Как составить систему нормальных уравнений

Третий способ регрессионного анализа в Excel — это построение уравнения регрессии путём решения системы уравнений. Для этого мы будем использовать функции массивов для выполнения операций над матрицами.

Чтобы не запутаться, давайте определимся с названиями. В этом разделе мы используем два названия для одного и того же: массив, матрица и диапазон.

МАССИВ (термин из области программирования) — это особый тип данных. Переменная такого типа хранит несколько значений. Это элементы массива, к которым обращаются по одному или нескольким номерам (индексам). У массива может быть несколько измерений.

В пакете Excel мы будем работать с одномерными и двумерными массивами. Формулы массивов Excel работают с аргументами-массивами и могут выдавать результат тоже в виде массива. Формулы массивов вводят особым образом — мы с этим уже немного познакомились.

МАТРИЦА (термин из математики) — это прямоугольная таблица чисел. У матрицы может быть одно или два измерения. С матрицами выполняют различные действия, например, сложение и умножение.

Матрицы часто используют при решении систем уравнений. С матрицей можно работать и без компьютера — тогда это просто табличка с цифрами или буквами, записанными на бумаге. Если с матрицей работать в пакете программ, то её нужно будет хранить в переменной типа «массив».

С точки зрения Excel мы работаем с ДИАПАЗОНОМ ячеек. Мы указываем диапазон в качестве входного аргумента функции. Мы вводим функцию массива в диапазон ячеек, чтобы получить результат в виде массива. Мы используем функции массива для работы с матрицами.

Надеемся, что ситуация с массивами и матрицами немного прояснилась. Теперь разберёмся, как построить регрессию с помощью матриц.

Рассмотрим пример линейного уравнения. Это уравнение прямой линии. Чтобы найти коэффициенты такого уравнения регрессии, нам понадобится решить систему нормальных уравнений — см. формулы.

Система нормальных уравнений

Здесь неизвестными являются коэффициенты а0 и а1. Известными являются суммы «иксов» и «игреков» в разных видах, а также количество точек n. Для начала нам нужно будет подсчитать эти суммы.

Скопируем исходные данные на новый лист и добавим дополнительные столбцы для расчёта сумм.

Вспомогательная таблица

Выделяем нужные столбцы и находим суммы по этим столбцам с помощью кнопки экспресс-анализа

Quick Analysis

Быстрый анализ.

Использование экспресс-анализа подробно описано в первой работе. Ссылка на учебное пособие находится в конце данного выпуска.

Быстрый расчёт сумм

Указываем в заголовке последней строки, что здесь находится сумма.

Заголовок строки «Сумма»

Чтобы уместить наши расчёты на одном листе в пределах видимости, скроем середину большой таблицы исходных данных. Выделим «лишние» строки с 6 по 123, проведя мышкой с нажатой левой кнопкой по «серым» заголовкам строк и в контекстном меню выберем

Hide

Скрыть.

Для вызова контекстного меню как всегда используем правую кнопку мыши.

Скрываем лишние строки

Таблица со скрытыми строками стала более компактной. На скрытые строки намекает только двойная разделительная линия между строками 5 и 124. Если понадобится снова показать всю таблицу, можно выделить её (в нашем случае это строки от 5 до 124) и нажать

Unhide

Показать.

Таблица со скрытыми строками

На этом листе будет несколько таблиц, которые мы обведём рамочкой. Выделим нашу таблицу и выберем в верхнем меню:

Home — Font — Borders — Thick Outside Borders

Главная — Шрифт — Границы — Толстые внешние границы.

Обрамление таблицы

Появляется рамка, которая показывает, где находится наша таблица. Такое же обрамление мы сделаем и вокруг следующих таблиц (матриц) на этом рабочем листе.

Таблица с обрамлением

Исходные данные готовы.

Возьмём систему нормальных уравнений и запишем её в матричном виде. Получается одно матричное уравнение, в котором участвуют матрицы A, X и Y — см. формулы. Систему уравнений решаем путём умножения на обратную матрицу.

