Как составить структурную формулу вещества органическая химия


CharChem
:

Система описания химических формул для WEB.

Химические формулы для “чайников”

Научно-популярная статья о химических формулах.
Обсуждаются структурные развёрнутые, упрощенные и скелетные формулы. А так же истинные и рациональные формулы.

Изначально сайт был задуман, как ресурс для профессиональных химиков.
Но в реальности из поисковых систем происходит очень много обращений от людей, только начинающих изучать химию.
Специально для них создан этот раздел, чтобы в доступной форме рассказать о том, как составляются химические формулы.

Содержание

Структурные формулы – это просто!

Я думаю, что знакомство с формулами лучше всего начать со структурных формул органических веществ.
Считается, что они сложны для понимания, поэтому в школе их изучают в выпускных классах.
Но я уверен, что через 10 минут вы разберетесь, как легко составлять структурные формулы.

Перед нами структурная формула метана – самого простого органического вещества.

H-C-H;H|#2|H

Что мы видим? В центре латинская буква C, а от неё четыре палочки, на концах которых четыре латинских буквы H.
C означает углерод, а H – водород. Это два самых важных элемента, которые входят в состав любых органических веществ.
А что означают палочки? Это химические связи. В них кроется практически весь секрет органической химии.
Фокус в том, что валентность углерода равна 4. Поэтому у каждой буквы C должно быть 4 палочки.
А валентность водорода равна 1, поэтому у него палочка должна быть только одна.
По-моему, палочки отлично демонстрируют такие “страшные” понятия, как химические связи и валентность.

Структурные формулы могут слегка менять свой внешний вид.
В них главное – количество элементов и наличие нужных связей.
Например, формула метана может иметь и такой вид:

H-C-H; H|#2|H =
$slope(45)H/C/H;H#CH$slope() = HC/H; H/#CH =
C<_(x-1.5,y1)H><_(x-.5,y1)H><_(x.5,y1)H>_(x1.5,y1)H

Все эти картинки означают одно и то же. И считаются одинаковыми формулами.

В общем, структурные формулы не являются какими-то жесткими конструкциями.
Если вдруг Вам захотелось бы сделать модель молекулы из подручных материалов,
то для этого лучше всего подошли бы шарики, соединённые пружинками или резинками.
Под шариками я конечно подразумеваю атомы, а резинки – химические связи.

Но в химии приняты не только структурные формулы. И здесь мы познакомимся с некоторыми из них.
Достаточно распространены так называемые истинные формулы.
Для метана истинная формула записывается так:

CH4

Палочки исчезли, а вместо четырёх букв H осталась одна, но с маленькой цифрой 4, которая указывает количество атомов.
Иногда такие формулы называют брутто-формулами.
Мне почему-то такое название нравится больше, поэтому я буду чаще пользоваться именно таким термином.

Обе формулы – структурная и истинная – означают одно и то же вещество.
Структурная конечно более понятна, но брутто-формула проще записывается.

Стоит упомянуть, что метан – это природный газ, который знаком всем, у кого есть газовая плита.
Но не будем на нём долго задерживаться. Пора посмотреть, какие ещё бывают варианты органических структур.

Углеводороды

Прежде, чем мы начнём знакомство с многочисленными органическими соединениями, хочу напомнить –
мы здесь изучаем химические формулы. А все упоминаемые вещества служат для иллюстрации.

Вещество Развёрнутая структурная формула Упрощенная структурная формула Брутто-формула
Этан H-C-C-H; H|#2|H; H|#3|H CH3-CH3
Пропан H-C-C-C-H; H|#2|H; H|#3|H; H|#4|H CH3-CH2-CH3
Бутан H-C-C-C-C-H; H|#2|H; H|#3|H; H|#4|H; H|#5|H CH3-CH2-CH2-CH3
Пентан H-C-C-C-C-C-H;H|#2|H;H|#3|H;H|#4|H;H|#5|H;H|#6|H CH3-CH2-CH2-CH2-CH3
Гексан H-C-C-C-C-C-C-H;H|#2|H;H|#3|H;H|#4|H;H|#5|H;H|#6|H;H|#7|H

CH3-CH2-CH2-CH2-CH2-CH3

или то же самое, но короче:

CH3-(CH2)4-CH3

C6H14

Здесь представлены органические вещества, называемые углеводородами.
Название означает, что они состоят только из углерода и водорода.
Эти вещества в различной мере входят в состав нефти. И это далеко не полный список.
Но сначала смотрим ту колонку, которая называется Развёрнутая структурная формула.
Мы видим уже знакомые буквы C и H, соединённые химическими связями – палочками.
Главное правило по-прежнему в силе: у каждой буквы C четыре палочки, а у каждой H – одна.
Что здесь нового? Появились химические связи между атомами углерода.
И в результате оказалось, что молекулы органических веществ могут строиться при помощи таких цепочек,
где звеньями являются атомы углерода с прилипшими к ними водородами.

Теперь посмотрим на колонку, где представлены упрощённые структурные формулы.
Несложно догадаться, что они призваны экономить время людей, которые постоянно пишут формулы.
Особенно, если эти формулы достаточно большие.
Правила здесь довольно простые – убираем палочки между углеродом и водородом и пишем число атомов водорода в виде числа.
Таким образом, звенья цепочки становятся видны гораздо более отчётливо. По-научному они называются функциональные группы.
Можно даже довольно быстро понять некоторые более хитрые закономерности.
Например, группа на конце цепочки записывается CH3,
а в середине цепочки – CH2.
А для ещё большей экономии повторяющиеся группы можно объединить в скобочках, подписав количество повторов.
Это показано в последней строке таблицы для формулы гексана: CH3-(CH2)4-CH3.

Некоторые функциональные группы получают собственные названия и даже специальные обозначения.
Например, группа CH3 называется метильная группа (от названия метана)
и имеет собственное обозначение: Me. Если Вам попадётся, к примеру, такая формула: {Me}-CH2-{Me},
то ничего страшного тут нет. Это то же самое, что CH3-CH2-CH3, то есть – пропан.

Двойные и тройные связи

Итак, за короткое время мы уже разобрались, что такое структурные формулы и выяснили, что они бывают развёрнутые и упрощённые.
Но пока что мы познакомились только с одинарными химическими связями.
Но на самом деле существуют двойные и даже тройные связи. Посмотрим на следующую таблицу.

Вещество Развёрнутая формула Упрощённая формула Брутто-фломула
Этен
(Этилен)
$slope(55)HC<`/H>_(x1,N2)C<H>/H CH2=CH2
Пропен
(Пропилен)
$slope(45)HC-C/C/H; H#-3H;H/#2-#3H CH2=CH-CH3
Бутен
(Бутилен)
HC<`/H>=C<|H>-C<`|H><|H>-C-H; H|#-3|H CH2=CH-CH2-CH3
Этин
(Ацетилен)
H-C%C-H CH%CH
Пропин
(Метилацетилен)
H-C%C-C-H; H|#-3|H CH%C-CH3
Бутин
(Этилацетилен)
H-C%C-C<`|H><|H>-C-H; H|#-3|H CH%C-CH2-CH3

Представленные здесь вещества тоже относятся к углеводородам.
Если хорошенько присмотреться, то можно увидеть определённое сходство с веществами из первой таблицы.
Названия формируются заменой буквы в конце названия: этан – этен – этин или
пропан – пропен – пропин. Сходство не ограничивается названиями.
Главное – одинаковое количество атомов углерода. А значит – одинаковое количество звеньев в цепи.
Различие кроется в наличии двойных и тройных связей.
Углеводороды в первой таблице называются предельными.
Это означает, что к ним больше ничего нельзя добавить.
А во второй таблице представлены непредельные углеводороды.
То есть, при определённых условиях к ним можно добавить по парочке атомов водорода.

