- Определение обратной пропорциональности
- График обратной пропорциональности
- Примеры
Определение обратной пропорциональности
О прямоугольной системе координат на плоскости и графическом способе задания функций – см. §35-36 справочника для 7 класса.
Допустим, что у нас есть 1000 руб. Спрашивается, сколько тетрадей мы сможем купить, в зависимости от их цены. Составим таблицу:
Цена 1 тетради, руб.
25
50
100
125
200
250
500
Кол-во, шт.
40
20
10
8
5
4
2
Графическое представление полученных результатов:
Результат вполне ожидаемый: чем больше цена, тем меньше то количество, которое мы можем себе позволить за определённую ограниченную сумму.
Можно привести и другие примеры, где зависимость между величинами будет аналогичной:
- время, которое придётся потратить на дорогу между двумя городами (при заданном расстоянии), в зависимости от скорости;
- длина фанерного листа в зависимости от ширины при заданной площади;
- время заполнения бассейна (заданный объём) в зависимости от количества открытых труб, и т.п.
Если обобщить формулы, описывающие подобные зависимости, то получаем:
$${left{ begin{array}{c} -infty lt x lt +infty – аргумент, quad любое quad действительное quad число \ k = const neq 0-параметр, quad константа \ y = frac{k}{x} – функция end{array} right.}$$
Функция такого вида называется обратной пропорциональностью.
Если $k gt 0$, то чем больше x, тем меньше y – функция убывает.
Если $k lt 0$, то чем больше x, тем больше y – функция возрастает.
(Сравните с прямой пропорциональностью – см. §37 справочника для 7 класса)
График обратной пропорциональности
Графиком обратной пропорциональности является кривая, которую называют гиперболой.
Чтобы построить гиперболу, нужно 1) составить таблицу, в которой рассчитать значения y=k/x для некоторых значений x, 2) отметить полученные точки на координатной плоскости и 3) соединить их плавной кривой.
Например: $y = frac{8}{x}$
Свойства графика обратной пропорциональности:
- Гипербола не пересекает осей координат, приближаясь к осям, она изгибается и «убегает» на бесконечность.
- У гиперболы две ветки. Если $k gt 0$, ветки лежат в 1 и 3 четверти, если $k lt 0$, во 2 и 4 четверти.
- Ветки гиперболы симметричны относительно начала координат. Поэтому достаточно рассчитать одну ветку, а вторую начертить как отображение первой.
- Ветки гиперболы симметричны относительно биссектрис соответствующих четвертей: при $k gt 0$ – относительно биссектрисы 1 и 3 четверти, при $k gt 0$ – 2 и 4 четверти.
Примеры
Пример 1. Постройте графики следующих функций
Пример 2. Постройте на одном чертеже графики функций
$$ y = frac{1}{x}, y = frac{3}{x}, y = frac{-3}{x} $$
Сделайте выводы.
x
$frac{1}{x}$
$frac{3}{x}$
$- frac{3}{x}$
Чем больше k по абсолютной величине, тем дальше от начала координат пересечение графика с биссектрисой соответствующей четверти («изгиб» графика).
При изменении знака k на противоположный график отражается относительно осей координат.
Пример 3. Постройте на одном чертеже графики функций
$$ y = frac{x}{3}, y = frac{3}{x} $$
Решите с помощью графиков уравнение: $ frac{x}{3} = frac{3}{x}$.
При каких x выполняется неравенство $ frac{x}{3} gt frac{3}{x}$?
Уравнение $frac{x}{3} = frac{3}{x}$ имеет два корня: $x_{1,2} = pm3$.
Неравенство $frac{x}{3} gt frac{3}{x}$ выполняется при $ x in Bbb (-3;0) bigcup (3;+infty)$.
В данной публикации мы рассмотрим, что такое гипербола, приведем формулу, с помощью которой задается ее функция, а также на практических примерах разберем алгоритм построения данного вида графика.
- Определение и функция гиперболы
-
Алгоритм построения гиперболы
- Пример 1
- Пример 2
Определение и функция гиперболы
Гипербола – это график функции обратной пропорциональности, которая в общем виде задается следующей формулой:
Здесь:
- x – независимая переменная;
- k ≠ 0;
- при k > 0 гипербола расположена в I и III четвертях координатной плоскости;
- при k < 0 график находится во II и IV четвертях.
На рисунке ниже изображен пример гиперболы.
- Линии графика (зеленым цветом) называются его ветвями.
- Оси абсцисс и ординат (Ox и Oy) являются асимптотами гиперболы, т.е. ветви бесконечно к ним приближаются, но никогда их не коснутся и не пересекут.
- Ось симметрии (синим цветом) – это прямая:
- y = x (при k > 0)
- y = -x (при k < 0)
Смещение асимптот
Допустим у нас есть функция, заданная формулой:
В этом случае:
- x = a – это вертикальная асимптота графика (при a ≠ 0) вместо оси Oy;
- y = b – горизонтальная асимптота (при b ≠ 0) вместо оси Ox.