Решение матричного уравнения

Чтобы иметь перед глазами формулы для расчётов и чтобы не запутать читателя, выпишем основные соотношения на листе бумаги. Сфотографируем формулы и вставим их на текущий лист Excel. Набирать формулы — довольно долгое занятие. К тому же, надо иногда учиться писать от руки. Это очень полезно — развивает и руки, и голову.

Формулы для расчётов

Сформируем матрицы X и Y. Все необходимые суммы уже подсчитаны. Объём выборки n тоже известен. Это число строк в таблице исходных данных — в соответствии с вариантом задания. Используем ссылки на нужные ячейки. Рисуем рамки, чтобы выделить каждую матрицу.

Матрицы для системы уравнений

Для решения системы нормальных уравнений нам предстоит найти обратную матрицу для X и умножить её на матрицу Y. Для этого мы будем использовать две функции Excel по работе с матрицами — обращение и умножение.

Функция нахождения обратной матрицы (обращение матрицы) MINVERSE возвращает обратную матрицу для матрицы, которая хранится в указанном массиве:

MINVERSE (array)

МОБР (массив).

Функция умножения матриц MMULT находит произведение двух матриц, которые хранятся в указанных массивах:

MMULT (array1, array2)

МУМНОЖ (матрица1;матрица2).

Обе функции работают с массивами и выдают результат в виде массива.

Ввод функции массива выполняем так же, как и раньше. Печатаем следующее выражение и нажимаем ОК:

=MMULT (MINVERSE (C127:D128),C130:C131)

В текущей ячейке появляется одно число. Но результат решения системы — матрица А, столбец из двух ячеек. Поэтому выделяем вертикальный диапазон из двух ячеек, начиная с ячейки, в которую мы записали нашу формулу масива. Нажимаем клавишу F2, а затем комбинацию клавиш Ctrl + Shift + Enter.

Получаем результат решения системы уравнения — два числа, два коэффициента уравнения регрессии.

Решение системы уравнений

Зная коэффициенты, можно записать уравнение регрессии. Напомним, что первый элемент в матрице А — это а0, а второй элемент — а1. Уравнение регрессии записываем с помощью ссылок на эти две ячейки.

Уравнение регрессии

Переходим к графикам. Построим диаграмму разброса. Указываем диапазоны для «иксов» и «игреков». Однако на графике появляется всего две точки вместо 120.

Диаграмма разброса

Получается, что когда мы скрываем строки в таблице, эти данные не отображаются на графике. Нам хотелось бы держать все данные и графики перед глазами. Поэтому будем использовать для диаграммы разброса данные с другого листа, на котором отображены все 120 значений. Теперь на графике все точки на месте. Настроим тип и цвет маркера.

Диаграмма разброса

Добавим линию регрессии. Поскольку мы строим прямую линию, нам будет достаточно найти всего две точки. Сделаем вспомогательную табличку. Зададим два крайних значения «икс»: 1000 и 2000. Вычислим прогноз по уравнению регрессии для «игрека».

Вспомогательная таблица

Добавим этот массив как данные для графика. Настроим тип и цвет линии. Отключим маркеры.

Диаграмма разброса и линия регрессии

Рассмотрим построенный график и убедимся в правильности расчётов. Линия регрессии проходит в среднем по исходным точкам. Значит, грубых ошибок у нас нет.

На рисунке приводится окончательный вид нашей страницы отчёта. Здесь есть заголовки, формулы, таблицы, и график. Читателю будет легко понять, что и как было сделано.

Оформление отчёта

Далее самостоятельно постройте нелинейную регрессию второго и третьего порядка.

Уравнение второго порядка — «икс» участвует во второй степени. Система нормальных уравнений для регрессии второго порядка — см. формулы.

Регрессия второго порядка

Уравнение третьего порядка — «икс» участвует в третьей степени. Система нормальных уравнений для регрессии третьего порядка — см. формулы.

Регрессия третьего порядка

Нанесите линии регрессии на общий график.

