Как составить сопряженные пары

1) Сущность окислительно –
восстановительного взаимодействия.
Сопряженные окислительно – восстановительные
пары. Количественная мера силы окислителя
и восстановителя в сопряженной паре.
Критерий направления протекания ОВР и
критерий необратимости реакции. Укажите
направление протекания следующий
реакций:

а)
2
FeCl3 +
2
KI = FeCl2
+
I2 + 2KCl

б)
2
HI + S
=
I2 + H2S

Окислительно – восстановительными
реакциями
называются химические
реакции, протекающие с изменением
степени окисления атомов вследствие
перераспределения электронов между
ними.

Окислениемназывается процесс
отдачи электронов атомов вещества,
сопровождающийся повышением степени
его окисления. (-e)

Восстановлениемназывается процесс
присоединения электронов атомом
вещества, сопровождающийся понижением
степени его окисления. (+e)

В ходе окислительно – восстановительной
реакции оба процесса идут одновременно,
а общее число отданныхэлектронов
равно общему принятых.

Окислителемназывается вещество,
в состав которого входят атомы,
присоединяющие электроны, т. е. окислитель
– акцептор электронов. (+e)

Восстановителемназывается вещество,
в состав которого входят атомы, отдающие
электроны, т.е. восстановитель – донор
электронов. (-e)

Окислитель и его восстановленная
форма, либо восстановитель и его
окисленная форма составляет
сопряжённую окислительно-восстановительную
пару
, а их
взаимопревращения являются
окислительно-восстановительными
полуреакциями.

В любой окислительно-восстановительной
реакции принимают участие
две
сопряжённые
окислительно-восстановительные пары,
между которыми имеет место конкуренция
за электроны, в результате чего протекают
две полуреакции: одна связана с
присоединением
электронов, то есть восстановлением,
другая — с отдачей
электронов, то есть окислением.

Так, в реакции:

3Zn+ 4H2SO43ZnSO4+S+ 4H2O

Участвуют пары: Zn2+,Zn0иSO42-,S0и протекают
полуреакции:

3 | Zn0
– 2e

Zn2+
1 | S+6O42-
+ 6e
+ 8H+

S0 +
4H2O

Эквивалентом окислителя или
восстановителя
называется его частица
(реальная или условная), которая,
соответственно, присоединяет или отдает
один электрон.

Окислительно – восстановительные реакции
самопроизвольно протекают всегда в
сторону превращения сильногоокислителя вслабыйсопряженный
восстановитель или сильного восстановителя
в слабый сопряженный окислитель.

Восстановительные потенциалы
количественная мера окислительно-восстановительной
способности данной сопряженной
окислительно восстановительной пары.

Стандартный восстановительный
потенциал Ф
0– значение,
которой принимает Ф при стандартных
условиях: концентрация всех компонентов,
участвующих в реакции, включая ионы
водыH+(в кислой
среде) иOH(в щелочной
среде), равна 1 моль/л, температура 298 К.

Суть окислительно – восстановительных
реакций
заключается в конкуренции
за присоединение электрона между
участвующими окислителями. При этом
электрон присоединяет та сопряженная
пара, окисленная форма которой сильнее
его удерживает.

ЭДС окислительно – восстановительной
реакции
в стандартных условиях (E0)
численно равна разности стандартных
потенциалов сопряженных окислительно
– восстановительных пар, участвующих
в реакции:E0= ф0­­ок
– ф0восст> 0.

Условиемсамопроизвольного протекания
окислительно – восстановительной
реакции являетсяположительноезначение ее ЭДС.

Если |E0| > 0.35 В, то
реакций необратима.

Укажите направление протекания
следующий реакций
:

а)
2FeCl3
+ 2KI => FeCl2
+ I2 +
2KCl

ф0восст(I20,I) = +0,54 В

ф0окисл( Fe+3, Fe+2) = +0,77 В

E0=
ф0­­ок – ф0восст=
0,77 В – 0,54 В = 0,23 В > 0 (самопроизвольно
протекает прямая реакция)

б)
2HI + S = I2
+ H2S

ф0окисл
( I20,I
) = +0,54 В

ф0восст( S0, S2-) = 0,17 В

E0=
ф0­­ок – ф0восст=
0,54, В – 0,17 В = 0,37 В > 0 (самопроизвольно
протекает прямая реакция)

Учебник: 208 – 215.

2) Типы окислительно – восстановительных
реакций:

а)
внутримолекулярные,

б)
диспропорционирования (простых веществ,
оксидов и солей),

в)
межмолекулярные. ОВР. Приведите примеры.
Типы окислительно – восстановительных
реакций в живом организме.