Кроме того, появились дополнительные названия. Тут тоже нет ничего страшного.
Верхние названия, которые без скобок – это научные названия.
А в скобках даны традиционные названия, которые тоже довольно часто употребляются как в научной литературе, так и в быту.

Циклические углеводороды

Продолжим знакомство с формулами углеводородов. Они ещё не раскрыли нам всех своих секретов.
Оказывается, что цепочки могут быть замкнутыми. То есть, атомы углерода соединяются друг с другом циклически.

Вещество Развёрнутая формула Упрощённая формула Брутто-формула
Циклопропан $slope(60)H`/C`/C:a`/H; H#CC:bH; H-#a-#b-H H2C_(x1.4)CH2_q3CH2_q3
Циклобутан H|C|C|H; H|C|C|H; H-#2-#6-H; H-#3-#7-H H2C-CH2`|CH2`-H2C_#1
Циклопентан C_(x1.1)C@:H2()<_(a24)H><_(a84)H>@()_qC@H2()_qC@H2()_qC@H2()_q@H2() H2C_(x1.4)CH2_qCH2_qCH2_qH2C_q
Циклогексан CC@:H2()<_(a-30)H><_(a-90)H>@()|C@H2()`/C@H2()`C@H2()`|C@H2()/@H2() $L(1.3)CH2CH2|CH2`/CH2`H2C`|H2C/

Изомеры

До сих пор мы не особенно обращали внимания на последнюю колонку, где выведены брутто-формулы.
Но может возникнуть вполне законный вопрос: зачем вообще нужны структурные формулы?
Ведь брутто-формулы гораздо проще записывать. Может быть, достаточно было бы пользоваться только ими?
Но оказывается, что без структурных формул обойтись не получится.
Например, если сравнить брутто-формулы из двух предыдущих таблиц, то мы увидим,
что циклопропан имеет абсолютно тот же состав, что и пропен (C3H6).
А брутто-формула циклобутана совпадает с бутеном (C4H8).
Но это разные вещества! И разница заключается в структуре.
То есть, имеет большое значение, в каком порядке элементы соединены друг с другом.
А значит, именно структурные формулы позволяют точно описать нужное вещество.

В химии существует такое понятие как изомеры.
Так называют разные вещества, которые имеют одинаковый состав. Это не редкость.
И в этом нет ничего странного. Ведь бывают же совершенно разные слова, состоящие из одинаковых букв.

Классическими изомерами среди углеводородов можно назвать бутан и изобутан. Посмотрим на их формулы:

Вещество Развёрнутая структурная формула Упрощенная структурная формула Брутто-формула
Бутан H-C-C-C-C-H; H|#2|H; H|#3|H; H|#4|H; H|#5|H CH3-CH2-CH2-CH3
Метилпропан
(Изобутан)
HCC/C/H; H|#2`/H; H|#4H; H|#3|C|H; H/#-3H CH3-CH<|CH3>-CH3

Изобутан является изомером бутана. Обратите внимание, что брутто-формулы одинаковы.
Но хотя они близки по свойствам, это разные вещества.

Как видно, разнообразие углеводородов не перестаёт удивлять.
Оказывается, они могут состоять не только из линейных цепочек, но могут образовывать разветвлённые структуры.
И чем длиннее исходная цепочка, тем больше вариантов.
Если у бутана возможны только два изомера, то у пентана их уже три:

Вещество Упрощённая формула Брутто-формула
Пентан CH3-CH2-CH2-CH2-CH3
2-метилбутан
(Изопентан)
CH3-CH<`|CH3>-CH2-CH3
2,2-диметилпропан
(Неопентан)
CH3-C<`|CH3><|CH3>-CH3

А у вещества декан, имеющего формулу C10H22, существует 75 изомеров.
Но мы не будем их здесь рассматривать.

Обратите внимание, что научное название зависит от числа звеньев в прямой цепочке,
а традиционное название просто учитывает количество атомов углерода в молекуле.
Так получилось из-за того, что химики, которые только начинали исследовать углеводороды,
первым делом научились определять состав веществ.
То есть, сначала люди смогли получить лишь брутто-формулы.
А из них невозможно понять, какова длина самой длинной цепочки. Поэтому названия учитывали общее число атомов углерода.
Затем наука дошла до того, что люди смогли исследовать структуру молекул, придумали структурные формулы
и переименовали уже известные вещества в соответствии с новыми знаниями.
Но старые названия уже успели прижиться и существуют до сих пор.

Бензол и скелетные формулы

Думаю, что пора познакомиться ещё с одним весьма примечательным представителем углеводородов.
Это вещество называется бензол. Вот его формулы:

Развёрнутая формула Упрощённая формула Скелетная формула Брутто-формула
H|CC|C<H>`//C<|H>`C<`/H>`||C<`H>//H H_(y.5)C\CH|CH`//C<_(y.5)H>`HC`||HC/ \|`//“||/

Чем же этот бензол так примечателен? Дело в том, что это шестиугольное колечко входит в состав огромного
числа органических веществ.
И вот на примере бензола предлагаю ознакомиться с ещё одним очень важным способом записи структурных формул – скелетными формулами.
Как видно из таблицы, скелетная формула бензола представляет собой правильный шестиугольник без каких-либо букв,
зато изображения химических связей выглядят одинаково.
В общем, правила составления скелетных формул отличаются от уже знакомых нам развёрнутых всего двумя особенностями:

  • Буквы C не пишутся. Предполагается, что каждый угол изображаемой геометрической фигуры содержит атом углерода.
  • Буквы H тоже не пишутся. Если в углу сходятся меньше четырёх линий, то это означает, что все оставшиеся заняты водородом.

Конечно, скелетные формулы не так просты, как развёрнутые, но зато их гораздо легче записывать.
Поэтому в органической химии это самый популярный вид формул. И мне кажется, Вам тоже будет несложно к ним привыкнуть.

Давайте посмотрим, как выглядят формулы других веществ, производных от бензола.

Вещество Развёрнутая формула Скелетная формула Смешанный вариант Брутто-формула
Нафталин C/C<`|H>\C</H>|C<H>`//C<|H>`C`|`\C<`|H>`/C<`H>||C<`/H>C/`/|H /\|`//“|`\`/||// C10H8
Толуол H|C|CC|C<H>`//C<|H>`C<`/H>`||C<`H>//H; H-#2-H |\|`//“||/ CH3|\|`//“||/
Кумол HCC/C/H; H|#2|H; H|#4|H; H|#3|CC|C<H>`//C<|H>`C<`/H>`||C<`H>//H </>|\|`//“||/ H3C</CH3>|\|`//“||/

Как видите, появился ещё и смешанный вариант. Опять какой-то новый вид формул? На этот раз уже нет.
Просто иногда внутри одной формулы удобно сочетать различные способы.

А вот скелетная формула углеводорода, который называется коронен. Причём, другие варианты здесь уже использовать нет смысла.

|/`/|“/|`|“|/`/“||/\/\|||`/|`//“/`\`|/`/“||/

Впечатляет? Но это далеко не самая сложная структура для органического вещества.
Так что теперь Вы понимаете, почему скелетные формулы так популярны….

Скелетные формулы существуют не только для циклических молекул.
Понятно, что метан и этан имеют слишком мало узлов, поэтому для них не стоит пытаться использовать скелетные формулы.
А вот какая-нибудь длинная молекула изображается довольно легко.
Только не в виде прямой цепочки, а при помощи ломаной линии, ведь атомы углерода изображаются углами.