Система нормальных уравнений и явный вид ее решения при оценивании методом наименьших квадратов линейной модели парной регрессии

Предположим, что в ходе регрессионного анализа была установлена линейная взаимосвязь между исследуемыми переменными х и у, которая описывается моделью регрессии вида:

В результате оценивания данной эконометрической модели определяются оценки неизвестных коэффициентов. Классический подход к оцениванию параметров линейной регрессии основан на методе наименьших квадратов (МНК).

Метод наименьших квадратов позволяет получить такие оценки параметров β0и β1, при которых сумма квадратов отклонений фактических значений результативного признака y от расчетных (теоретических) y˜ минимальна:

В процессе минимизации функции (1) неизвестными являются только значения коэффициентов β0 и β1, потому что значения результативной и факторной переменных известны из наблюдений. Для определения минимума функции двух переменных вычисляются частные производные этой функции по каждому из оцениваемых параметров и приравниваются к нулю. Результатом данной процедуры будет стационарная система уравнений для функции (2):

.

Если разделить обе части каждого уравнения системы на (-2), раскрыть скобки и привести подобные члены, то получим систему нормальных уравнений для функции регрессии вида yi=β01xi:

Если решить данную систему нормальных уравнений, то мы получим искомые оценки неизвестных коэффициентов модели регрессии β0 и β1:

y – среднее значение зависимой переменной;

x – среднее значение независимой переменной;

xy – среднее арифметическое значение произведения зависимой и независимой переменных;

G 2 (x) – дисперсия независимой переменной;

Gcov (x, y) – ковариация между зависимой и независимой переменными.

Таким образом, явный вид решения системы нормальных уравнений может быть записан следующим образом:

Нормальное (нормированное) уравнение прямой: описание, примеры, решение задач

В данной статье рассмотрим нормальное уравнение прямой на заданной плоскости. Получим нормальное уравнение, покажем не примере, дадим определение нормирующего множителя и разберем приведение общего уравнения к нормальному виду. Заключительной части посвятим основному приложению нормального уравнения прямой, то есть нахождение расстояние от точки до прямой на плоскости.

Нормальное уравнение прямой – описание и пример

Рассмотрим выведение нормального уравнения.

Фиксируем на плоскости систему координат О х у , где задаем прямую с точкой, через которую она проходит с нормальным вектором прямой. Нормальному вектору прямой дадим обозначение n → . Его начало обозначено точкой O . координатами являются cos α и cos β , углы которых расположены между вектором n → и положительными осями О x и O y . Это запишется так: n → = ( cos α , cos β ) . Прямая проходит через точку A с расстоянием равным p , где p ≥ 0 от начальной точки O при положительном направлении вектора n → . Если р = 0 , тогда A считается совпадающей с точкой координат. Отсюда имеем, что O A = p . Получаем уравнение, при помощи которого задается прямая.

Имеем, что точка с координатами M ( x , y ) расположена на прямой тогда и только тогда, когда числовая проекция вектора O M → по направлению вектора n → равняется p , значит при выполнении условия n p n → O M → = p .

O M → является радиус-вектором точки с координатами M ( x , y ) , значит O M → = ( x , y ) .

Применив определение скалярного произведения векторов, получим равенство вида: n → , O M → = n → · n p n → O M → = 1 · n p n → O M → = n p n → O M → = p

Тогда это же произведение будет иметь вид в координатной форме: n → , O M → = cos α · x + cos β · y

Отсюда cos α · x + cos β · y = p или cos α · x + cos β · y — p = 0 . Было выведено нормальное уравнение прямой.

Уравнение вида cos α · x + cos β · y — p = 0 называется нормальным уравнением прямой или нормированным уравнением прямой. Иначе говоря, уравнение прямой в нормальном виде.

Понятно, что такое уравнение представляет собой общее уравнение прямой A x + B y + C = 0 , где A и B имеют значения, при которых длина вектора n → = ( A , B ) равна 1 , а C является неотрицательным числом.

