2 ∙час, П = 1,03 мм/год.

ЭЛЕКТРОЛИЗ РАСТВОРОВ

Таблица 11.1. Процессы протекающие на катоде при электролизе водных растворов

В Катио-ны в вод- ном рас- творе Зоны Процессы на катоде
-3,02 -2,99 -2,93 -2,92 -2,90 -2,89 -2,87 -2,71 -2,34 -1,67 Li + , Rb + , Cs + K + , Ba 2+ , Sr 2+ , Ca 2+ , Na + , Mg 2+ , Al 3+ I Катионы этих металлов на катоде не восстанавли-ваются, а концентри-руются в околокатодном пространстве (католите). На катоде восстанавливаются только молекулы воды: 2Н2О + 2ē = 2ОН – + Н2
-1,05 -0,76 -0,74 -0,44 -0,40 -0,28 -0,26 -0,14 -0,13 Mn 2+ , Zn 2+ , Cr 3+ , Fe 2+ , Cd 2+ , Co 2+ , Ni 2+ , Sn 2+ , Pb 2+ II На катоде параллельно протекают два процесса: Ме n + + nē = Me 2Н2О + 2ē = 2ОН – + Н2
0,00 Н + При электролизе кислоты 2Н + + 2ē = Н2
+0,20 +0,23 +0,34 +0,80 +0,83 +0,85 +1,20 Sb 3+ , Bi 3+ , Cu 2+ , Ag + , Pd 2+ , Hg 2+ , Pt 2+ III Восстанавливаются только ионы этих металлов Ме n + + nē = Me

Таблица 11.2. Последовательность окисления анионов на инертном аноде в водном растворе.

Примечание. Если анод изготовлен из металлов II или III зоны (растворимый анод), то при электролизе протекает только процесс его растворения Мe 0 – nē = Me n +

УРОВЕНЬ А

1. Составить схемы электролиза и написать уравнения электродных процессов водных растворов (анод инертный): а) хлорида меди (II), б) гидроксида натрия.

Какие продукты выделяются на катоде и аноде?

Дано: а)CuCl2, б) NaОН. Анод инертный 1. Схема электролиза-? 2. Продукты электролиза-?

РЕШЕНИЕ а) CuCl2 = Cu 2+ + 2Cl – , Схему электролиза составляем в соответствии с таблицами 11.1 и 11.2: K(-) A(+) инертный Cu 2+ + 2ē = Cu 2Cl – – 2ē = Cl2 H2O H2O

На катоде выделяется Cu, на аноде выделяется Cl2.

б) NaОН = Na + + ОН –

Na + 4ОН – 4ē = О2 + 2H2О

На катоде выделяется Н2, на аноде выделяется О2.

2.Составить схемы электролиза и написать уравнения электродных процессов водного раствора сульфата никеля (II) , если: а) анод инертный, б) анод никелевый. Какие продукты выделяются на катоде и аноде?

Дано: NiSO4 а) анод инертный б) анод никелевый 1. Схема электролиза-? 2. Продукты электролиза-?

РЕШЕНИЕ а) анод – инертный NiSO4 = Ni 2+ + Схему электролиза составляем в соответствии с таблицами 11.1. и 11.2:

Ni 2+ + 2ē = Ni

На катоде выделяется Ni и H2 , на аноде выделяется О2.

б) анод – никелевый:

NiSO4 = Ni 2+ +

Ni 2+ + 2ē = Ni , Н2О

2H2O+2ē = H2+2OH – Ni – 2ē = Ni 2+

На катоде выделяется Ni и H2, на аноде растворяется Ni.

3.При электролизе растворов а) нитрата кальция, б) нитрата серебра на аноде выделяется 560 мл газа (н.у.). Составить схему электролиза и написать уравнения электродных процессов. Определить какое вещество и в каком количестве выделилось на катоде? Анод инертный.

В соответствии со схемой электролиза:
nэк2)(анод) = nэк2)(катод) или ,

= = = 1120 см 3 ,

= 11200 см 3 /моль

= 5600 см 3 /моль.

На катоде выделилось 1120 см 3 водорода.

Ответ: 1120 см 3 водорода.

б) AgNO3 = Ag + +

Ag + + ē = Ag

На катоде выделяется Ag, на аноде выделяется О2.

По закону эквивалентов: nэк(Ag)(катод) = nэк2)(анод) или , откуда = = 10,8 г.

где

На катоде выделилось 10,8 г серебра.

Ответ: 10,8 г серебра.

