Как составить систему уравнений на калькуляторе


Калькулятор онлайн.
Решение системы двух линейных уравнений с двумя переменными.
Метод подстановки и сложения.

С помощью данной математической программы вы можете решить систему двух линейных уравнений с двумя переменными методом подстановки и методом сложения.

Программа не только даёт ответ задачи, но и приводит подробное решение с пояснениями шагов решения двумя способами: методом подстановки и методом сложения.

Данная программа может быть полезна учащимся старших классов общеобразовательных школ при подготовке к контрольным работам и
экзаменам, при проверке знаний перед ЕГЭ, родителям для контроля решения многих задач по математике и алгебре.
А может быть вам слишком накладно нанимать репетитора или покупать новые учебники? Или вы просто хотите как можно быстрее
сделать домашнее задание по математике или алгебре? В этом случае вы также можете воспользоваться нашими программами с подробным
решением.

Таким образом вы можете проводить своё собственное обучение и/или обучение своих младших братьев или сестёр, при этом уровень
образования в области решаемых задач повышается.

Правила ввода уравнений

В качестве переменной может выступать любая латинсая буква.
Например: ( x, y, z, a, b, c, o, p, q ) и т.д.

При вводе уравнений можно использовать скобки. При этом уравнения сначала упрощаются.
Уравнения после упрощений должны быть линейными, т.е. вида ax+by+c=0 с точностью порядка следования элементов.
Например: 6x+1 = 5(x+y)+2

В уравнениях можно использовать не только целые, но также и дробные числа в виде десятичных и обыкновенных дробей.

Правила ввода десятичных дробей.
Целая и дробная часть в десятичных дробях может разделяться как точкой так и запятой.
Например: 2.1n + 3,5m = 55

Правила ввода обыкновенных дробей.
В качестве числителя, знаменателя и целой части дроби может выступать только целое число.
Знаменатель не может быть отрицательным.
При вводе числовой дроби числитель отделяется от знаменателя знаком деления: /
Целая часть отделяется от дроби знаком амперсанд: &

Примеры.
-1&2/3y + 5/3x = 55
2.1p + 55 = -2/7(3,5p – 2&1/8q)

Пример подробного решения (методом подстановки и сложения) >>

Наши игры, головоломки, эмуляторы:

Немного теории.

Решение систем линейных уравнений. Способ подстановки

Последовательность действий при решении системы линейных уравнений способом подстановки:
1) выражают из какого-нибудь уравнения системы одну переменную через другую;
2) подставляют в другое уравнение системы вместо этой переменной полученное выражение;
3) решают получившееся уравнение с одной переменной;
4) находят соответствующее значение второй переменной.

Пример. Решим систему уравнений:
$$ left{ begin{array}{l} 3x+y=7 \ -5x+2y=3 end{array} right. $$

Выразим из первого уравнения y через x: y = 7-3x. Подставив во второе уравнение вместо y выражение 7-Зx, получим систему:
$$ left{ begin{array}{l} y = 7—3x \ -5x+2(7-3x)=3 end{array} right. $$

Нетрудно показать, что первая и вторая системы имеют одни и те же решения. Во второй системе второе уравнение содержит только
одну переменную. Решим это уравнение:
$$ -5x+2(7-3x)=3 Rightarrow -5x+14-6x=3 Rightarrow -11x=-11 Rightarrow x=1 $$

Подставив в равенство y=7-3x вместо x число 1, найдем соответствующее значение y:
$$ y=7-3 cdot 1 Rightarrow y=4 $$

Пара (1;4) — решение системы

Системы уравнений с двумя переменными, имеющие одни и те же решения, называются равносильными. Системы, не имеющие решений,
также считают равносильными.

Решение систем линейных уравнений способом сложения

Рассмотрим еще один способ решения систем линейных уравнений — способ сложения. При решении систем этим способом, как и при
решении способом подстановки, мы переходим от данной системы к другой, равносильной ей системе, в которой одно из уравнений содержит
только одну переменную.

Последовательность действий при решении системы линейных уравнений способом сложения:
1) умножают почленно уравнения системы, подбирая множители так, чтобы коэффициенты при одной из переменных стали
противоположными числами;
2) складывают почленно левые и правые части уравнений системы;
3) решают получившееся уравнение с одной переменной;
4) находят соответствующее значение второй переменной.