Теперь рассмотрим его геометрический смысл. Нормальное уравнение прямой вида cos α · x + cos β · y — p = 0 задает в системе координат О х у на плоскости прямую с наличием нормального вектора единичной длины n → = ( cos α , cos β ) , которая располагается на расстоянии равном p от начала координат по положительному направлению вектора n → .

Если дано уравнение прямой вида — 1 2 · x + 3 2 · y — 3 = 0 , то на плоскости задается прямая, у которой нормальный вектор с координатами — 1 2 , 3 2 . Удаление прямой от начала координат идет по направлению, совпадающему с направлением нормального вектора n → = — 1 2 , 3 2 .

Приведение общего уравнения прямой к нормальному виду

Часто решение задач подразумевает использование нормального уравнения прямой, но само оно не дается в нормальном виде, поэтому необходимо для начала приводить к нормальному виду, после чего выполнять необходимые вычисления.

Нормальное уравнение получают из общего уравнения прямой. Когда на плоскости задается другим уравнением, то необходимо привести его к общему виду, после чего возможно приведение к нормальному. Если рассмотреть на примере, то это будет выглядеть так.

Для приведения общего уравнения прямой A x + B x + C = 0 к нормальному необходимо обе части умножить на нормирующий множитель, который имеет значение ± 1 A 2 + B 2 . Его знак определяется при помощи противоположности знака слагаемого C . При С = 0 знак выбирается произвольно.

Привести уравнение прямой 3 x — 4 y — 16 = 0 к нормальному виду.

Из общего уравнения видно, что А = 3 , В = — 4 , С = — 16 . Так как значение C отрицательное, необходимо брать положительный знак для формулы. Перейдем к вычислению нормирующего множителя:

1 A 2 + B 2 = 1 3 2 + ( — 4 ) 2 = 1 5

Теперь необходимо умножить обе части уравнения на одну пятую. Получим, что 1 5 · ( 3 x — 4 y — 16 ) = 0 ⇔ 3 5 · x — 4 5 · y — 16 5 = 0 .

Нормальное уравнение по заданной прямой найдено.

Ответ: 3 5 · x — 4 5 · y — 16 5 = 0 .

Как решать систему уравнений

О чем эта статья:

8 класс, 9 класс, ЕГЭ/ОГЭ

Основные понятия

Алгебра в 8 и 9 классе становится сложнее. Но если изучать темы последовательно и регулярно практиковаться в тетрадке и онлайн — ходить на уроки математики будет не так страшно.

Уравнение — это математическое равенство, в котором неизвестна одна или несколько величин. Значение неизвестных нужно найти так, чтобы при их подстановке в исходное уравнение получилось верное числовое равенство.

Например, возьмем 3 + 4 = 7. При вычислении левой части получается верное числовое равенство, то есть 7 = 7.

Уравнением можно назвать, например, равенство 3 + x = 7 с неизвестной переменной x, значение которой нужно найти. Результат должен быть таким, чтобы знак равенства был оправдан, и левая часть равнялась правой.

Система уравнений — это несколько уравнений, для которых надо найти значения неизвестных, каждое из которых соответствует данным уравнениям.

Так как существует множество уравнений, составленных с их использованием систем уравнений также много. Поэтому для удобства изучения существуют отдельные группы по схожим характеристикам. Рассмотрим способы решения систем уравнений.

Линейное уравнение с двумя переменными

Уравнение вида ax + by + c = 0 называется линейным уравнением с двумя переменными x и y, где a, b, c — числа.

Решением этого уравнения называют любую пару чисел (x; y), которая соответствует этому уравнению и обращает его в верное числовое равенство.

Теорема, которую нужно запомнить: если в линейном уравнение есть хотя бы один не нулевой коэффициент при переменной — его графиком будет прямая линия.

Вот алгоритм построения графика ax + by + c = 0, где a ≠ 0, b ≠ 0:

Дать переменной 𝑥 конкретное значение x = x₁, и найти значение y = y₁ при ax₁ + by + c = 0.

Дать x другое значение x = x₂, и найти соответствующее значение y = y₂ при ax₂ + by + c = 0.

Построить на координатной плоскости xy точки: (x₁; y₁); (x₂; y₂).