Бутан Бутен Изобутан Гексан
// /// |`|0/ ///

Трехмерные изображения

Иногда плоского изображения становится недостаточно.
Поэтому для изображения трехмерных структурных формул используют особое изображение для химических связей:

{A}<`wB><|wB>/wB Такая химическая связь означает, что А находится в плоскости листа, а В расположено ближе к наблюдателю.
{A}<`dB><|dB>/dB а здесь В расположено от наблюдателя дальше, чем плоскость листа. То есть, А ближе, чем В

В качестве примера посмотрим на формулы уже известных нам углеводородов:

Метан Пропан Циклопропан Циклопентан
H|C<`/H><_(A65,w+)H>_(A20,d+)H $slope(45)H|C<_(A170,d+)H><`/wH>C<`/wH><dH>/C<wH><_(A10,d+)H>`|H C_(x1.3)C_q3C_q3; H_(A-20,w-)#1_(A110,d+)H; H_(A-160,w-)#2_(A80,d+)H; H_(A65,w-)#3_(A-65,d+)H _(x1,y.5,W+)_(x1.5)_(x.5,y-1.5,W-)_(x-1.3,y1.1)_#1; $slope(60)H#1`/H; H#2`/H; H_(A140)#3H; H|#4-H; H#5_(y1.2)H

Конечно, здесь потребуется включать воображение, чтобы представить трёхмерную структуру.
Но зато теперь Вы не растеряетесь, увидев подобную запись.

Формулы с окружностью

Думаю, что стоит упомянуть ещё одну интересную конструкцию, которая нередко встречается при изображении циклических структур.
Вот перед Вами несколько скелетных формул уже известного нам бензола:

/\|`//“|| <-> /=`//`-`\ <-> //||`/`\`| <-> /|`/“|_o <-> H|</H>|<H>`/<|H>`<`/H>`|<`H>/_o

Само собой, все они означают одно и то же. Но первые три отличаются только поворотом вокруг собственного центра.
Тут нет ничего необычного, ведь молекулы не стоят на одном месте.
А вот дальше мы видим кружок вместо трёх двойных связей.
Причём, я намеренно изобразил все атомы водорода в последней формуле.
Чтобы было хорошо видно, что каждый угол фактически лишился одной чёрточки. Их заменил кружок.
Он как бы означает, что все двойные связи равномерно распределены внутри кольца.

Формулы бензола, где используется чередование одинарных и двойных связей называются формулами Кекуле в честь немецкого учёного,
который внёс значительный вклад в исследование структуры бензола.

На самом деле, среди химиков нет единого мнения по поводу того, насколько правильно использование формул с кружком.
Некоторые авторы категорически против. Но есть масса публикаций, где такая запись широко употребляется.
Моя задача состоит в том, чтобы Вы узнали о существовании подобных формул и не удивлялись, увидев их.

Вот пара примеров записи уже для уже знакомых нам веществ:

Нафталин: /|`/“|_o“/|/_o Толуол: `/`-`/-_o-CH3

Знакомство с кислородом. Спирты

До сих пор мы знакомились со структурными формулами углеводородов, которые состоят только из углерода и водорода.
Думаю, пора познакомиться с новым элементом – кислородом. Он обозначается латинской буквой O.
Его валентнсть равна 2. То есть, каждая буква O в структурных формулах должна снабжаться двумя палочками.

Кислород – очень распространённый элемент на нашей планете.
Он входит в состав большого количества органических и неорганических веществ.
Но мы начнём знакомство с группы веществ, называемых спиртами:

Вещество Развёрнутая структурная формула Упрощенная структурная формула Скелетная формула Брутто-формула
Метанол
(метиловый спирт)
H-C-O-H; H|#C|H CH3-OH OH
Этанол
(этиловый спирт)
H-C-C-O-H; H|#2|H; H|#3|H CH3-CH2-OH /OH
1-Пропанол
(пропиловый спирт)
H-C-C-C-O-H; H|#2|H; H|#3|H; H|#4|H CH3-CH2-CH2-OH //OH
2-Пропанол
(изопропиловый спирт)
H-C-C-C-H; H|#2|H; H|#3|O|H; H|#4|H CH3-CH<|OH>-CH3 <|OH>/

Не правда ли, что в этом есть что-то знакомое? Метан – метанол, этан – этанол, пропан – пропанол.
Да, можно сказать, что спирт получается из углеводорода, если заменить один атом -H на группу -O-H
(или -OH в упрощенных структурных формулах).
Химики называют её: гидроксильная группа, по латинским названиям водорода и кислорода.
А иногда она даже называется спиртовой группой.

Все спирты можно описать в виде обобщённой формулы {R}-OH,
где OH – гидроксильная группа, а R – остальная часть молекулы органического вещества.

Конечно же стоит упомянуть, что этанол – это тот самый спирт, который входит в состав алкогольных напитков.
Другие представленные здесь спирты по запаху, цвету и даже вкусу довольно похожи на этиловый спирт.
Но они очень вредны для здоровья человка. Например, один глоток метанола может оставить человека слепым на всю жизнь.
А если выпить больше, то это можеть оказаться фатальным для жизни.

Ещё здесь из четырёх спиртов есть два изомера: 1-пропанол и 2-пропанол.
У них одинаковые брутто-формулы, хотя вещества это разные.
Их молекулы отличаются номером углеродного атома, к которому крепится группа OH.
Возможно, Вы спросите, почему у 1-пропанола гидроксильная группа присоединена к третьему, а не к первому атому углерода?
Тут следует вспомнить, что молекулы не находятся в одном положении. Они постоянно крутятся. И вполне могут развернуться как угодно:

CH3-CH2-CH2-OH = $slope(45)CH3CH2CH2OH = CH3|CH2|CH2|OH = HO/CH2/CH2/CH3 =
HO-CH2-CH2-CH3; @:Cx(n,t)#&n_(y.7,N0)$itemColor1(gray)”&t”@(2,1); @Cx(3,2); @Cx(4,3)

Поэтому первый номер – тот, который ближе к гидроксильной группе.

Все спирты, с которыми мы уже успели познакомиться, имеют в своём составе одну гидроксильную группу.
Химики называют их одноатомные спирты. Но существуют вещества с различным количеством гидроксильных групп.
Они соответственно называются двухатомные спирты, трёхатомные спирты и так далее…
В качестве примера трёхатомного спирта можно привести достаточно известное вещество – глицерин:

Развёрнутая формула Упрощённая формула Скелетная формула Брутто-формула
H-C-C-C-H; $slope(45)H`/O|#2|H; H`/O|#3|H; H`/O|#4|H OH|CH2-CH<`|OH>-CH2`|OH HO/<`|OH>/OH

Ну и чтобы завершить знакомство со спиртами, приведу ещё формулу другого известного вещества – холестерина.
Далеко не все знают, что он является одноатомным спиртом!

|`/`\`|<`|w>“/|<`/w$color(red)HO$color()>/`|0/`|/<`|w>|_q_q_q<-dH>:a_q|0<|dH>`/<`|wH>`|dH;
#a_(A-72)<_(A-120,d+)>-/-/<->`

Гидроксильную группу в нём я обозначил красным цветом.

Карбоновые кислоты

Любой винодел знает, что вино должно храниться без доступа воздуха. Иначе оно скиснет.
Но химики знают причину – если к спирту присоединить ещё один атом кислорода, то получится кислота.