Пример. Решим систему уравнений:
$$ left{ begin{array}{l} 2x+3y=-5 \ x-3y=38 end{array} right. $$

В уравнениях этой системы коэффициенты при y являются противоположными числами. Сложив почленно левые и правые части уравнений,
получим уравнение с одной переменной 3x=33. Заменим одно из уравнений системы, например первое, уравнением 3x=33. Получим систему
$$ left{ begin{array}{l} 3x=33 \ x-3y=38 end{array} right. $$

Из уравнения 3x=33 находим, что x=11. Подставив это значение x в уравнение ( x-3y=38 ) получим уравнение с
переменной y: ( 11-3y=38 ). Решим это уравнение:
( -3y=27 Rightarrow y=-9 )

Таким образом мы нашли решение системмы уравнений способом сложения: ( x=11; y=-9 ) или ( (11; -9) )

Воспользовавшись тем, что в уравнениях системы коэффициенты при y являются противоположными числами, мы свели ее решение к
решению равносильной системы (сумировав обе части каждого из уравнений исходной симтемы), в которой одно из уравнений содержит
только одну переменную.

Правила ввода математических выражений

Ввод чисел:

Целые числа вводятся обычным способом, например: 4 ; 18 ; 56
Для ввода отрицательного числа необходимо поставить знак минус: -19 ; -45 ; -90
Рациональные числа вводятся с использованием символа / , например: 3 / 4 ; -5 / 3 ; 5 / (-19)
Вещественные числа вводятся с использованием точки в качестве разделителя целой и дробной частей: 4.5 ; -0.4

Ввод переменных и констант:

Переменные и константы вводятся латинскими буквами, например: x ; y ; z ; a ; b .
Константы π и e вводятся как pi и e — соответственно.
Символ бесконечности ∞ вводится двумя маленькими латинскими буквами oo или словом inf .
Соответственно, плюс бесконечность задается как +oo, и минус бесконечность как -oo.

Сумма и разность:

Сумма и разность задаются при помощи знаков + и — соответственно, например: 3 + a ; x + y ; 5 — 4 + t ; a — b + 4 ; ВНИМАНИЕ! Никаких пробелов между операндами быть не должно, например ввод: x + a — неправильный , правильно вводить так: x + a — без пробелов.

Умножение:

Умножение задается знаком * , например: 3 * t ; x * y ; -5 * x .
ВНИМАНИЕ! Ввод знака * необходим всегда, т.е. запись типа: 2 x — недопустима . Следует всегда использовать знак * , т.е правильная запись: 3 * x .

Деление:

Деление задается знаком / , например: 15 / a ; y / x ;.

Степень:

Степень задается знаком ^ , например: x ^ 2 ; 4 ^ 2 ; y ^ (-1 / 2) .

Приоритет операций:

Для указания (или изменения) приоритета операций необходимо использовать скобки () , например: ( a + b ) / 4 — тут вначале будет произведено сложение a + b , а потом сумма разделится на 4 , тогда как без скобок: — сначала b разделится на 4 и к полученному прибавится a . ВНИМАНИЕ! В непонятных случаях лучше всегда использовать скобки для получения нужного результата, например: 2 ^ 4 ^ 3 — неясно как будет вычислено это выражение: cначала 2 ^ 4 , а затем результат в степень 3 , или сначала 4 ^ 3 = 64 , а затем 2 ^ 64 ? Поэтому, в данном случае, необходимо использовать скобки: (2 ^ 4) ^ 3 или 2 ^ (4 ^ 3) — смотря что нужно.
Также распространенной ошибкой является запись вида: x ^ 3 / 4 — непонятно: вы хотите возвести x в куб и полученное выражение разделить на 4 , или хотите возвести x в степень 3 / 4 ? В последнем случае необходимо использовать скобки: x ^ (3 / 4) .