Провести прямую через эти две точки и вуаля — график готов.

Нужно быстро привести знания в порядок перед экзаменом? Записывайтесь на курсы ЕГЭ по математике в Skysmart!

Система двух линейных уравнений с двумя переменными

Для ax + by + c = 0 можно сколько угодно раз брать произвольные значение для x и находить значения для y. Решений в таком случае может быть бесчисленное множество.

Система линейных уравнений (ЛУ) с двумя переменными образуется в случае, когда x и y связаны не одним, а двумя уравнениями. Такая система может иметь одно решение или не иметь решений совсем. Выглядит это вот так:

Из первого линейного уравнения a₁x + b₁y + c₁ = 0 можно получить линейную функцию, при условии если b₁ ≠ 0: y = k₁x + m₁. График — прямая линия.

Из второго ЛУ a₂x + b₂y + c₂ = 0 можно получить линейную функцию, если b₂ ≠ 0: y = k₂x + m₂. Графиком снова будет прямая линия.

Можно записать систему иначе:

Множеством решений первого ЛУ является множество точек, лежащих на определенной прямой, аналогично и для второго ЛУ. Если эти прямые пересекаются — у системы есть единственное решение. Это возможно при условии, если k₁ ≠ k₂.

Две прямые могут быть параллельны, а значит, они никогда не пересекутся и система не будет иметь решений. Это возможно при следующих условиях: k₁ = k₂ и m₁ ≠ m₂.

Две прямые могут совпасть, и тогда каждая точка будет решением, а у системы будет бесчисленное множество решений. Это возможно при следующих условиях: k₁ = k₂ и m₁ = m₂.

Метод подстановки

Разберем решение систем уравнений методом подстановки. Вот алгоритм при переменных x и y:

Выразить одну переменную через другую из более простого уравнения системы.

Подставить то, что получилось на место этой переменной в другое уравнение системы.

Решить полученное уравнение, найти одну из переменных.

Подставить поочередно каждый из найденных корней в уравнение, которое получили на первом шаге, и найти второе неизвестное значение.

Записать ответ. Ответ принято записывать в виде пар значений (x; y).

Потренируемся решать системы линейных уравнений методом подстановки.

Пример 1

Решите систему уравнений:

x − y = 4
x + 2y = 10

Выразим x из первого уравнения:

x − y = 4
x = 4 + y

Подставим получившееся выражение во второе уравнение вместо x:

x + 2y = 10
4 + y + 2y = 10

Решим второе уравнение относительно переменной y:

4 + y + 2y = 10
4 + 3y = 10
3y = 10 − 4
3y = 6
y = 6 : 3
y = 2

Полученное значение подставим в первое уравнение вместо y и решим уравнение:

x − y = 4
x − 2 = 4
x = 4 + 2
x = 6

Ответ: (6; 2).

Пример 2

Решите систему линейных уравнений:

x + 5y = 7
3x = 4 + 2y

Сначала выразим переменную x из первого уравнения:

x + 5y = 7
x = 7 − 5y

Выражение 7 − 5y подставим вместо переменной x во второе уравнение:

3x = 4 + 2y
3 (7 − 5y) = 4 + 2y

Решим второе линейное уравнение в системе:

3 (7 − 5y) = 4 + 2y
21 − 15y = 4 + 2y
21 − 15y − 2y = 4
21 − 17y = 4
17y = 21 − 4
17y = 17
y = 17 : 17
y = 1

Подставим значение y в первое уравнение и найдем значение x:

x + 5y = 7
x + 5 = 7
x = 7 − 5
x = 2

Ответ: (2; 1).

Пример 3

Решите систему линейных уравнений:

x − 2y = 3
5x + y = 4

Из первого уравнения выразим x:

x − 2y = 3
x = 3 + 2y

Подставим 3 + 2y во второе уравнение системы и решим его:

5x + y = 4
5 (3 + 2y) + y = 4
15 + 10y + y = 4
15 + 11y = 4
11y = 4 − 15
11y = −11
y = −11 : 11
y = −1

Подставим получившееся значение в первое уравнение и решим его:

x − 2y = 3
x − 2 (−1) = 3
x + 2 = 3
x = 3 − 2
x = 1

Ответ: (1; −1).