Посмотрим на формулы кислот, которые получаются из уже знакомых нам спиртов:

Вещество Развёрнутая структурная формула Упрощенная структурная формула Скелетная формула Брутто-формула
Метановая кислота
(муравьиная кислота)
H/C`|O|OH HCOOH O//OH
Этановая кислота
(уксусная кислота)
H-C-C<//O>O-H; H|#C|H CH3-COOH /`|O|OH
Пропановая кислота
(метилуксусная кислота)
H-C-C-C<//O>O-H; H|#2|H; H|#3|H CH3-CH2-COOH /`|O|OH
Бутановая кислота
(масляная кислота)
H-C-C-C-C<//O>O-H; H|#2|H; H|#3|H; H|#4|H CH3-CH2-CH2-COOH //`|O|OH
Обобщённая формула {R}-C<//O>O-H {R}-COOH или {R}-CO2H {R}/`|O|OH

Отличительной особенностью органических кислот является наличие карбоксильной группы (COOH),
которая и придаёт таким веществам кислотные свойства.

Все, кто пробовал уксус, знают что он весьма кислый. Причиной этого является наличие в нём уксусной кислоты.
Обычно столовый уксус содержит от 3 до 15% уксусной кислоты, а остальное (по большей части) – вода.
Употребление в пищу уксусной кислоты в неразбавленном виде представляет опасность для жизни.

Карбоновые кислоты могут иметь несколько карбоксильных групп.
В этом случае они называются: двухосновная, трёхосновная и т.д…

В пищевых продуктах содержится немало других органических кислот. Вот только некоторые из них:

Щавелевая кислота Молочная кислота Яблочная кислота Лимонная кислота
HOOC-COOH H3C<|OH>/COOH HOOC/<`|OH>COOH HOOC/<`|COOH><|OH>/COOH
двухосновная карбоновая кислота оксикарбоновая кислота Двухосновная оксикарбоновая кислота Трёхосновная оксикарбоновая кислота

Название этих кислот соответствует тем пищевым продуктам, в которых они содержатся.
Кстати, обратите внимание, что здесь встречаются кислоты, имеющие и гидроксильную группу, характерную для спиртов.
Такие вещества называются оксикарбоновыми кислотами (или оксикислотами).
Внизу под каждой из кислот подписано, уточняющее название той группы органических веществ, к которой она относится.

Радикалы

Радикалы – это ещё одно понятие, которое оказало влияние на химические формулы.
Само слово наверняка всем известно, но в химии радикалы не имеют ничего общего с политиками, бунтовщиками и прочими гражданами с активной позицией.
Здесь это всего лишь фрагменты молекул. И сейчас мы разберёмся, в чём их особенность и познакомимся с новым способом записи химических формул.

Выше по тексту уже несколько раз упоминались обобщённые формулы: спирты – {R}-OH и
карбоновые кислоты – {R}-COOH. Напомню, что -OH и -COOH – это функциональные группы.
А вот R – это и есть радикал. Не зря он изображается в виде буквы R.

Если выражаться более определённо, то одновалентным радикалом называется часть молекулы, лишённая одного атома водорода.
Ну а если отнять два атома водорода, то получится двухвалентный радикал.

Радикалы в химии получили собственные названия.
Некоторые из них получили даже латинские обозначения, похожие на обозначения элементов.
И кроме того, иногда в формулах радикалы могут быть указаны в сокращённом виде, больше напоминающем брутто-формулы.
Всё это демонстрируется в следующей таблице.

Название Структурная формула Обозначение Краткая формула Пример спирта
Метил CH3-{} Me CH3 {Me}-OH CH3OH
Этил CH3-CH2-{} Et C2H5 {Et}-OH C2H5OH
Пропил CH3-CH2-CH2-{} Pr C3H7 {Pr}-OH C3H7OH
Изопропил H3CCH(*`/H3C*)-{} i-Pr C3H7 {i-Pr}-OH (CH3)2CHOH
Фенил `/`=`//-\-{} Ph C6H5 {Ph}-OH C6H5OH

Думаю, что здесь всё понятно. Хочу только обратить внимание на колонку, где приводятся примеры спиртов.
Некоторые радикалы записываются в виде, напоминающем брутто-формулу, но функциональная группа записывается отдельно.
Например, CH3-CH2-OH превращается в C2H5OH.
А для разветвлённых цепочек вроде изопропила применяются конструкции со скобочками.

Существует ещё такое явление, как свободные радикалы.
Это радикалы, которые по каким-то причинам отделились от функциональных групп.
При этом нарушается одно из тех правил, с которых мы начали изучение формул:
число химических связей уже не соответствует валентности одного из атомов.
Ну или можно сказать, что одна из связей становится незакрытой с одного конца.
Обычно свободные радикалы живут короткое время, ведь молекулы стремятся вернуться в стабильное состояние.

Знакомство с азотом. Амины

Предлагаю познакомиться с ещё одним элементом, который входит в состав многих органических соединений. Это азот.
Он обозначается латинской буквой N и имеет валентность, равную трём.

Посмотрим, какие вещества получаются, если к знакомым нам углеводородам присоединить азот:

Вещество Развёрнутая структурная формула Упрощенная структурная формула Скелетная формула Брутто-формула
Аминометан
(метиламин)
H-C-N</H>H;H|#C|H CH3-NH2 NH2
Аминоэтан
(этиламин)
H-C-C-N</H>H;H|#C|H;H|#3|H CH3-CH2-NH2 /NH2
Диметиламин H-C-N<`|H>-C-H; H|#-3|H; H|#2|H $L(1.3)H/N<_(A80,w+)CH3>dCH3 /N<_(y-.5)H>
Аминобензол
(Анилин)
HN</H>|C\C</H>|C<H>`//C<|H>`C<`/H>`||C<`H>/ NH2|C\CH|CH`//C<_(y.5)H>`HC`||HC/ NH2||`/“|/_o
Триэтиламин $slope(45)H-C-C/NC-C-H;H|#2|H; H|#3|H; H|#5|H;H|#6|H; #N`|C<`-H><-H>`|C<`-H><-H>`|H CH3-CH2-N<`|CH2-CH3>-CH2-CH3 /N<`|/>|

Как Вы уже наверное догадались из названий, все эти вещества объединяются под общим названием амины.
Функциональная группа {}-NH2 называется аминогруппой.
Вот несколько обобщающих формул аминов:

По числу замещённых атомов водорода По числу аминогрупп в молекуле
Первичный амин {R}-NH2 Моноамин {R}-NH2
Вторичный амин {R1}-NH-{R2} Диамин H2N-{R}-NH2
Третичный амин {R1}-N<`|{R3}>-{R2} Триамин H2N-{R}(*`|NH2*)-NH2

В общем, никаких особых новшеств здесь нет.
Если эти формулы Вам понятны, то можете смело заниматься дальнейшим изучением органической химии,
используя какой-нибудь учебник или интернет.
Но мне бы хотелось ещё рассказать о формулах в неорганической химии.
Вы убедитесь, как их легко будет понять после изучения строения органических молекул.

Рациональные формулы

Не следует делать вывод о том, что неорганическая химия проще, чем органическая.
Конечно, неорганические молекулы обычно выглядят гораздо проще, потому что они не склонны к образованию таких сложных структур, как углеводороды.
Но зато приходится изучать более сотни элементов, входящих в состав таблицы Менделеева.
А элементы эти имеют склонность объединяться по химическим свойствам, но с многочисленными исключениями.

Так вот, ничего этого я рассказывать не буду. Тема моей статьи – химические формулы.
А с ними как раз всё относительно просто.
Наиболее часто в неорганической химии употребляются рациональные формулы.
И мы сейчас разберёмся, чем же они отличаются от уже знакомых нам.