А)
Межмолекулярные
— реакции, в
которых окисляющиеся и восстанавливающиеся
атомы находятся в молекулах разных
веществ, например:

Н2S+Cl2→S+
2HCl

Б)
Диспропорционирование (самоокисление-самовосстановление) —
реакции, в которых один и тот же элемент
выступает и как окислитель, и как
восстановитель, например:

Cl2+H2O→HClO+HCl

В)
Внутримолекулярные— реакции,
в которых окисляющиеся и восстанавливающиеся
атомы находятся в молекулах одного и
того же вещества, например:

2H2O→
2H2+O2

  1. Влияние
    внешних факторов на протекание
    окислительно – восстановительных
    реакциях. Рассмотрите это влияние на
    следующих реакциях:

Факторы:
концентрация реагента, температура
реакции, наличие катализатора, влияние
характера среды.

а)
Zn + H2SO4
(разб.) = … ; Zn + H2SO4
(конц.) = … ;

Zn0
+ H+12SO4
(разб.) = Zn+2SO4 + H20 (окислитель
H+)

Zn0
+ H2S+6O4
(конц.) = 3Zn+2SO4 + S0 + 4H2O
(окислитель S+6)

б) Cl2+KOH(холод) = … ;Cl2+KOH(горяч.) = … ;

Cl20+KOH(холод) =K-1Cl+KCl+1O+H2O

Cl2+KOH(горяч.) = 5K-1Cl+KCl+5O3 + 3H2O

в)
KMnO4
+ Na2SO3
+ (1) H2SO4
= … + (2) H2O
= … + (3)NaOH(в картинкеKOH(!) будьте осторожны)

Учебник:
211.

Соседние файлы в предмете [НЕСОРТИРОВАННОЕ]

  • #
  • #
  • #
  • #
  • #
  • #
  • #
  • #
  • #
  • #
  • #

    Сопряженные окислительно-восстановительные пары [c.408]

    Каждая сопряженная окислительно-восстановительная пара характеризуется определенным стандартным потенциалом [c.512]

    Однако для этой цели чаще всего используют легко измеряемые электродные потенциалы обеих сопряженных окислительно-восстановительных пар [c.50]

    Важнейшие сопряженные окислительно-восстановительные пары, используемые в качестве титрантов в методах окислительно-восстановительного титрования, приведены в табл. 3.10. В качестве показателя титрования следует рассматривать потенциал в точке перегиба Ец (см. стр. 73), вычисляемый по уравнению (3.4.17). Чем выше (ниже) потенциал окислительно-восстановительной пары, тем больше веществ можно оттитровать окислителем (восстановителем) соответствующей системы. Окисление или восстановление воды (образование О2 или Н2 см. табл. 3.10) сильными окислителями или восстановителями не происходит вследствие того, что эти процессы обычно сильно заторможены (см. стр. 51). Однако при помощи каталитически действующих веществ можно вызывать выделение кислорода или водорода. Часто нужно считаться также с мешающими индукционными эффектами, которые нельзя предсказать по величине самого потенциала. [c.81]

    Биохимические функции. Б организме сопряженная окислительно-восстановительная пара — аскорбиновая кислота и дегидроаскорбиновая кислота — является активным антидотом свободнорадикальных механизмов, протекание которых усиливается при патологических состояниях. Аскорбиновая кислота также участвует в процессах превращения ароматических аминокислот в некоторые нейромедиаторы, в синтезе ряда стероидных гормонов (кортикостероидов), в процессах кроветворения, в образовании белка соединительной ткани коллагена, в восстановлении ионов Fe ” до Fe ” ” и во многих других биохимических процессах. [c.161]

    Соответственно с характером электрохимической реакции, протекающей у электрода в условиях динамического равновесия, можно было бы электроды, обратимые по отношению к катионам или анионам, рассматривать как окислительно-восстановительные. Однако принято называть собственно окислительно-восстановительными электродами (редокс-электродами) такие, которые состоят из индифферентного рабочего электрода (например, Р1) и раствора, содержащего сопряженную окислительно-восстановительную пару (табл. 4.2). Для редокс-систем органических веществ, потенциал которых в общем зависит от pH, например хипон — гидрохинон, [c.115]

    Вещество-окислитель и соответствующее вещество-восстановитель называют сопряженной окислительно-восстановительной парой (или системой). [c.139]

    Решение. По таблицам стандартных редокс-потенциалов находят значения для сопряженных окислительно-восстановительных пар этих систем  [c.257]

    Решение. Потенциал платинового электрода — электрода третьего рода — определяется природой сопряженной окислительно-восстановительной пары и концентрацией ее окисленной и восстановленной форм. В данном растворе имеется пара [c.106]

    Для измерения электродного потенциала нужно, чтобы окислитель сопряженной окислительно-восстановительной пары мог восстанавливаться потоком электронов [уравнение (3-62)], стекающих с поверхности электрода, во многих случаях покрытого слое.м специально обработанной платины. [c.229]