Ввод функций:

Функции вводятся с использованием маленьких латинских букв: sin ; cos ; tan ; log .
ВНИМАНИЕ! Аргумент функции всегда берется в скобки () , например: sin( 4 ) ; cos( x ) ; log( 4 + y ) .
Запись типа: sin 4 ; cos x ; log 4 + y — недопустима . Правильная запись: sin( 4 ) ; cos( x ) ; log( 4 + y ) .
Если необходимо возвести функцию в степень, например: синус x и все это в квадрате, это записывается вот так: (sin( x )) ^ 2 . Если необходимо возвести в квадрат аргумент, а не функцию (т.е синус от x ^ 2 ), тогда это выглядит вот так: sin( x ^ 2) . Запись типа: sin ^ 2 x — недопустима .

Системы уравнений по-шагам

Результат

Примеры систем уравнений

  • Метод Гаусса
  • Метод Крамера
  • Прямой метод
  • Система нелинейных уравнений

Указанные выше примеры содержат также:

  • квадратные корни sqrt(x),
    кубические корни cbrt(x)
  • тригонометрические функции:
    синус sin(x), косинус cos(x), тангенс tan(x), котангенс ctan(x)
  • показательные функции и экспоненты exp(x)
  • обратные тригонометрические функции:
    арксинус asin(x), арккосинус acos(x), арктангенс atan(x), арккотангенс actan(x)
  • натуральные логарифмы ln(x),
    десятичные логарифмы log(x)
  • гиперболические функции:
    гиперболический синус sh(x), гиперболический косинус ch(x), гиперболический тангенс и котангенс tanh(x), ctanh(x)
  • обратные гиперболические функции:
    asinh(x), acosh(x), atanh(x), actanh(x)
  • число Пи pi
  • комплексное число i

Правила ввода

Можно делать следующие операции

2*x — умножение 3/x — деление x^3 — возведение в степень x + 7 — сложение x — 6 — вычитание Действительные числа вводить в виде 7.5, не 7,5

Чтобы увидеть подробное решение,
помогите рассказать об этом сайте:

Решение задач по математике онлайн

//mailru,yandex,google,vkontakte,odnoklassniki,instagram,wargaming,facebook,twitter,liveid,steam,soundcloud,lastfm, // echo( ‘

Задача для решения системы произвольных уравнений. Описание.

Знак умножения нужно вводить только между числами, во всех остальных случаях его можно не вводить.

Функция Описание Пример ввода Результат ввода
pi Число (pi) pi $$ pi $$
e Число (e) e $$ e $$
e^x Степень числа (e) e^(2x) $$ e^ <2x>$$
exp(x) Степень числа (e) exp(1/3) $$ sqrt[3] $$
|x|
abs(x)
Модуль (абсолютное значение) числа (x) |x-1|
abs(cos(x))
( |x-1| )
( |cos(x)| )
sin(x) Синус sin(x-1) $$ sin(x-1) $$
cos(x) Косинус 1/(cos(x))^2 $$ frac<1> $$
tg(x) Тангенс x*tg(x) $$ x cdot tg(x) $$
ctg(x) Котангенс 3ctg(1/x) $$ 3 ctg left( frac<1> right) $$
arcsin(x) Арксинус arcsin(x) $$ arcsin(x) $$
arccos(x) Арккосинус arccos(x) $$ arccos(x) $$
arctg(x) Арктангенс arctg(x) $$ arctg(x) $$
arcctg(x) Арккотангенс arcctg(x) $$ arcctg(x) $$
sqrt(x) Квадратный корень sqrt(1/x) $$ sqrt<frac<1>> $$
root(n,x) Корень степени n
root(2,x) эквивалентно sqrt(x)
root(4,exp(x)) $$ sqrt[4] < e^> $$
x^(1/n) Корень степени n
x^(1/2) эквивалентно sqrt(x)
(cos(x))^(1/3) $$ sqrt[Large 3 normalsize] $$
ln(x)
log(x)
log(e,x)
Натуральный логарифм
(основание — число e )
1/ln(3-x) $$ frac<1> $$
log(10,x) Десятичный логарифм числа x log(10,x^2+x) $$ log_<10>(x^2+x) $$
log(a,x) Логарифм x по основанию a log(3,cos(x)) $$ log_3(cos(x)) $$
sh(x) Гиперболический синус sh(x-1) $$ sh(x-1) $$
ch(x) Гиперболический косинус ch(x) $$ ch(x) $$
th(x) Гиперболический тангенс th(x) $$ th(x) $$
cth(x) Гиперболический котангенс cth(x) $$ cth(x) $$

Почему решение на английском языке?