Для начала, познакомимся с ещё одним элементом – кальцием. Это тоже весьма распространённый элемент.
Обозначается он Ca и имеет валентность, равную двум.
Посмотрим, какие соединения он образует с известными нам углеродом, кислородом и водородом.

Вещество Структурная формула Рациональная формула Брутто-формула
Оксид кальция Ca=O CaO
Гидроксид кальция H-O-Ca-O-H Ca(OH)2
Карбонат кальция $slope(45)Ca`/OC|O`|/O`#1 CaCO3
Гидрокарбонат кальция HO/`|O|O/CaO/`|O|OH Ca(HCO3)2
Угольная кислота H|OC|O`|/O`|H H2CO3

При первом взгляде можно заметить, что рациональная формула является чем то средним между структурной и брутто-формулой.
Но пока что не очень понятно, как они получаются.
Чтобы понять смысл этих формул, нужно рассмотреть химические реакции, в которых участвуют вещества.

Кальций в чистом виде – это мягкий белый металл. В природе он не встречается.
Но его вполне возможно купить в магазине химреактивов. Он обычно хранится в специальных баночках без доступа воздуха.
Потому что на воздухе он вступает в реакцию с кислородом. Собственно, поэтому он и не встречается в природе.
Итак, реакция кальция с кислородом:

2Ca + O2 -> 2CaO

Цифра 2 перед формулой вещества означает, что в реакции участвуют 2 молекулы.
Из кальция и кислорода получается оксид кальция.
Это вещество тоже не встречается в природе потому что он вступает в реакцию с водой:

CaO + H2O -> Ca(OH2)

Получается гидроксид кальция. Если присмотреться к его структурной формуле (в предыдущей таблице), то видно,
что она образована одним атомом кальция и двумя гидроксильными группами, с которыми мы уже знакомы.
Таковы законы химии: если гидроксильная группа присоединяется к органическому веществу, получается спирт,
а если к металлу – то гидроксид.

Но и гидроксид кальция не встречается в природе из-за наличия в воздухе углекислого газа.
Думаю, что все слыхали про этот газ. Он образуется при дыхании людей и животных, сгорании угля и нефтепродуктов,
при пожарах и извержениях вулканов.
Поэтому он всегда присутствует в воздухе. Но ещё он довольно хорошо растворяется в воде, образуя угольную кислоту:

CO2 + H2O <=> H2CO3

Знак <=> говорит о том, что реакция может проходить в обе стороны при одинаковых условиях.

Таким образом, гидроксид кальция, растворённый в воде, вступает в реакцию с угольной кислотой
и превращается в малорастворимый карбонат кальция:

Ca(OH)2 + H2CO3 -> CaCO3″|v” + 2H2O

Стрелка вниз означает, что в результате реакции вещество выпадает в осадок.
При дальнейшем контакте карбоната кальция с углекислым газом в присутствии воды происходит обратимая
реакция образования кислой соли – гидрокарбоната кальция, который хорошо растворим в воде

CaCO3 + CO2 + H2O <=> Ca(HCO3)2

Этот процесс влияет на жесткость воды.
При повышении температуры гидрокарбонат обратно превращается в карбонат.
Поэтому в регионах с жесткой водой в чайниках образуется накипь.

Из карбоната кальция в значительной степени состоят мел, известняк, мрамор, туф и многие другие минералы.
Так же он входит в состав кораллов, раковин моллюсков, костей животных и т.д…
Но если карбонат кальция раскалить на очень сильном огне, то он превратится в оксид кальция и углекислый газ.

Этот небольшой рассказ о круговороте кальция в природе должен пояснить, для чего нужны рациональные формулы.
Так вот, рациональные формулы записываются так, чтобы были видны функциональные группы. В нашем случае это:

OH Гидроксильная группа
CO3 Карбонат – соль угольной кислоты
HCO3 Гидрокарбонат – кислая соль угольной кислоты

Кроме того, отдельные элементы – Ca, H, O(в оксидах) – тоже являются самостоятельными группами.

Ионы

Думаю, что пора знакомиться с ионами. Это слово наверняка всем знакомо.
А после изучения функциональных групп, нам ничего не стоит разобраться, что же представляют собой эти ионы.

В общем, природа химических связей обычно заключается в том, что одни элементы отдают электроны, а другие их получают.
Электроны – это частицы с отрицательным зарядом. Элемент с полным набором электронов имеет нулевой заряд.
Если он отдал электрон, то его заряд становится положительным, а если принял – то отрицатеньным.
Например, водород имеет всего один электрон, который он достаточно легко отдаёт, превращаясь в положительный ион.
Для этого существует специальная запись в химических формулах:

H2O <=> H^+ + OH^-

Здесь мы видим, что в результате электролитической диссоциации вода распадается на положительно заряженный
ион водорода и отрицательно заряженную группу OH.
Ион OH^- называется гидроксид-ион.
Не следует его путать с гидроксильной группой, которая является не ионом, а частью какой-то молекулы.
Знак + или – в верхнем правом углу демонстрирует заряд иона.
А вот угольная кислота никогда не существует в виде самостоятельного вещества.
Фактически, она является смесью ионов водорода и карбонат-ионов (или гидрокарбонат-ионов):

H2CO3 = H^+ + HCO3^- <=> 2H^+ + CO3^2-

Карбонат-ион имеет заряд 2-. Это означает, что к нему присоединились два электрона.

Отрицательно заряженные ионы называются анионы. Обычно к ним относятся кислотные остатки.
Положительно заряженные ионы – катионы. Чаще всего это водород и металлы.

И вот здесь наверное можно полностью понять смысл рациональных формул. В них сначала записывается катион, а за ним – анион.
Даже если формула не содержит никаких зарядов.

Вы наверное уже догадываетесь, что ионы можно описывать не только рациональными формулами.
Вот скелетная формула гидрокарбонат-аниона:

O^-|O`|/OH

Здесь заряд указан непосредственно возле атома кислорода, который получил лишний электрон, и поэтому лишился одной чёрточки.
Проще говоря, каждый лишний электрон уменьшает количество химических связей, изображаемых в структурной формуле.
С другой стороны, если у какого-то узла структурной формулы стоит знак +, то у него появляется дополнительная палочка.
Как всегда, подобный факт нужно продемонстрировать на примере.
Но среди знакомых нам веществ не встречается ни одного катиона, который состоял бы из нескольких атомов.
А таким веществом является аммиак. Его водный раствор часто называется нашатырный спирт и входит в состав любой аптечки.
Аммиак является соединением водорода и азота и имеет рациональную формулу NH3.
Рассмотрим химическую реакцию, которая происходит при растворении аммиака в воде:

NH3 + H2O <=> NH4^+ + OH^-

То же самое, но с использованием структурных формул:

H|N<`/H>H + H-O-H <=> H|N^+<_(A75,w+)H><_(A15,d+)H>`/H + O`^-# -H

В правой части мы видим два иона.
Они образовались в результате того, что один атом водорода переместился из молекулы воды в молекулу аммиака.
Но этот атом переместился без своего электрона. Анион нам уже знаком – это гидроксид-ион.
А катион называется аммоний. Он проявляет свойства, схожие с металлами.
Например, он может объединиться с кислотным остатком.
Вещество, образованное соединением аммония с карбонат-анионом называется карбонат аммония:
(NH4)2CO3.
Вот уравнение реакции взаимодействия аммония с карбонат-анионом, записанное в виде структурных формул:

2H|N^+<`/H><_(A75,w+)H>_(A15,d+)H + O^-C|O`|/O^- <=>
H|N^+<`/H><_(A75,w+)H>_(A15,d+)H`|0O^-C|O`|/O^-|0H_(A-15,d-)N^+<_(A105,w+)H><H>`|H

Но в таком виде уравнение реакции дано в демонстрационных целях.
Обычно уравнения используют рациональные формулы:

2NH4^+ + CO3^2- <=> (NH4)2CO3

Система Хилла

Итак, можно считать, что мы уже изучили структурные и рациональные формулы.
Но есть ещё один вопрос, который стоит рассмотреть подробнее.
Чем же всё-таки отличаются брутто-формулы от рациональных?
Мы знаем почему рациональная формула угольной кислоты записывается H2CO3, а не как-то иначе.
(Сначала идут два катиона водорода, а за ними карбонат-анион).
Но почему брутто-формула записывается CH2O3 ?