    Окислители и восстановители всегда функционируют как сопряженные окислительно-восстановительные пары (редокс-пары), подобно тому как кислоты и осно- [c.511]

    АН г А + 2е 4- 2Н+, где АНз-донор водорода (или электронов), А акцептор водорода, а вместе они составляют сопряженную окислительно-восстановительную пару, способную восстанавливать акцептор электронов В путем переноса атомов водорода [c.511]

    В табл. 17-1 приведены значения стандартных восстановительных потенциалов для некоторых сопряженных окислительно-восстановительных пар, играющих важную роль при переносе электро- [c.512]

    Хорощо известно, что смесь соединений, образующих сопряженную кислотно-щелочную пару, в соотнощении 50 50 действует как буфер, поддерживающий определенное давление протонов (pH), величина которого определяется константой диссоциации кислоты. Точно таким же образом смесь компонентов сопряженной окислительно-восстановительной пары в соотнощении 50 50 поддерживает определенное давление электронов , или окислительно-восстановительный потенциал (редокс-потенциал) Е, служащий мерой сродства молекулы-переносчика к электронам. [c.454]

    И. сопряженные окислительно-восстановительные пары К. редокс-потенциал (окислительно-восстановительный потенциал) Л. дыхательный контроль [c.340]

    Для того чтобы записать уравнение окислительно-восстановительной реакции, прежде всего надо знать исходные вещества и конечные продукты реакции. В отдельных случаях однозначный ответ можно получить из расчета, основанного на данных об окислительно-восстановительных потенциалах соответствующих редокс-пар (разд. 33.5.1.5). Однако часто приходится устанавливать полученные в реакции. вещества с помощью химического анализа. Особое внимание следует обращать на возможность выделения в ходе реакции газов. Например, при реакции пиролюзита МпОг с соляной кислотой цвет и запах выделяющегося газа указывает на образование хлора, а цвет и другие свойства раствора — на образование Мп +. Зная компоненты системы, можно установить состав сопряженных окислительно-восстановительных пар, взаимодействующих в данной реакции. В нащем примере такими парами являются МПО2/МП2+ и С1 /С12- Сначала запишем по 1уреакции для обеих сопряженных пар. Начнем с определения степени окисления, которую атомы элементов имеют в окисленном и восстановленном состоянии. Далее найдем число электронов, которые участвуют в каждой полуреакции  [c.410]

    Укажите сопряженные окислительно-восстановительные пары в реакции, идущей по уравнению НС10+НС1 = lo+H. O. Какое вещество содержит в этом случае ОФ одной сопряженной нары и ВФ другой Приведите еще один аналогичный пример. [c.248]

    Такую пару, как Н2О и V2O2 (или NADH и NAD ), называют сопряженной окислительно-восстановительной парой, так как один из ее членов превращается в другой, если добавить один или несколько электронов и один или несколько протонов (последних всегда достаточно в любом водном растворе). Так, например, [c.454]


Электродные потенциалы. ЭДС реакции

Окислительно — восстановительный потенциал является частным, узким случаем понятия электродного потенциала. Рассмотрим подробнее эти понятия.

В ОВР передача электронов восстановителями окислителям происходит при непосредственном контакте частиц, и энергия химической реакции переходит в теплоту.

Энергия любой ОВР, протекающей в растворе электролита, может быть превращена в электрическую энергию, если, например, окислительно-восстановительные процессы разделить пространственно, т.е. передача электронов восстановителем будет происходить через проводник электричества.

Это реализовано в гальванических элементах, где электрическая энергия получается из химической энергии окислительно-восстановительной реакции.

Элемент Даниэля-Якоби

Рассмотрим гальванический элемент Даниэля-Якоби, в котором левый сосуд наполнен раствором сульфата цинка ZnSO4, с опущенной в него цинковой пластинкой, а правый сосуд – раствором сульфата меди CuSO4, с опущенным в него медной пластинкой.

гальванический элемент Даниэля-Якоби
гальванический элемент Даниэля-Якоби

Взаимодействие между раствором и пластиной, которая выступает в качестве электрода, способствует тому, чтобы электрод приобрел электрический заряд.

Возникающая на границе металл-раствор электролита разность потенциалов, называется электродным потенциалом. Значение и знак (+ или -) электродного потенциала определяются природой раствора и находящегося в нем металла.

При погружении металлов в растворы их солей более активные из них (Zn, Fe и др.) заряжаются отрицательно, а менее активные (Cu, Ag, Au и др.) положительно.

Результатом соединения цинковой и медной пластинки проводником электричества, является возникновение в цепи электрического тока за счет перетекания электронов с цинковой к медной пластинке по проводнику.