При решении этой задачи используется большой и дорогой модуль одного «забугорного» сервиса. Решение он выдает в виде изображения и только на английском языке. Изменить это, к сожалению, нельзя. Ничего лучше мы найти не смогли. Зато он выводит подробное и очень качественное решение в том виде в котором оно принято в высших учебных заведениях. Единственное неудобство — на английском языке, но это не большая цена за качество.

Некоторые пояснения по выводу решения.

Вывод Перевод, пояснение
(log(x)) Натуральный логарифм, основание — число e. У нас пишут (ln(x))
(arccos(x)) или (cos^<-1>(x)) Арккосинус. У нас пишут ( arccos(x) )
(arcsin(x)) или (sin^<-1>(x)) Арксинус. У нас пишут ( arcsin(x) )
(tan(x)) Тангенс. У нас пишут (tg(x) = frac)
(arctan(x)) или (tan^<-1>(x)) Арктангенс. У нас пишут (arctg(x))
(cot(x)) Котангенс. У нас пишут (ctg(x) = frac)
(arccot(x)) или (cot^<-1>(x)) Арккотангенс. У нас пишут (arcctg(x))
(sec(x)) Секанс. У нас пишут также (sec(x) = frac<1>)
(csc(x)) Косеканс. У нас пишут (cosec(x) = frac<1>)
(cosh(x)) Гиперболический косинус. У нас пишут (ch(x) = frac> <2>)
(sinh(x)) Гиперболический синус. У нас пишут (sh(x) = frac> <2>)
(tanh(x)) Гиперболический тангенс. У нас пишут (th(x) = frac>> )
(coth(x)) Гиперболический котангенс. У нас пишут (cth(x) = frac<1>)

Если вам что-то осталось не понятно обязательно напишите об этом в Обратной связи и мы дополним эту таблицу.

источники:

http://mrexam.ru/systemofequations

http://www.math-solution.ru/math-task/systems-info

Системы уравнений по-шагам

Примеры систем уравнений

  • Система двух уравнений с двумя неизвестными
  • 2x - y = 5
    3x - y = 7
  • x - y = 1
    y - 2x = 1
  • Система трёх уравнений с тремя переменными
  • x1 - 2x2 + 3*x3 = 14
    2x1 + 3x2 - 4x3 = 0
  • Метод Гаусса
  • x - y - 1 = 0
    x + y + 2 = 0
  • Метод Крамера
  • 2*x - 3*y = 5
    5*x + y = 4
  • Прямой метод
  • 2*x - y = 3
    2*x + y = 9
  • Система нелинейных уравнений
  • x^2 - 1 = 1 + y/2
    1 - y^2 = 2 + x
  • Система четырёх уравнений
  • x1 + 2x2 + 3x3 - 2x4 = 1
    2x1 - x2 - 2x3 - 3x4 = 2
    3x1 + 2x2 - x3 + 2x4 = -5
    2x1 - 3x2 + 2x3 + x4 = 11
  • Система линейных уравнений с четырьмя неизвестными
  • 2x + 4y + 6z + 8v = 100
    3x + 5y + 7z + 9v = 116
    3x - 5y + 7z - 9v = -40
    -2x + 4y - 6z + 8v = 36
  • Система трёх нелинейных уравнений, содержащая квадрат и дробь
  • 2/x = 11
    3x + 5y + 7z + 9v = 116
    x - 3*z^2 = 0
    2/7*x + y - z = -3
  • Система двух уравнений, содержащая куб (3-ю степень)
  • x = y^3
    x - 3*z^2 = 0
    x*y = -5
  • Система уравнений c квадратным корнем
  • x + y - sqrt(x*y) = 5
    2*x*y = 3
  • Система тригонометрических уравнений
  • x + y = 5*pi/2
    sin(x) + cos(2y) = -1
  • Система показательных и логарифмических уравнений
  • y - log(x)/log(3) = 1
    x^y = 3^12

Что умеет калькулятор?