В принципе, рациональная формула угольной кислоты вполне может считаться истинной формулой,
ведь в ней нет повторяющихся элементов. В отличие от NH4OH или
Ca(OH)2.
Но к брутто-формулам очень часто применяется дополнительное правило, определяющее порядок следования элементов.
Правило довольно простое: сначала ставится углерод, затем водород, а дальше остальные элементы в алфавитном порядке.
Вот и выходит CH2O3 – углерод, водород, кислород.
Это называется системой Хилла. Она используется практически во всех химических справочниках. И в этой статье тоже.

Вместо заключения мне хотелось бы рассказать о системе CharChem.
Она разработана для того, чтобы все те формулы, которые мы тут обсуждали,
можно было легко вставить в текст.
Собственно, все формулы в этой статье нарисованы при помощи CharChem.

Зачем вообще нужна какая-то система для вывода формул?
Всё дело в том, что стандартный способ отображения информации в интернет-браузерах – это язык гипертекстовой разметки (HTML).
Он ориентирован на обработку текстовой информации.

Рациональные и брутто-формулы вполне можно изобразить при помощи текста.
Даже некоторые упрощённые структурные формулы тоже могут быть записаны текстом,
например спирт CH3-CH2-OH.
Хотя для этого пришлось бы в HTML использовать такую запись:
CH<sub>3</sub>-CH<sub>2</sub>-OH.
Это конечно создаёт некоторые трудности, но с ними можно смириться. Но как изобразить структурную формулу?
В принципе, можно использовать моноширинный шрифт:

    H H
    | |
  H-C-C-O-H
    | |
    H H

Выглядит конечно не очень красиво, но тоже осуществимо.

Настоящая проблема возникает при попытке изобразить бензольные кольца и при использовании скелетных формул.
Здесь не остаётся иного пути, кроме подключения растрового изображения.
Растры хранятся в отдельных файлах. Браузеры могут подключать изображения в формате gif, png или jpeg.
Для создания таких файлов требуется графический редактор. Например, Фотошоп.
Но я более 10 лет знаком с Фотошопом и могу сказать точно, что он очень плохо подходит для изображения химических формул.
Гораздо лучше с этой задачей справляются
молекулярные редакторы.
Но при большом количестве формул, каждая из которых хранится в отдельном файле, довольно легко в них запутаться.
Например, число формул в этой статье равно .
Из них выведены виде графических изображений (остальные при помощи средств HTML).

Система CharChem позволяет хранить все формулы прямо в HTML-документе в текстовом виде. По-моему, это очень удобно.
Кроме того, брутто-формулы в этой статье вычисляются автоматически.
Потому что CharChem работает в два этапа: сначала текстовое описание преобразуется в информационную структуру (граф),
а затем с этой структурой можно выполнять различные действия.
Среди них можно отметить следующие функции: вычисление молекулярной массы, преобразование в брутто-формулу,
проверка на возможность вывода в виде текста, графическая и текстовая отрисовка.

Таким образом, для подготовки этой статьи я пользовался только текстовым редактором.
Причём, мне не пришлось думать, какая из формул будет графической, а какая – текстовой.

Вот несколько примеров, раскрывающих секрет подготовки текста статьи:

Текстовое описание CharChem Выводимый результат Сгенерированная брутто-формула
(NH4)2CO3 (NH4)2CO3
H-C-C-O-H; H|#2|H; H|#3|H H-C-C-O-H; H|#2|H; H|#3|H
CH3|\|`//“||/ CH3|\|`//“||/

Описания из левого столбца автоматически превращаются в формулы во втором столбце.
В первой строчке описание рациональной формулы очень похоже на отображаемый результат.
Разница только в том, что числовые коэффициенты выводятся подстрочником.
Во второй строке развёрнутая формула задана в виде трёх отдельных цепочек, разделённых символом ;
Я думаю, нетрудно заметить, что текстовое описание во многом напоминает те действия,
которые потребовались бы для изображения формулы карандашом на бумаге.
В третьей строке демонстрируется использование наклонных линий при помощи символов и /.
Значок ` (обратный апостроф) означает, что линия проводится справа налево (или снизу вверх).

Здесь есть гораздо более подробная документация по использованию системы CharChem.

На этом разрешите закончить статью и пожелать удачи в изучении химии.

Краткий толковый словарь использованных в статье терминов

Углеводороды
Вещества, состоящие из углерода и водорода. Отличаются друг от друга структурой молекул.
Структурные формулы
схематические изображения молекул, где атомы обозначаются латинскими буквами, а химические связи – чёрточками.
Структурные формулы бывают развёрнутыми, упрощёнными и скелетными.
Развёрнутые структурные формулы
– такие структурные формулы, где каждый атом представлен в виде отдельного узла.
Упрощённые структурные формулы
– такие структурные формулы, где атомы водорода записаны рядом с тем элементом,
с которым они связаны. А если к одному атому крепится больше одного водорода, то количество записывается в виде числа.
Так же можно сказать, что в качестве узлов в упрощённых формулах выступают группы.
Скелетные формулы
– структурные формулы, где атомы углерода изображаются в виде пустых узлов.
Число атомов водорода, связанных с каждым атомом углерода равно 4 минус число связей, которые сходятся в узле.
Для узлов, образованных не углеродом, применяются правила упрощённых формул.
Брутто-формула
(она же истинная формула) – список всех химических элементов,
которые входят в состав молекулы, с указанием количества атомов в виде числа (если атом один, то единица не пишется)
Система Хилла
– правило, определяющее порядок следования атомов в брутто-формуле:
первым ставится углерод, затем водород, а далее остальные элементы в алфавитном порядке.
Это а система используется очень часто. И все брутто-формулы в этой статье записаны по системе Хилла.
Функциональные группы
Устойчивые сочетания атомов, которые сохраняются в процессе химических реакций.
Часто функциональные группы имеют собственные названия, влияют на химические свойства и научное название вещества

Структурные формулы и названия
предельных углеводородов

Валентность углерода равна … (цифра). Поэтому при записи структурных формул от углерода должно отходить четыре черточки, изображающие химические связи.
Форму записи состава органической молекулы, в которой каждый атом C показан отдельно со связями, называют с………. ф…….. . Химически связанные атомы углерода представляютуглеродный скелет молекулы вещества.

Три разновидности структурных формул

1. Самая полная форма записи формулы углеводорода – это когда каждый атом молекулы показан отдельно:

Такая запись громоздкая, занимает много места и используется редко.

2. Форма записи, в которой указывают общее число атомов водорода при каждом атоме С, а между соседними углеродами ставят черточки, 
означающие х……… с…. :

СН3–СН2–СН3, Сl–СН2–СН2–Br.