При этом происходит уменьшение количества электронов в цинке, что компенсируется переходом Zn2+ в раствор т.е. происходит растворение цинкового электрода — анода (процесс окисления).

Zn — 2e = Zn2+

В свою очередь, рост количества электронов в меди компенсируется разряжением ионов меди, содержащихся в растворе, что приводит к накоплению меди на медном электроде – катоде (процесс восстановления):

Cu2+ + 2e = Cu

Таким образом, в элементе Даниэля-Якоби происходит такая реакция:

Zn + Cu2+ = Zn2+ + Cu

Zn + CuSO4 = ZnSO4 + Cu

Количественно охарактеризовать окислительно-восстановительные процессы позволяют электродные потенциалы, измеренные относительно нормального водородного электрода (его потенциал принят равным нулю).

Чтобы определить стандартные электродные потенциалы используют элемент, одним из электродов которого является испытуемый металл (или неметалл), а другим является водородный электрод. По найденной разности потенциалов на полюсах элемента определяют нормальный потенциал исследуемого металла.

Окислительно-восстановительный потенциал

Значениями окислительно-восстановительного потенциала пользуются в случае необходимости определения направления протекания реакции в водных или других растворах.

Проведем реакцию

2Fe3+ + 2I = 2Fe2+ + I2

таким образом, чтобы йодид-ионы и ионы железа обменивались своими электронами через проводник.

В сосуды, содержащие растворы Fe3+ и I, поместим инертные (платиновые или угольные) электроды и замкнем внутреннюю и внешнюю цепь. В цепи возникает электрический ток.

Йодид-ионы отдают свои электроны, которые будут перетекать по проводнику к инертному электроду, погруженному в раствор соли Fe3+:

2I — 2e= I2

2Fe3+ + 2e= 2Fe2+

Процессы окисления-восстановления происходят у поверхности инертных электродов. Потенциал, который возникает на границе инертный электрод – раствор и содержит как окисленную, так восстановленную форму вещества, называется равновесным окислительно-восстановительным потенциалом.

Факторы, влияющие на значение окислительно-восстановительного потенциала

Значение окислительно-восстановительного потенциала зависит от многих факторов, в том числе и таких как:

1) Природа вещества (окислителя и восстановителя)

2) Концентрация окисленной и восстановленной форм.

При температуре 25°С и давлении 1 атм. величину окислительно-восстановительного потенциала рассчитывают с помощью уравнения Нернста:

E = + (RT/nF)ln(Cок/Cвос), где

E – окислительно-восстановительный потенциал данной пары;

E°- стандартный потенциал (измеренный при Cок = Cвос);

R – газовая постоянная (R = 8,314 Дж);

T – абсолютная температура, К

n – количество отдаваемых или получаемых электронов в окислительно-восстановительном процессе;

F – постоянная Фарадея (F = 96484,56 Кл/моль);

Cок – концентрация (активность) окисленной формы;

Cвос– концентрация (активность) восстановленной формы.

Подставляя в уравнение известные данные и перейдя к десятичному логарифму, получим следующий вид уравнения:

E = + (0,059/n)lg(Cок/Cвос)

При Cок > Cвос,  E > и наоборот, если Cок < Cвос, то E <

3) Кислотность раствора

Для пар, окисленная форма которых содержит кислород (например, Cr2O72-, CrO42-, MnO4) при уменьшении pH раствора окислительно-восстановительный потенциал возрастает, т.е. потенциал растет с ростом H+. И наоборот, окислительно-восстановительный потенциал падает с уменьшением H+.

4) Температура

При увеличении температуры окислительно-восстановительный потенциал данной пары также растет.

Стандартные окислительно-восстановительные потенциалы представлены в таблицах специальных справочников. Следует иметь ввиду, что рассматриваются только реакции в водных растворах при температуре ≈ 25°С.

Такие таблицы дают возможность сделать некоторые выводы:

Что можно определить по значению окислительно-восстановительного потенциала

  • Величина и знак стандартных окислительно-восстановительных потенциалов, позволяют предсказать какие свойства (окислительные или восстановительные) будут проявлять атомы, ионы или молекулы в химических реакциях, например

(F2/2F) = +2,87 В – сильнейший окислитель

(K+/K) = — 2,924 В – сильнейший восстановитель

Окислительно-восстановительная пара будет обладать тем большей восстановительной способностью, чем больше числовое значение ее отрицательного потенциала, а окислительная способность тем выше, чем больше положительный потенциал.