Метод сложения

Теперь решим систему уравнений способом сложения. Алгоритм с переменными x и y:

При необходимости умножаем почленно уравнения системы, подбирая множители так, чтобы коэффициенты при одной из переменных стали противоположными числами.

Складываем почленно левые и правые части уравнений системы.

Решаем получившееся уравнение с одной переменной.

Находим соответствующие значения второй переменной.

Запишем ответ в в виде пар значений (x; y).

Система линейных уравнений с тремя переменными

Системы ЛУ с тремя переменными решают так же, как и с двумя. В них присутствуют три неизвестных с коэффициентами и свободный член. Выглядит так:

Решений в таком случае может быть бесчисленное множество. Придавая двум переменным различные значения, можно найти третье значение. Ответ принято записывать в виде тройки значений (x; y; z).

Если x, y, z связаны между собой тремя уравнениями, то образуется система трех ЛУ с тремя переменными. Для решения такой системы можно применять метод подстановки и метод сложения.

Решение задач

Разберем примеры решения систем уравнений.

Задание 1. Как привести уравнение к к стандартному виду ах + by + c = 0?

5x − 8y = 4x − 9y + 3

5x − 8y = 4x − 9y + 3

5x − 8y − 4x + 9y = 3

Задание 2. Как решать систему уравнений способом подстановки

Выразить у из первого уравнения:

Подставить полученное выражение во второе уравнение:

Найти соответствующие значения у:

Задание 3. Как решать систему уравнений методом сложения

  1. Решение систем линейных уравнений начинается с внимательного просмотра задачи. Заметим, что можно исключить у. Для этого умножим первое уравнение на минус два и сложим со вторым:
  1. Решаем полученное квадратное уравнение любым способом. Находим его корни:
  1. Найти у, подставив найденное значение в любое уравнение:
  1. Ответ: (1; 1), (1; -1).

Задание 4. Решить систему уравнений

Решим второе уравнение и найдем х = 2, х = 5. Подставим значение переменной х в первое уравнение и найдем соответствующее значение у.

Задание 5. Как решить систему уравнений с двумя неизвестными

При у = -2 первое уравнение не имеет решений, при у = 2 получается:

источники:

http://zaochnik.com/spravochnik/matematika/prjamaja-ploskost/normalnoe-normirovannoe-uravnenie-prjamoj/

http://skysmart.ru/articles/mathematic/reshenie-sistem-uravnenij

Переопределенную
систему уравнений поправок

=
(1)
решают под условием МНК: [pυ2]
= min.

Для отыскания
минимума функции Ф необходимо найти ее
частные производные по неизвестным и
приравнять к нулю. В результате получаем
систему линейных уравнений:

[paυ]
= 0

[paυ]
= 0 (2)

[paυ]
= 0

После подстановки
в формулы (2) выражений (1) получим линейную
систему:

[paa]δx1
+ [pab] δx2
+… + [pag] δxk
+ [pal] = 0

[pab] δx1
+ [pbb] δx2
+… + [pbg] δxk
+ [pbl] = 0 (3)

…………………………………………………..

[pag] δx1
+ [pbg] δx2
+… + [pgg] δxk
+ [pgl] = 0

Здесь коэф-ты [paa]=
pa1a1+
pa2a2+…+
panan,
и т.д.

Эти уравнения
называют нормальными уравнениями; они
представляют собой определенную систему
k
линейных уравнений с k
неизвестными.

Линейная система
нормальных уравнений имеет особенности:

1) по диагонали,
расположенной слева вниз направо, стоят
коэффициенты, которые всегда положительны:
их называют квадратичными, а диагональ
– квадратичной.

2) остальные,
неквадратичные, коэффициенты расположенные
симметрично относительно квадратичной
диагонали равны между собой.

17. Решение системы нормальных уравнений в параметрическом способе.