3. Структурная формула, в которой черточки между атомами, расположенными в записи на одной строке, не указывают, тогда как атомы, выходящие на другие строки, соединяют черточками с прямой цепью:

Иногда углеродные цепи изображают ломаными линиями, геометрическими фигурами (треугольник, квадрат, куб). При этом в каждом изломе цепи, а также в начале и в конце цепи подразумевают атом С. Например, изображениям

соответствуют структурные формулы

16-1.gif (3945 bytes)

Ниже приведены некоторые свойства отдельных предельных углеводородов и формы их записи (табл. 1).

Таблица 1

Названия предельных углеводородов (алканов) линейного строения

Название
алкана
Молекулярная
формула
Структурная
формула
Агрегатное
состояние
Температура
кипения,  °С
Метан СН4 СН4 Газ –161,6
Этан С2Н6 СН3СН3 Газ –88,6
Пропан С3Н8 СН3СН2СН3 Газ –42,1
Бутан С4Н10 СН3СН2СН2СН3 Газ –0,5
Пентан С5Н12 СН3(СН2)3СН3 Жидкость 36,1
Гексан С6Н14 СН3(СН2)4СН3 Жидкость 68,7
Гептан С7Н16 СН3(СН2)5СН3 Жидкость 98,5
Октан С8Н18 СН3(СН2)6СН3 Жидкость 125,6
Нонан С9Н20 СН3(СН2)7СН3 Жидкость 150,7
Декан С10Н22 СН3(СН2)8СН3 Жидкость 174,0 

Составление названий разветвленных и замещенных алканов

1. Выбирают главную углеродную цепь и нумеруют ее таким образом (слева или справа), чтобы входящие заместители получили наименьшие номера.

2. Название начинают с цифрового локанта – номера углерода, при котором находится заместитель. После цифры через черточку пишут название заместителя. Разные заместители указывают последовательно. Если одинаковые заместители повторяются два раза, то в названии после цифровых локантов, указывающих положение этих заместителей, пишут приставку «ди». Соответственно при трех одинаковых заместителях приставка «три», при четырех – «тетра», при пяти заместителях – «пента» и т. д.

Названия заместителей

СН3 С2Н5 СН3СН2СН2 Сl– F– Br– –NO2
метил этил пропил изопропил хлор фтор бром нитро

Примеры:

3. Слитно с приставкой и заместителем пишут название углеводорода, пронумерованного в качестве главной углеродной цепи:

а) 2-метилбутан; б) 2,3-диметилпентан; в) 2-хлор-4-метилпентан.

Названия циклоалканов составляют аналогично, только к названию углеводорода – по числу атомов углерода в цикле – добавляют приставку «цикло»:

Вещества, сходные по строению, но различающиеся на одну или несколько групп –СН2–, известны как г……. . 
Примеры гомологов:

СН3–СН3, СН3–СН2–СН3, СН3–СН2–СН2–СН3.

Элемент сходства – алканы с линейной цепью:

Cходство трех формул веществ последнего примера – в каждом случае при втором атоме С главной углеродной цепи находится одинаковый заместитель – группа СН3.

Явление существования разных по строению и свойствам веществ, у которых одинаковый качественный и количественный состав, носит название и……. .
Вещества, у которых одинаковая м……….. формула, но разные с………. формулы – это и……
(табл. 2).

Таблица 2

Примеры изомерных углеводородов

Молекулярная формула Структурные формулы
С4Н10 СН3СН2СН2СН3
С5Н12 СН3СН2СН2СН2СН3
С6Н14 СН3(СН2)4СН3,   
Найди девять отличий
Найди девять отличий

Правила составления изомеров на примере соединения С5Н11Сl.
1. Записывают линейную углеродную цепь С5:

С–С–С–С–С.

2. Определяют, к какому классу углеводородов принадлежит данное соединение. Определение производят с помощью общих формул для углеводородов разных классов (CnH2n+2, CnH2n и т. п.). Вещество С5Н11Сl – хлоралкан, т.е. является производным алкана вида CnH2n+2 (n = 5), в котором один атом Н замещен на Cl. Значит, все связи в молекуле одинарные и нет циклов.
3. Нумеруют атомы С углеродной цепи (углеродного скелета) и при С-1 помещают гетероатом Cl:

4. Записывают необходимое число атомов водорода при каждом углероде цепи, учитывая, что валентность С – IV. В результате получают изомер а):

5. Перемещают атом хлора по главной цепи С5, последовательно соединяя его с атомами С-2 и С-3. Так получают изомеры б) и в):

Дальнейшее смещение хлора вправо по цепи новых изомеров не дает. Так, изомер а*) тождественен изомеру а), изомер б*) идентичен изомеру б). Просто в изомерах а*) и б*) меняется направление нумерации атомов С, счет ведется справа налево (без звездочек было слева направо):

6. Исходя из углеродного скелета (см. пункт 3), крайний (пятый) атом С отрывают и помещают заместителем к внутреннему углероду цепи (сначала к С-2, потом к С-3). Получают главные цепи С4с углеродным заместителем при С-2 и С-3:

Записывают структурные формулы новых изомеров:

7. Помещая хлор при внутренних атомах С главной углеродной цепи С4, получают два дополнительных изомера:

8. Вещество формулы С5Н11Сl может иметь трехуглеродную главную цепь С3:

Таким образом, для вещества с молекулярной формулой С5Н11Сl можно составить восемь структурных формул изомеров а)–з), различающихся строением.

Онлайн-урок: Составление структурных формул

Начиная изучать органическую химию очень важно научиться составлять структурные формулы веществ, ведь это буквально письменная химическая речь. Правильно записанная структурная формула дает возможность определить класс вещества, его гомологический ряд, представить его форму в пространстве, а самое главное понять, как именно соединены между собой атомы в молекуле, сколько у них связей, каков углеродный скелет и структура молекулы. Зная структуру вещества, мы можем говорить о его химических, а так же физических свойствах.

Если молекулярная формула показывает качественный и количественный состав (С2Н6), то есть число атомов каждого элемента в молекуле, то структурная формула показывает последовательность соединения атомов в молекуле, дает представление о взаимном расположении атомов в молекуле друг относительно друга, дает понимание химического строения вещества.

Для правильного составления структурных формул нужно знать валентности атомов в молекуле, рассмотрим основные из них:

1. атом углерода (С) в органической химии всегда четырехвалентен, это означает, что он образует 4 связи с другими атомами:

структурная формула атома углерода

2. атом кислорода (О) имеет валентность равную двум, значит, образует 2 связи с другими атомами:

структурная формула атома кислорода

3. атом водорода одновалентен, образует одну связь с другими атомами

структурная формула атома водорода

4. азот – трехвалентен, три связи с другими атомами

структурная формула атома азота

Существует несколько видов структурных формул. Рассмотрим их на примере молекулы глицина (C2H5NO2), аминоуксусной кислоты, которая нормализует работу нервной системы и улучшает память. Научимся составлять структурные формулы от самой объемной к более упрощенной.

1. Самый подробный, дает возможность увидеть, как связан каждый атом в молекуле. Данную запись используют в самом начале изучения химии или есть необходимость показать связь каждого атома. Для ее составления сначала расположим атомы азота (N), углерода (С), кислород (О) в одну линию, затем, учитывая валентности каждого атома, дорисуем водороды (H) и кислород (О). Проверим еще раз валентности, чему равна валентность, столько и образует связей атом.

структурная формула молекулы глицина

2. Более упрощенной записью является запись, в которой указывают общее число атомов водорода (Н) при каждом атоме. Такая запись является наиболее распространенной, говоря о структурной формуле, обычно записывают именно так, при этом главную цепь записывают в одну линию, а заместители располагают выше и ниже, учитывая валентности.