Канонический вид уравнения гиперболы (координатные оси совпадают с осями графика):
Алгоритм построения гиперболы
Пример 1
Дана функция y = 4/x. Построим ее график.
Решение
Так как k > 0, следовательно, гипербола будет находиться в I и III координатных четвертях.
Чтобы построить график, сначала нужно составить таблицу соответствия значений x и y. То есть мы берем конкретное значение x, подставляем его в формулу функции и получаем y.
x | y | Расчет y |
0,5 | 8 | 4 / 0,5 = 8 |
1 | 4 | 4 / 1 = 4 |
2 | 2 | 4 / 2 = 2 |
4 | 1 | 4 / 4 = 1 |
8 | 0,5 | 4 / 8 = 0,5 |
Теперь отмечаем найденные точки на координатной плоскости и соединяем их плавной линией, которая будет стремиться к осям координат. В итоге получится ветвь гиперболы, расположенная в первой четверти.
Чтобы построить ветвь в третьей четверти, вместо x в формулу подставляем -x. Так мы вычислим значения y.
x | y | Расчет y |
-0,5 | -8 | 4 / -0,5 = -8 |
-1 | -4 | 4 / -1 = -4 |
-2 | -2 | 4 / -2 = -4 |
-4 | -1 | 4 / -4 = -1 |
-8 | -0,5 | 4 / -8 = -0,5 |
Соединив полученные точки получаем следующий результат. На этом построение гиперболы завершено.
Пример 2
Рассмотренный выше пример был одним из самых простых (без смещения асимптот). Давайте усложним задачу и построим гиперболу, заданную функцией ниже:
Решение
Так как k < 0, график будет располагаться во второй и четвертой четвертях.
Теперь определяемся с асимптотами, в нашем случае это x = 3 и y = 4 (см. информацию выше про их смещение).
Составим таблицу соответствия значений x и y.
x II четв. | y II четв. | x IV четв. | y IV четв. |
-1 | 4,5 | 3,5 | 0 |
1 | 5 | 4 | 2 |
2 | 6 | 5 | 3 |
2,5 | 8 | 7 | 3.5 |
Остается только нанести рассчитанные точки на координатную плоскость и соединить их плавными линиями.
Свойства гиперболы
1) Область определения и область значений
По аналитическому заданию функции видно, что х ≠-a, поскольку знаменатель дроби не может ровняться нулю. Таким образом получим:
D(f)=(-∞;-а) U (-a;+∞)
Область значений
Е(f)=(-∞;+∞)
2) Нули функции
Если b=0, то график функции не пересекает ось ОХ;
Если b≠0, то гипербола имеет одну точку пересечения с ОХ:*
x=-(k+ab)/b
3) Промежутки знакопостоянства
Рассмотрим только 2 простых случая, остальные случаи вы можете рассмотреть аналитически самостоятельно по алгоритму из раздела Свойства функций -> Знакопостоянство
Случай 1: a=0, b=0, k>0
f(x)>0, при x ∈ (0; +∞)
f(x)<0, при x ∈ (-∞;0)
Случай 1: a=0, b=0, k<0
f(x)<0, при x ∈ (0; +∞)
f(x)>0, при x ∈ (-∞;0)
4) Промежутки монотонности
Аналогично с промежутками знакопостоянства рассмотрим только 2 случая
Случай 1: a=0, b=0, k>0
Функция убывает при
x ∈ (-∞;0) U (0; +∞)
Функция возрастает при
x ∈ (-∞;0) U (0; +∞)
5) Четность и нечетность
Функция является нечетной при a=0, b=0, то есть если имеет вид y=k/x
Гуру
(3210),
закрыт
6 лет назад
Мария
Профи
(667)
6 лет назад
вообще просто подставлять любые значения х (точнее те, которые на области допустимых значений) в формулу функции и находить точки. Гипербола симметирична относительно начала координат, так что находить точки в разных четвертях не нужно
если есть модуль, то нужно предварительно раскрыть его, то есть найти, при каких значениях он раскрывается с плюсом, а при каких с минусм, получается графиик разобьётся на два
Жека Васильев
Мастер
(1664)
6 лет назад
Функция – это зависимость одной переменной от другой.
Переменная – это буква.
Если рассматривать гиперболу, то можно сказать что функция показывает КАК МЕНЯЕТСЯ ОТВЕТ ПОСЛЕ РАВНО, ЕСЛИ МЕНЯТЬ ЗНАМЕНАТЕЛЬ.
Допусти 1/2=0.5
Тут Х = 2
А У=0.5
Если взять пример 1/4=0.25
То тут Х=4
У=0.25
В таблице же ты просто пишешь что если значение Х=2, то У=0.5, а если Х=4, то У=0.25
Кароче вместо Х представляешь число, а получившийся ответ это будет У.
Функция y = k/x и её график. Гипербола
Определение обратной пропорциональности
Допустим, что у нас есть 1000 руб. Спрашивается, сколько тетрадей мы сможем купить, в зависимости от их цены. Составим таблицу:
Цена 1 тетради, руб.