  • Возможно определить какое из соединений одного элемента будет обладать наиболее сильным окислительными или восстановительными свойствами.
  • Возможно предсказать направление ОВР. Известно, что работа гальванического элемента имеет место при условии, что разность потенциалов имеет положительное значение. Протекание ОВР в выбранном направлении также возможно, если разность потенциалов имеет положительное значение. ОВР протекает в сторону более слабых окислителей и восстановителей из более сильных, например, реакция

Sn2+ + 2Fe3+ = Sn4+ + 2Fe2+

практически протекает в прямом направлении, т.к.

(Sn4+/Sn2+) = +0,15 В,

(Fe3+/Fe2+) = +0,77 В,

т.е. (Sn4+/Sn2+) < (Fe3+/Fe2+).

Реакция

Cu + Fe2+ = Cu2+ + Fe

невозможна в прямом направлении и протекает только справа налево, т.к.

(Сu2+/Cu) = +0,34 В,

(Fe2+/Fe) = — 0,44 В,

(Fe2+/Fe) < (Сu2+/Cu).

В процессе ОВР количество начальных веществ уменьшается, вследствие чего Е окислителя падает, а E восстановителя возрастает. При окончании реакции, т.е. при наступлении химического равновесия потенциалы обоих процессов выравниваются.

  • Если при данных условиях возможно протекание нескольких ОВР, то в первую очередь будет протекать та реакция, у которой разность окислительно-восстановительных потенциалов наибольшая.
  • Пользуясь справочными данными, можно определить ЭДС реакции.

Как определить электродвижущую силу (ЭДС) реакции?

Рассмотрим несколько примеров реакций и определим их ЭДС:

  1. Mg + Fe2+ = Mg2+ + Fe
  2. Mg + 2H+ = Mg2+ + H2
  3. Mg + Cu2+ = Mg2+ + Cu

(Mg2+/Mg) = — 2,36 В

(2H+/H2) = 0,00 В

(Cu2+/Cu) = +0,34 В

(Fe2+/Fe) = — 0,44 В

Чтобы определить ЭДС реакции, нужно найти разность потенциала окислителя и потенциала восстановителя

ЭДС = Е0ок — Е0восст

  1. ЭДС = — 0,44 — (- 2,36) = 1,92 В
  2. ЭДС = 0,00 — (- 2,36) = 2,36 В
  3. ЭДС = + 0,34 — (- 2,36) = 2,70 В

Все вышеуказанные реакции могут протекать в прямом направлении, т.к. их ЭДС > 0.

Связь константы равновесия и окислительно — восстановительного потенциала

Если возникает необходимость определения степени протекания реакции, то можно воспользоваться константой равновесия.

Например, для реакции

Zn + Cu2+ = Zn2+ + Cu

Применяя закон действующих масс, можно записать

K = CZn2+/CCu2+

Здесь константа равновесия К показывает равновесное соотношение концентраций ионов цинка и меди.

Значение константы равновесия можно вычислить, применив уравнение Нернста

E = + (0,059/n)lg(Cок/Cвос)

Подставим в уравнение значения стандартных потенциалов пар Zn/Zn2+ и Cu/Cu2+, находим

E0Zn/Zn2+ = -0,76 + (0,59/2)lgCZn/Zn2+

E0Cu/Cu2+ = +0,34 + (0,59/2)lgCCu/Cu2+

В состоянии равновесия E0Zn/Zn2+ = E0Cu/Cu2+, т.е.

-0,76 + (0,59/2)lgCZn2+ = +0,34 + (0,59/2)lgCCu2+, откуда получаем

(0,59/2)( lgCZn2 — lgCCu2+) = 0,34 – (-0,76)

lgK = lg (CZn2+/CCu2+) = 2(0,34 – (-0,76))/0,059 = 37,7

K = 1037,7

Значение константы равновесия показывает, что реакция идет практически до конца, т.е. до того момента, пока концентрация ионов меди не станет в 1037,7 раз меньше, чем концентрация ионов цинка.

Константа равновесия и окислительно-восстановительный потенциал связаны общей формулой:

lgK = (E10 -E20 )n/0,059, где

K — константа равновесия

E10 и E20 – стандартные потенциалы окислителя и восстановителя соответственно

n – число электронов, отдаваемых восстановителем или принимаемых окислителем.

Если E10 > E20, то lgK > 0 и K > 1.

Следовательно, реакция протекает в прямом направлении (слева направо) и если разность (E10 — E20) достаточно велика, то она идет практически до конца.

Напротив, если E10 < E20, то  K будет очень мала.

Реакция протекает в обратном направлении, т.к. равновесие сильно смещено влево. Если разность (E10 — E20) незначительна, то и K ≈ 1 и данная реакция не идет до конца, если не создать необходимых для этого условий.

Зная значение константы равновесия, не прибегая к опытным данным, можно судить о глубине протекания химической реакции. Следует иметь ввиду, что данные значений стандартных потенциалов не позволяют определить скорость установления равновесия реакции.