УРОВЕНЬ В

Составить схему электролиза и написать уравнения электродных процессов водного раствора сульфата калия (анод инертный). Определить какие вещества и в каком количестве выделяются на катоде и аноде, если проводить электролиз в течение четырех часов при силе тока 2А. Температура 298К, давление 99 кПа.

= = 3,34 л.

где = 11,2 л/моль.

F = 96500 Кл/моль, если τ – cек,

F = 26,8 А∙ч/моль, если τ – час.

= = 1,67 л,

где = 5,6 л/моль, т.е. = 2

Объем водорода при заданных условиях отличных от нормальных определяем из уравнения:

,

откуда: = = 3,73 л

Объем кислорода при заданных условиях:

= 1/2 = 1,865 л.

Ответ: 3,73 л водорода, 1,865 л кислорода.

2.Металлическую деталь, площадь поверхности которой равна 100 см 2 , необходимо покрыть слоем электролитически осажденной меди из раствора хлорида меди (II). Составить схему электролиза и написать уравнения электродных процессов, если анод медный. Сколько времени должно длиться осаждение при силе тока 8А и выходе по току 98%, если толщина покрытия 0,15 мм. Плотность меди – 8,9 г/см 3 .

По закону Фарадея с учетом выхода по току (ВТ) масса меди, фактически выделившейся на катоде равна:

mCu(факт) = .

Масса меди, необходимая для получения медного покрытия:

mCu(факт) = S∙h∙ρ (г), где S – см 2 , h – см, ρ – г/см 3 .

S∙h∙ρCu = ,

откуда
τ = 1,43 часа,

где Mэк(Cu) = = 32 г/моль

10 -1 – коэффициент пересчета мм в см.

3.Определить молярную концентрацию эквивалента раствора нитрата серебра, если для выделения всего серебра из 75 см 3 этого раствора потребовалось пропустить ток силой 4А в течение 25 минут. Составить схему электролиза и написать уравнения электродных процессов. Анод инертный. Выход по току серебра 100%.

Молярная концентрация эквивалента раствора AgNO3:

=

nэк(Ag) = ,

где mAg – масса серебра, выделившегося при электролизе с учетом 100 % выхода по току.

mAg = , откуда

= = nэк(Ag) = nэк(AgNO3)

Молярная концентрация эквивалента раствора AgNO3:

= = 0,83 моль/л.
где τ – c, F – 96500 Кл/моль, Vр-ра – л.

60 – коэффициент пересчета мин. в сек.

10 -3 – коэффициент пересчета см 3 в л.

Ответ: = 0,83 моль/л.

Электролиз

Электролиз

Химические реакции, сопровождающиеся переносом электронов (окислительно-восстановительные реакции) делятся на два типа: реакции, протекающие самопроизвольно и реакции, протекающие при прохождении тока через раствор или расплав электролита.

Раствор или расплав электролита помещают в специальную емкость — электролитическую ванну .

Электрический ток — это упорядоченное движение заряженных частиц — ионов, электронов и др. под действием внешнего электрического поля. Электрическое поле в растворе или расплаве электролита создают электроды .

Электроды — это, как правило, стержни из материала, проводящего электрический ток. Их помещают в раствор или расплав электролита, и подключают к электрической цепи с источником питания.

При этом отрицательно заряженный электрод катод — притягивает положительно заряженные ионы — катионы . Положительно заряженный электрод ( анод ) притягивает отрицательно заряженные частицы ( анионы ). Катод выступает в качестве восстановителя, а анод — в качестве окислителя.

Различают электролиз с активными и инертными электродами. Активные (растворимые) электроды подвергаются химическим превращениям в процессе электролиза. Обычно их изготавливают из меди, никеля и других металлов. Инертные (нерастворимые) электроды химическим превращениям не подвергаются. Их изготавливают из неактивных металлов, например, платины , или графита .

Электролиз растворов

Различают электролиз раствора или расплава химического вещества. В растворе присутствует дополнительное химическое вещество — вода, которая может принимать участие в окислительно-восстановительных реакциях.

Катодные процессы

В растворе солей катод притягивает катионы металлов. Катионы металлов могут выступать в качестве окислителей. Окислительные способности ионов металлов различаются. Для оценки окислительно-восстановительных способностей металлов применяют электро-химический ряд напряжений :

Каждый металл характеризуется значением электрохимического потен-циала. Чем меньше потенциал , тем больше восстановительные свойства металла и тем меньше окислительные свойства соответствующего иона этого металла. Разным ионам соответствуют разные значения этого потенциала. Электрохимический потенциал — относительная величина. Электрохимический потенциал водорода принят равным нулю.