  • Решает системы уравнений различными методами:
    • Метод Крамера
    • Метод Гаусса
    • Численный метод
    • Графический метод
  • Подробное решение тремя способами:
    • Методами Крамера и Гаусса
    • Прямой способ подстановки переменных

Указанные выше примеры содержат также:

  • модуль или абсолютное значение: absolute(x) или |x|
  • квадратные корни sqrt(x),
    кубические корни cbrt(x)
  • тригонометрические функции:
    синус sin(x), косинус cos(x), тангенс tan(x), котангенс ctan(x)
  • показательные функции и экспоненты exp(x)
  • обратные тригонометрические функции:
    арксинус asin(x), арккосинус acos(x), арктангенс atan(x),
    арккотангенс acot(x)
  • натуральные логарифмы ln(x),
    десятичные логарифмы log(x)
  • гиперболические функции:
    гиперболический синус sh(x), гиперболический косинус ch(x),
    гиперболический тангенс и котангенс tanh(x), ctanh(x)
  • обратные гиперболические функции:
    гиперболический арксинус asinh(x), гиперболический арккосинус acosh(x),
    гиперболический арктангенс atanh(x), гиперболический арккотангенс acoth(x)
  • другие тригонометрические и гиперболические функции:
    секанс sec(x), косеканс csc(x), арксеканс asec(x),
    арккосеканс acsc(x), гиперболический секанс sech(x),
    гиперболический косеканс csch(x), гиперболический арксеканс asech(x),
    гиперболический арккосеканс acsch(x)
  • функции округления:
    в меньшую сторону floor(x), в большую сторону ceiling(x)
  • знак числа:
    sign(x)
  • для теории вероятности:
    функция ошибок erf(x) (интеграл вероятности),
    функция Лапласа laplace(x)
  • Факториал от x:
    x! или factorial(x)
  • Гамма-функция gamma(x)
  • Функция Ламберта LambertW(x)
  • Тригонометрические интегралы: Si(x),
    Ci(x),
    Shi(x),
    Chi(x)

Правила ввода

Можно делать следующие операции

2*x
– умножение
3/x
– деление
x^2
– возведение в квадрат
x^3
– возведение в куб
x^5
– возведение в степень
x + 7
– сложение
x – 6
– вычитание
Действительные числа
вводить в виде 7.5, не 7,5

Постоянные

pi
– число Пи
e
– основание натурального логарифма
i
– комплексное число
oo
– символ бесконечности

Рассмотрим систему из двух нелинейных уравнений с двумя неизвестными:

Перепишем уравнения системы в следующем виде:

Тогда, первое уравнение системы представляет собой эллипс с большой полуосью равной
2
и малой полуосью равной
.
Второе уравнение системы – это прямая линия с тангесом угла наклона равным

и величиной отрезка, отсекаемого на оси
Oy
равной
35

.

Изобразим вышесказанное на схематичном графике:

схематичный график системы уравнений

Точки пересечения прямой с эллипсом
M1(x1,y1)
и
M2(x2,y2)
являются решениями исходной системы уравнений. Поскольку прямая пересекает эллипс только в двух указанных выше точках, других решений нет.

Только что мы рассмотрели так называемый

графический метод

решения систем уравнений, который хорошо подходит для решения системы из двух уравнений с двумя неизвестными. При большем количестве неизвестных, решениями будут точки в многомерном пространстве, что существенно усложняет задачу.

Если для решения исходной системы использовать более универсальный
метод подстановки, мы получим следующий результат:

x19235140.452122y135235700.871273×29235141.73784y235235700.442702

Наш онлайн калькулятор, построенный на основе системы Wolfram Alpha, позволяет решать разнообразные типы систем уравнений.

Онлайн калькулятор для вычисления систем уравнений.
Калькулятор решает системы: линейных, квадратных, кубических, тригонометрических, логарифмических, показательных уравнений. Если система имеет общие методы решения, то калькулятор выдает полное аналитическое решение системы а также графическое решение, в противном случае, выдает ответ и графическое решение.

Уравнения вводятся в калькулятор в одну строку, через запятую так как указано в примере, можно вводить любое число уравнений.

Калькулятор поможет найти решение систем уравнений.
Для получения полного хода решения нажимаем в ответе Step-by-step.

×

Пожалуйста напишите с чем связна такая низкая оценка:

×

Для установки калькулятора на iPhone – просто добавьте страницу
«На главный экран»

Для установки калькулятора на Android – просто добавьте страницу
«На главный экран»

Добавить комментарий