структурная формула молекулы глицина

3.Существует еще более упрощенная форма записи структурных формул веществ, в которых опускают запись углерода (С) и водорода (Н), заменяют их на так называемые «удлиненные связи», по каждым образующимся углом подразумевается атом углерода с нужным количеством водородов. Такую запись используют в основном студенты вузов или продвинутые пользователи, на уровне абитуриента достаточно владеть предыдущим способом записи.

структурная формула молекулы глицина

Как написать структурную формулу

Структурная формула – это графическое изображение химического строения молекулы вещества, в котором показывается порядок связи атомов, их геометрическое расположение. Кроме того, она наглядно показывает валентность атомов входящих в ее состав.

Как написать структурную формулу

Вам понадобится

  • – ручка;
  • – бумага;
  • – периодическая система элементов.

Инструкция

Для правильного написания структурной формулы того или иного химического вещества вы должны хорошо знать и представлять, что такое способность атомов образовывать определенное количество электронных пар с другими атомами. Ведь именно валентность поможет вам нарисовать химические связи. Например, дана молекулярная формула аммиака NH3. Вы должны написать структурную формулу. Учитывайте то, что водород всегда одновалентен, поэтому его атомы не могут быть связаны между собой, следовательно, они будут соединены с азотом.

Как написать структурную формулу

Чтобы правильно написать структурные формулы органических соединений, повторите основные положения теории А.М. Бутлерова, согласно которой существуют изомеры – вещества с одинаковым элементарным составом, но с разными химическими свойствами. Например, изобутан и бутан. Молекулярная формула у них одинаковая: C4H10, а структурные – отличаются.

Как написать структурную формулу

В линейной формуле каждый атом записывается отдельно, поэтому такое изображение занимает много места. Однако при составлении структурной формулы, вы можете указать общее число атомов водорода при каждом атоме углерода. А между соседними углеродами нарисуйте химические связи в виде линий.

Как написать структурную формулу

Написание изомеров начните с углеводорода нормального строения, то есть с неразветвленной цепью углеродных атомов. Затем сократите на один атом углерода, который присоедините к другому, внутреннему углероду. Исчерпав все варианты написания изомеров с данной длиной цепи, сократите ее еще на один углеродный атом. И опять присоедините его к внутреннему углеродному атому цепи. Например, структурные формулы н-пентана, изопентана, тетраметилметана. Таким образом, углеводород с молекулярной формулой C5H12 имеет три изомера.

Как написать структурную формулу

Полезный совет

Для определения валентности атомов при составлении структурных формул используйте периодическую систему. Показать точно расстояние атомов в молекуле поможет трехмерная структурная формула.

Источники:

  • структурная формула веществ
  • Составление формул комплексных соединений

Войти на сайт

или

Забыли пароль?
Еще не зарегистрированы?

This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.

Структурная формула представляет собой графическое изображение химического строения вещества. В ней указывается порядок расположения атомов, а также связь между отдельными частями вещества. К тому же структурные формулы веществ наглядно демонстрируют валентности всех атомов, включенных в молекулу.

структурная формула

Особенности написания структурной формулы

Для составления потребуется бумага, ручка, периодическая система элементов Менделеева.

Если нужно нарисовать графическую формулу аммиака, нужно учитывать, что водород способен образовывать только одну связь, поскольку его валентность равна единице. Азот находится в пятой группе (главной подгруппе), имеет на внешнем энергетическом уровне пять валентных электронов.

Три из них он использует для образования простых связей с атомами водорода. В итоге структурная формула будет представлять собой следующий вид: в центре находится азот, вокруг него располагаются атомы водорода.

Инструкция по написанию формул

Чтобы структурная формула была написана правильно для определенного химического вещества, важно иметь представление о строении атома, валентности элементов.

Именно с помощью данного понятия можно изображать графическое строение органических и неорганических веществ.

структурные формулы кислот

Органические соединения

Органическая химия предполагает использование графического строения химических веществ разных классов при написании химических реакций. Структурная формула составляется на основе теории строения органических веществ Бутлерова.

Она включает в себя четыре положения, согласно которым записываются структурные формулы изомеров, выдвигается предположение о химических свойствах анализируемого вещества.

структурные формулы веществ

Пример составления структур изомеров

Изомерами называют в органической химии вещества, которые имеют одинаковый качественный и количественный состав, но отличаются по расположению атомов в молекуле (структуре), химической активности.

Вопросы, касающиеся составления графического строения органических веществ, включены в вопросы единого государственного экзамена, проводимого в 11 классе. Например, нужно составить, а также дать название структурных формул изомеров состава С6Н12. Как справиться с подобной задачей?

Для начала нужно понять, к какому классу органических веществ, могут принадлежать вещества с таким составом. Учитывая, что общую формулу CnH2n имеют сразу два класса углеводородов: алкены и циклоалканы, нужно составить структуры всех возможных веществ для каждого класса.

Для начала можно рассмотреть формулы всех углеводородов, принадлежащих к классу алкенов. Они характеризуются наличием одной кратной (двойной) связи, что должно быть отражено при составлении структурной формулы.

Учитывая, что в молекуле шесть атомов углерода, составляем главную цепь. После первого углерода ставим двойную связь. Пользуясь первым положением теории Бутлерова, для каждого атома углерода (валентность четыре) ставим необходимое количество водородов. Называя полученное вещество, используем систематическую номенклатуру, получаем гексен-1.

Оставляем в главной цепи шесть углеродных атомов, перемещаем положение двойной связи после второго углерода, получаем гексен-2. Продолжая передвигать по структуре кратную связь, составляем формулу гексена-3.

Далее приступаем к составлению изомеров углеродного скелета. Для этого один из углеродов в качестве алкильного радикала (СН3) передвигаем по цепи, которая стала короче на один углерод.

структурные формулы изомеров

Пользуясь правилами систематической номенклатуры, получаем 2 метилпентен-1; 3 метилпентен-1; 4 метилпентен-1. Затем перемещаем кратную связь после второго углерода в главной цепи, а алкильный радикал располагаем у второго, затем у третьего углеродного атома, получая 2 метилпентен-2, 3 метилпентен-2.

Аналогичным образом продолжаем составлять и называть изомеры. Рассмотренные структуры представляют собой два вида изомерии: углеродного скелета, положения кратной связи. Необязательно указывать по отдельности все водородные атомы, можно использовать варианты сокращенных структурных формул, суммируя каждого атома углерода число водорода, указывая их соответствующими индексами.

Учитывая, что у алкенов и циклоалканов сходна общая формула, при составлении структур изомеров необходимо учитывать этот факт. Сначала можно составить структуру замкнутого циклогексана, затем посмотреть возможные изомеры боковой цепи, получив метилциклопентан, диметилциклобутан, и т. д.

Линейные структуры

Структурные формулы кислот являются типичными представителями подобного строения. Предполагается указание каждого отдельного атома при создании их графических формул, указанием черточками числа валентностей между атомами.

название структурных формул

Заключение

По готовым структурным формулам можно определить валентность каждого элемента, входящего в состав вещества, предположить возможные химические свойства молекулы.

После того как была разработана теория строения органических веществ Бутлерова, удалось объяснить различие в свойствах между веществами, которые имеют одинаковый качественный и количественный составом явлением изомерии. Пользуясь определением валентности, периодической системой элементов Менделеева, можно представить в графическом виде любое неорганическое и органическое вещество. В органической химии структурные формулы составляют для того, чтобы понять алгоритм протекания химических превращений и объяснить их суть.

Добавить комментарий