По данным таблиц окислительно-восстановительных потенциалов возможно найти значения констант равновесия примерно для 85000 реакций.

Как составить схему гальванического элемента?

Приведем рекомендации ИЮПАК, которыми следует руководствоваться, чтобы правильно записать схемы гальванических элементов и протекающие в них реакции:

  1. ЭДС элемента — величина положительная, т.к. в гальваническом элементе работа производится.
  2. Значение ЭДС гальванической цепи – это сумма скачков потенциалов на границах раздела всех фаз, но, учитывая, что на аноде происходит окисление, то из значения потенциала катода вычитают значение потенциала анода.

Таким образом, при составлении схемы гальванического элемента слева записывают электрод, на котором происходит процесс окисления (анод), а справа – электрод, на котором происходит процесс восстановления (катод).

  1. Граница раздела фаз обозначается одной чертой — |
  2. Электролитный мостик на границе двух проводников обозначается двумя чертами — ||
  3. Растворы, в которые погружен электролитный мостик записываются слева и справа от него (если необходимо, здесь же указывается концентрация растворов). Компоненты одной фазы, при этом записываются через запятую.

Например, составим схему гальванического элемента, в котором осуществляется следующая реакция:

Fe0 + Cd2+ = Fe2+ + Cd0

В гальваническом элементе анодом является железный электрод, а катодом – кадмиевый.

Анод Fe0|Fe2+ || Cd2+|Cd0Катод

Типичные задачи на составление схем гальванического элемента и вычисление ЭДС реакции с решениями вы найдете здесь.

Термодинамика
Тепловой двигатель Карно 2.svg

Классический Тепловой двигатель Карно

ветви

  • Классический
  • Статистический
  • Химическая
  • Квантовая термодинамика
  • Равновесие  / Неравновесный

Законы

  • Zeroth
  • Первый
  • Второй
  • В третьих

Системы

Состояние
  • Уравнение состояния
  • Идеальный газ
  • Настоящий газ
  • Состояние вопроса
  • Равновесие
  • Контрольный объем
  • Инструменты
Процессы
  • Изобарический
  • Изохорический
  • Изотермический
  • Адиабатический
  • Изэнтропический
  • Изентальпический
  • Квазистатический
  • Политропный
  • Бесплатное расширение
  • Обратимость
  • Необратимость
  • Необратимость
Циклы
  • Тепловые двигатели
  • Тепловые насосы
  • Тепловая эффективность

Свойства системы

Примечание: Сопряженные переменные в курсив

  • Диаграммы свойств
  • Интенсивные и обширные свойства
Функции процесса
  • Работа
  • Высокая температура
Функции государства
  • Температура  / Энтропия  (вступление )
  • Давление  / Объем
  • Химический потенциал  / Номер частицы
  • Качество пара
  • Сниженные свойства

Свойства материала

  • Базы данных недвижимости
Удельная теплоемкость   c =
Т  partial S
N  partial T
Сжимаемость    beta = -
1  partial V
V  partial p
Тепловое расширение    альфа =
1  partial V
V  partial T

Уравнения

  • Теорема Карно
  • Теорема Клаузиуса
  • Фундаментальное отношение
  • Закон идеального газа
  • Максвелл отношения
  • Взаимные отношения Онзагера
  • Уравнения Бриджмена
  • Таблица термодинамических уравнений

Потенциал

  • Свободная энергия
  • Свободная энтропия
  • Внутренняя энергия
    U (S, V)
  • Энтальпия
    H (S, p) = U + pV
  • Свободная энергия Гельмгольца
    А (Т, V) = U-TS
  • Свободная энергия Гиббса
    G (T, p) = H-TS
  • История
  • Культура
История
  • Общий
  • Энтропия
  • Газовые законы
  • Машины “вечный двигатель”
Философия
  • Энтропия и время
  • Энтропия и жизнь
  • Броуновская трещотка
  • Демон Максвелла
  • Парадокс тепловой смерти
  • Парадокс лошмидта
  • Синергетика
Теории
  • Теория калорийности
  • Теория тепла
  • Vis viva («живая сила»)
  • Механический эквивалент тепла
  • Сила мотивации
Ключевые публикации
  • “Экспериментальное расследование
    Относительно … тепла “

  • “О равновесии
    Гетерогенные вещества “

  • “Размышления о
    Движущая сила огня “

Сроки
  • Термодинамика
  • Тепловые двигатели
  • Изобразительное искусство
  • Образование
  • Термодинамическая поверхность Максвелла
  • Энтропия как рассеивание энергии

Ученые

  • Бернулли
  • Больцман
  • Карно
  • Клапейрон
  • Клаузиус
  • Каратеодори
  • Duhem
  • Гиббс
  • фон Гельмгольц
  • Джоуль
  • Максвелл
  • фон Майер
  • Онсагер
  • Ренкин
  • Смитон
  • Шталь
  • Томпсон
  • Томсон
  • ван дер Ваальс
  • Waterston
  • Книга Википедии Книга
  • Категория Категория

В термодинамика, то внутренняя энергия системы выражается парами сопряженные переменные такие как температура и энтропия или давление и объем. Фактически все термодинамические потенциалы выражаются через сопряженные пары. Произведение двух сопряженных величин имеет единицы энергии, а иногда и мощности.