Также около катода находятся молекулы воды Н2О. В составе воды есть окислитель — ион H + .

При электролизе растворов солей на катоде наблюдаются следующие закономерности:

1. Если металл в соли — активный ( до Al 3+ включительно в ряду напряжений ), то вместо металла на катоде восстанавливается (разряжается) водород , т.к. потенциал водорода намного больше. Протекает процесс восстановления молекулярного водорода из воды, при этом образуются ионы OH — , среда возле катода — щелочная:

2H2O +2ē → H2 + 2OH —

Например , при электролизе раствора хлорида натрия на катоде будет вос-станавливаться только водород из воды.

2. Если металл в соли – средней активности (между Al 3+ и Н + ) , то на катоде восстанавливается (разряжается) и металл , и водород , так как потенциал таких металлов сравним с потенциалом водорода:

Me n+ + nē → Me 0

2 H + 2O +2ē → H2 0 + 2OH —

Например , при электролизе раствора сульфата железа (II) на катоде будет восстанавливаться (разряжаться) и железо, и водород:

Fe 2+ + 2ē → Fe 0

2 H + 2O +2ē → H2 0 + 2OH —

3. Если металл в соли — неактивный (после водорода в ряду стандартных электрохимических металлов) , то ион такого металла является более сильным окислителем, чем ион водорода, и на катоде восстанавливается только металл:

Me n+ + nē → Me 0

Например, при электролизе раствора сульфата меди (II) на катоде будет восстанавливаться медь:

Cu 2+ + 2ē → Cu 0

4. Если на катод попадают катионы водорода H + , то они и восстанавливаются до молекулярного водорода:

2H + + 2ē → H2 0

Анодные процессы

Положительно заряженный анод притягивает анионы и молекулы воды. Анод – окислитель. В качестве восстановителей выступаю либо анионы кислотных остаток, либо молекулы воды (за счет кислорода в степени окисления -2: H 2 O -2 ).

При электролизе растворов солей на аноде наблюдаются следующие закономерности:

1. Если на анод попадает бескислородный кислотный остаток , то он окисляется до свободного состояния (до степени окисления 0):

неМе n- – nē = неМе 0

Например : при электролизе раствора хлорида натрия на аноде окисляют-ся хлорид-ионы:

2Cl — – 2ē = Cl2 0

Действительно, если вспомнить Периодический закон: при увеличении электроотрицательности неметалла его восстановительные свойства уменьшаются. А кислород – второй по величине электроотрицательности элемент. Таким образом, проще окислить практически любой неметалл, а не кислород. Правда, есть одно исключение . Наверное, вы уже догадались. Конечно же, это фтор. Ведь электроотрицательность фтора больше, чем у кислорода. Таким образом, при электролизе растворов фторидов окисляться будут именно молекулы воды, а не фторид-ионы :

2H2 O -2 – 4ē → O2 0 + 4H +

2. Если на анод попадает кислородсодержащий кислотный остаток, либо фторид-ион , то окислению подвергается вода с выделением молекулярно-го кислорода:

2H2 O -2 – 4ē → O2 0 + 4H +

3. Если на анод попадает гидроксид-ион, то он окисляется и происходит выделение молекулярного кислорода:

4 O -2 H – – 4ē → O2 0 + 2H2O

4. При электролизе растворов солей карбоновых кислот окислению под-вергается атом углерода карбоксильной группы, выделяется углекислый газ и соответствующий алкан.

Например , при электролизе растворов ацетатов выделяется углекислый газ и этан:

2 CH3 C +3 OO – –2ē → 2 C +4 O2+ CH3-CH3

Суммарные процессы электролиза

Рассмотрим электролиз растворов различных солей.

Например , электролиз раствора сульфата меди. На катоде восстанавливаются ионы меди:

Катод (–): Cu 2+ + 2ē → Cu 0

На аноде окисляются молекулы воды:

Анод (+): 2H2 O -2 – 4ē → O2 + 4H +

Сульфат-ионы в процессе не участвуют. Мы их запишем в итоговом уравнении с ионами водорода в виде серной кислоты:

2 Cu 2+ SO4 + 2H2 O -2 → 2 Cu 0 + 2H2SO4 + O2 0

Электролиз раствора хлорида натрия выглядит так:

На катоде восстанавливается водород:

Катод (–): 2 H + 2O +2ē → H2 0 + 2OH –

На аноде окисляются хлорид-ионы:

Анод (+): 2 Cl – – 2ē → Cl2 0

Ионы натрия в процессе электролиза не участвуют. Мы записываем их с гидроксид-анионами в суммарном уравнении электролиза раствора хлорида натрия :

2 H + 2O +2Na Cl – → H2 0 + 2NaOH + Cl2 0

Следующий пример : электролиз водного раствора карбоната калия.