[paa]δx1
+ [pab] δx2
+… + [pag] δxk
+ [pal] = 0

[pab] δx1
+ [pbb] δx2
+… + [pbg] δxk
+ [pbl] = 0 (3)

…………………………………………………..
(1)

[pag] δx1
+ [pbg] δx2
+… + [pgg] δxk
+ [pgl] = 0

Эти уравнения
называют нормальными уравнениями; они
представляют собой определенную систему
k
линейных уравнений с k
неизвестными.

Линейная система
нормальных уравнений имеет особенности:

1) по диагонали,
расположенной слева вниз направо, стоят
коэффициенты, которые всегда положительны:
их называют квадратичными, а диагональ
– квадратичной.

2) остальные,
неквадратичные, коэффициенты располагаются
симметрично относительно квадратичной
диагонали.

Эти свойства системы
используют при ее решении. Гаусс
разработал способ решения нормальных
уравнений, который сводится к
последовательному исключению из нее
всех неизвестных. При этом исходная
система заменяется эквивалентной
системой уравнений, и имеет вид:

[paa]δx1+[pab]δx2+[pac]δx3+……+[pag]δxk+[pal]=0

[pbb.1]δx2+[pbc.1]δx3
+……+[pbg.1]δxk+[pbl.1]=0
(2)

[pcc.2]δx3
+……+[pcg.2]δxk+[pcl.2]=0

………………………………………………………………………………………

Ее получение
называют прямым ходом решения. Неизвестные,
начиная с последнего, вычисляют из так
называемых элиминационных уравнений,
получаемых из системы 1 делением на
квадратичные коэффициенты.


,
(3)


,

…………………………………………………………………………………..

Этот процесс
называют обратным ходом решения.

Коэффициенты при
неизвестных в эквивалентной системе
называют алгоритмами Гаусса.

Правило раскрытия
алгоритма Гаусса:

Алгоритм с цифрой
j
будем называть преобразованным, а без
цифры – не преобразованным. Тогда любой
преобразованный алгоритм Гаусса равен
этому же не преобразованному алгоритму
минус число дробей, совпадающего с
цифрой j
раскрываемого алгоритма. Знаменатели
этих дробей равны первым коэффициентам
(j-1)
эквивалентных уравнений, а их числители
– произведению двух алгоритмов с той же
цифрой, что и в алгоритме знаменателя,
причем первый сомножитель условно
получается как произведение первой
буквы знаменателя на первую букву
раскрываемого алгоритма, а второй – как
произведение второй буквы знаменателя
на его вторую букву. Например:

.

Способ Гаусса
удобен тем, что все вычисления
располагаются в компактной схеме,
требующей выполнения однотипных
вычислительных действий и позволяющей
контролировать промежуточные результаты.

Контроль составления
и решения нормальных уравнений
производится методом сумм.
[a]+[b]+[c]+…..+[g]+[l]=[s]

Коэффициенты
нормальных уравнений и их свободные
члены контролируют так:

[aa]+[ab]+…..+[ag]+[al]=[as]

………………………………..

[ag]+[bg]+…..+[gg]+[gl]=[gs]

[al]+[bl]+…..+[gl]+[ll]=[ls]

[as]+[bs]+…..+[gs]+[ls]=[ss]

Заключительным
контролем прямого хода решения в
схеме Гаусса является выполнение
равенств [ll.k]=[ls.k]=[ss.k].
Затем переходят к вычислению неизвестных
δxj.
Получив
согласно (3) все неизвестные δxj,
вычисляют
поправки vi
и контролируют на основе выражений
[av]=0
[bv]=0
[gv]=0.
Проверяют также выполнение контрольных
равенств [v2]=[ll.k]=[ls.k].

Соседние файлы в предмете [НЕСОРТИРОВАННОЕ]

  • #
  • #
  • #
  • #
  • #
  • #
  • #
  • #
  • #
  • #

    29.03.2015357.68 Кб38ТОЭ котрольная 3 часть.pdf

  • #

Добавить комментарий