Для механической системы небольшое приращение энергии – это произведение силы на небольшое смещение. Аналогичная ситуация существует в термодинамике. Прирост энергии термодинамической системы можно выразить как сумму произведений определенных обобщенные “силы” что, будучи несбалансированным, вызывает определенные обобщенные «смещения», а произведение двух и есть передаваемая в результате энергия. Эти силы и связанные с ними смещения называются сопряженными переменными. Термодинамическая сила всегда интенсивная переменная и смещение всегда обширная переменная, давая обширную передачу энергии. Интенсивная (силовая) переменная является производной внутренней энергии по переменной экстенсивности (смещения), в то время как все другие экстенсивные переменные остаются постоянными.

В термодинамический квадрат может использоваться как инструмент для вспоминания и вывода некоторых из термодинамические потенциалы на основе сопряженных переменных.

В приведенном выше описании произведение двух сопряженных переменных дает энергию. Другими словами, сопряженные пары сопряжены по энергии. В общем, сопряженные пары могут быть определены относительно любой термодинамической функции состояния. Сопряженные пары относительно энтропия часто используются, в которых произведение сопряженных пар дает энтропию. Такие сопряженные пары особенно полезны при анализе необратимых процессов, как показано на примере вывода Взаимные отношения Онзагера.

Обзор

Подобно тому, как небольшое приращение энергии в механической системе является произведением силы на небольшое смещение, так и приращение энергии термодинамической системы может быть выражено как сумма произведений определенных обобщенных «сил», которые, когда несбалансированные, вызывают определенные обобщенные «смещения», результатом которых является передаваемая в результате энергия. Эти силы и связанные с ними смещения называются сопряженные переменные.(Альберти 2001, п. 1353) Например, рассмотрим pV сопряженная пара. Давление п действует как обобщенная сила: перепады давления вызывают изменение объема { Displaystyle  mathrm {d} V}, а их продукт – энергия, теряемая системой из-за работы. Здесь давление – это движущая сила, объем – это соответствующее смещение, и они образуют пару сопряженных переменных. Точно так же разница температур приводит к изменениям энтропии, и их продуктом является энергия, передаваемая при передаче тепла. Термодинамическая сила всегда интенсивная переменная и смещение всегда обширная переменная, давая обширную энергию. Интенсивная (сила) переменная является производной (экстенсивной) внутренней энергии по отношению к экстенсивной (смещенной) переменной, при этом все другие экстенсивные переменные остаются постоянными.

Теория термодинамических потенциалов не будет полной, пока не рассмотрим количество частиц в системе как переменную наравне с другими обширными величинами, такими как объем и энтропия. Число частиц, как объем и энтропия, является переменной смещения в сопряженной паре. Обобщенная силовая составляющая этой пары – это химический потенциал. Химический потенциал можно рассматривать как силу, которая, будучи несбалансированной, способствует обмену частицами либо с окружающей средой, либо между фазами внутри системы. В случаях, когда имеется смесь химикатов и фаз, это полезная концепция. Например, если контейнер содержит жидкую воду и водяной пар, будет химический потенциал (который отрицателен) для жидкости, которая выталкивает молекулы воды в пар (испарение), и химический потенциал для пара, выталкивая молекулы пара в пар. жидкость (конденсат). Только когда эти «силы» уравновешиваются и химический потенциал каждой фазы равен, достигается равновесие.

Наиболее часто рассматриваемыми сопряженными термодинамическими переменными являются (с соответствующими SI единицы):

Тепловые параметры:
Механические параметры:
или, в более общем смысле,
Параметры материала:

Для системы с разными типами я частиц небольшое изменение внутренней энергии определяется выражением:

{ Displaystyle  mathrm {d} U = T ,  mathrm {d} Sp ,  mathrm {d} V +  sum _ {i}  mu _ {i} ,  mathrm {d} N_ {i}  ,,}

куда  U внутренняя энергия, Т это температура, S энтропия, п давление, V объем,  mu _ {я} химический потенциал я-й тип частицы, и N_ {i} это количество ячастицы в системе.

Здесь температура, давление и химический потенциал являются обобщенными силами, которые вызывают общие изменения энтропии, объема и количества частиц соответственно. Все эти параметры влияют на внутренняя энергия термодинамической системы. Небольшое изменение  mathrm {d} U во внутренней энергии системы дается суммой потока энергии через границы системы за счет соответствующей сопряженной пары. Эти концепции будут расширены в следующих разделах.