На катоде восстанавливается водород из воды:

Катод (–): 2 H + 2O +2ē → H2 0 + 2OH –

На аноде окисляются молекулы воды до молекулярного кислорода:

Анод (+): 2H2 O -2 – 4ē → O2 0 + 4H +

Таким образом, при электролизе раствора карбоната калия ионы калия и карбонат-ионы в процессе не участвуют. Происходит электролиз воды:

2 H2 + O -2 → 2 H2 0 + O2 0

Еще один пример : электролиз водного раствора хлорида меди (II).

На катоде восстанавливается медь:

Катод (–): Cu 2+ + 2ē → Cu 0

На аноде окисляются хлорид-ионы до молекулярного хлора:

Анод (+): 2 Cl – – 2ē → Cl2 0

Таким образом, при электролизе раствора карбоната калия происходит электролиз воды:

Cu 2+ Cl2 – → Cu 0 + Cl2 0

Еще несколько примеров: электролиз раствора гидроксида натрия.

На катоде восстанавливается водород из воды:

Катод (–): 2 H + 2O +2ē → H2 0 + 2OH –

На аноде окисляются гидроксид-ионы до молекулярного кислорода:

Анод (+): 4 O -2 H – – 4ē → O2 0 + 2H2O

Таким образом, при электролизе раствора гидроксида натрия происходит разложение воды, катионы натрия в процессе не участвуют:

2 H2 + O -2 → 2 H2 0 + O2 0

Электролиз расплавов

При электролизе расплава на аноде окисляются анионы кислотных остатков, а на катоде восстанавливаются катионы металлов. Молекул воды в системе нет.

Например: электролиз расплава хлорида натрия. На катоде восстанавли-ваются катионы натрия:

Катод (–): Na + + ē → Na 0

На аноде окисляются анионы хлора:

Анод (+): 2 Cl – – 2ē → Cl2 0

Суммарное уравнение электролиза расплава хлорида натрия:

2 Na + Cl → 2 Na 0 + Cl2 0

Еще один пример: электролиз расплава гидроксида натрия. На катоде восстанавливаются катионы натрия:

Катод (–): Na + + ē → Na 0

На аноде окисляются гидроксид-ионы:

Анод (+): 4 OH – – 4ē → O2 0 + 2H2O

Суммарное уравнение электролиза расплава гидроксида натрия:

4 Na + OH → 4 Na 0 + O2 0 + 2H2O

Многие металлы получают в промышленности электролизом расплавов.

Например , алюминий получают электролизом раствора оксида алюминия в расплаве криолита. Криолит – Na3[AlF6] плавится при более низкой температуре (1100 о С), чем оксид алюминия (2050 о С). А оксид алюминия отлично растворяется в расплавленном криолите.

В растворе криолите оксид алюминия диссоциирует на ионы:

На катоде восстанавливаются катионы алюминия:

Катод (–): Al 3+ + 3ē → Al 0

На аноде окисляются алюминат-ионы:

Анод (+): 4Al O 3 3 – – 12ē → 2Al2O3 + 3 O2 0

Общее уравнение электролиза раствора оксида алюминия в расплаве криолита:

2 Al 2 О 3 = 4 Al 0 + 3 О 2 0

В промышленности при электролизе оксида алюминия в качестве электродов используют графитовые стержни. При этом электроды частично окисляются (сгорают) в выделяющемся кислороде:

C 0 + О2 0 = C +4 O2 -2

Электролиз с растворимыми электродами

Если материал электродов выполнен из того же металла, который присут-ствует в растворе в виде соли, или из более активного металла, то на аноде разряжаются не молекулы воды или анионы, а окисляются частицы самого металла в составе электрода.

Например , рассмотрим электролиз раствора сульфата меди (II) с медными электродами.

На катоде разряжаются ионы меди из раствора:

Катод (–): Cu 2+ + 2ē → Cu 0

На аноде окисляются частицы меди из электрода :

Анод (+): Cu 0 – 2ē → Cu 2+

[spoiler title=”источники:”]

http://lektsii.org/9-43917.html

http://chemege.ru/electrolysis/

[/spoiler]

Добавить комментарий