Имея дело с процессами, в которых системы обмениваются веществом или энергией, классическая термодинамика не занимается ставка в которых происходят такие процессы, называемые кинетика. По этой причине термин термодинамика обычно используется как синоним равновесная термодинамика. Центральным понятием этой связи является понятие квазистатические процессы, а именно идеализированные, «бесконечно медленные» процессы. Зависящие от времени термодинамические процессы вдали от равновесия изучаются неравновесная термодинамика. Это можно сделать с помощью линейного или нелинейного анализа необратимые процессы, позволяя изучать системы, близкие и далекие от равновесия, соответственно.

Пары давление / объем и напряжение / деформация

В качестве примера рассмотрим pV сопряженная пара. В давление действует как обобщенная сила – перепады давления вызывают изменение объем, а их продукт – энергия, теряемая системой из-за механическая работа. Давление – это движущая сила, объем – это соответствующее смещение, и эти две величины образуют пару сопряженных переменных.

Сказанное выше верно только для невязких жидкостей. В случае вязкие жидкости, пластик и эластичный твердых тел, сила давления обобщается на тензор напряжений, а изменения громкости обобщаются на объем, умноженный на тензор деформации (Ландау и Лифшиц 1986 ). Затем они образуют сопряженную пару. Если  sigma _ {ij} это ij компонент тензора напряжений, и  varepsilon _ {ij} это ij компонент тензора деформации, то механическая работа, совершаемая в результате бесконечно малой деформации, вызванной напряжением. { Displaystyle  mathrm { varepsilon} _ {ij}} является:

{ displaystyle  delta w = V  sum _ {ij}  sigma _ {ij} ,  mathrm {d}  varepsilon _ {ij}}

или, используя Обозначения Эйнштейна для тензоров, в которых предполагается суммирование повторяющихся индексов:

{ displaystyle  delta w = V  sigma _ {ij} ,  mathrm {d}  varepsilon _ {ij}}

В случае чистого сжатия (т. Е. Без сдвиговых сил) тензор напряжений представляет собой просто отрицательную величину давления, умноженного на единичный тензор так что

{ displaystyle  delta w = V , (- p  delta _ {ij}) ,  mathrm {d}  varepsilon _ {ij} = -  sum _ {k} pV ,  mathrm {d}  варепсилон _ {kk}}

В след тензора деформации ( varepsilon _ {{kk}}) – это частичное изменение объема, так что указанное выше сводится к { displaystyle  delta w = -p  mathrm {d} V} как это должно.

Пара температура / энтропия

Аналогичным образом, температура различия приводят к изменениям в энтропия, а их продукт – энергия, передаваемая обогрев. Температура – это движущая сила, энтропия – это соответствующее смещение, и эти две величины образуют пару сопряженных переменных. Пара сопряженных переменных температура / энтропия является единственной высокая температура срок; другие термины по сути представляют собой различные формы работай.

Пара химический потенциал / число частиц

В химический потенциал подобна силе, которая подталкивает увеличение число частиц. В случаях, когда имеется смесь химикатов и фаз, это полезная концепция. Например, если контейнер содержит воду и водяной пар, будет химический потенциал (который отрицателен) для жидкости, выталкивая молекулы воды в пар (испарение), и химический потенциал для пара, выталкивая молекулы пара в жидкость. (конденсация). Только когда эти «силы» уравновешиваются, достигается равновесие.

Смотрите также

  • Обобщенная координата и обобщенная сила: аналогичные пары сопряженных переменных, встречающиеся в классической механике.
  • Интенсивные и обширные свойства

Рекомендации

  • Олберти, Р. А. (2001). «Использование преобразований Лежандра в химической термодинамике» (PDF). Pure Appl. Chem. 73 (8): 1349–1380. Дои:10.1351 / pac200173081349.CS1 maint: ref = harv (связь)
  • Ландау, Л.; Лифшиц, Э. (1986). Теория упругости (Курс теоретической физики Том 7). (Перевод с русского Дж. Б. Сайкса и В. Х. Рейда) (Третье изд.). Бостон, Массачусетс: Баттерворт Хайнеманн. ISBN  978-0-7506-2633-0.CS1 maint: ref = harv (связь)

дальнейшее чтение

  • Льюис, Гилберт Ньютон; Рэндалл, Мерл (1961). Термодинамика. Отредактировано Питцером, Кеннетом С. и Брюером, Лео (2-е изд.). Нью-Йорк, штат Нью-Йорк США: McGraw-Hill Book Co. ISBN  978-0-07-113809-3.

Добавить комментарий