Графическое представление полученных результатов:
Результат вполне ожидаемый: чем больше цена, тем меньше то количество, которое мы можем себе позволить за определённую ограниченную сумму.
Можно привести и другие примеры, где зависимость между величинами будет аналогичной:
- время, которое придётся потратить на дорогу между двумя городами (при заданном расстоянии), в зависимости от скорости;
- длина фанерного листа в зависимости от ширины при заданной площади;
- время заполнения бассейна (заданный объём) в зависимости от количества открытых труб, и т.п.
Если обобщить формулы, описывающие подобные зависимости, то получаем:
$$<left< begin -infty lt x lt +infty – аргумент, quad любое quad действительное quad число \ k = const neq 0-параметр, quad константа \ y = frac – функция end right.>$$
Функция такого вида называется обратной пропорциональностью .
Если $k gt 0$, то чем больше x, тем меньше y – функция убывает.
Если $k lt 0$, то чем больше x, тем больше y – функция возрастает.
(Сравните с прямой пропорциональностью – см. §37 справочника для 7 класса)
График обратной пропорциональности
Графиком обратной пропорциональности является кривая, которую называют гиперболой.
Чтобы построить гиперболу, нужно 1) составить таблицу, в которой рассчитать значения y=k/x для некоторых значений x, 2) отметить полученные точки на координатной плоскости и 3) соединить их плавной кривой.
Гипербола
Что такое гипербола? Как построить гиперболу? (Для школьников (7-11 классов)).
Функция заданная формулой (y=frac), где к неравно 0. Число k называется коэффициентом обратной пропорциональности.
Определение гиперболы.
График функции (y=frac) называют гиперболой. Где х является независимой переменной, а у — зависимой.
Что нужно знать, чтобы построить гиперболу?
Теперь обсудим свойства гиперболы:
гипербола, где k y≠0 это вторая асимптота.
И так, асимптоты x≠0 и y≠0 в данном примере совпадают с осями координат OX и OY.
k=1, значит гипербола будет находится в первой и третьей четверти. k всегда находится в числители.
Построим примерный график гиперболы.
Пример №2:
$$y=frac<1>-1$$
Находим первую асимптоту.
Знаменатель не может равняться 0, потому что на 0 делить нельзя, поэтому х+2 неравен 0.
х+2≠0
х≠-2 это первая асимптота
Находим вторую асимптоту.
Дробь (color <frac<1>>) отбрасываем
Остается y≠ -1 это вторая асимптота.
Строим примерный график, отмечаем асимптоты (красным проведены прямые х≠-2 и y≠-1):
Находим первую асимптоту.
Знаменатель не может равняться 0, потому что на 0 делить нельзя, поэтому 1+х неравен 0.
1+х≠0
х≠-1 это первая асимптота.
Находим вторую асимптоту.
Остается y≠1 это вторая асимптота.
Строим примерный график, отмечаем асимптоты (красным проведены прямые х≠-1 и y≠1):
3. У гиперболы есть центр симметрии относительно начала координат. Рассмотрим на примере:
Возьмем точку А(1;1) с координатами, которая находится на графике у=1/х. На этом же графике лежит точка B(-1;-1). Видно, что точка А симметрична точке В относительна начала координат.
4. Оси симметрии гиперболы. У гиперболы две оси симметрии. Рассмотрим пример:
Первой осью симметрии является прямая y=x. Посмотрим точки (0,5;2) и (2;0,5) и еще точки (-0,5;-2) и (-2;-0,5). Эти точки расположены по разные стороны данной прямой, но на равных расстояниях от нее, они симметричны относительно этой прямой.
Вторая ось симметрии это прямая y=-x.
5. Гипербола нечетная функция.
6. Область определения гиперболы и область значения гиперболы. Область определения смотрим по оси х. Область значения смотрим по оси у. Рассмотрим на примере:
а) Находим первую асимптоту.
Знаменатель не может равняться 0, потому что на 0 делить нельзя, поэтому x-1 неравен 0.
x-1≠0
х≠1 это первая асимптота.
Находим вторую асимптоту.
Остается y≠ -1 это вторая асимптота.
б) k=-1, значит ветви гиперболы будут находится во второй и четвертой четверти.
в) Возьмем несколько дополнительных точек и отметим их на графике.
х=0 y=0
x=-1 y=-0,5
x=2 y=-2
x=3 y=-1,5
г) Область определения смотрим по оси х. Графика гиперболы не существует по асимптоте х≠1, поэтому область определения будет находится
х ∈ (-∞;1)U(1;+∞).
д) Область значения смотрим по оси y. График гиперболы не существует по асимптоте y≠ -1, поэтому область значения будет находится
y ∈ (-∞;-1)U(-1;+∞).
е) функция возрастает на промежутке x ∈ (-∞;1)U(1;+∞).
7. Убывание и возрастание функции гиперболы. Если k>0, функция убывающая. Если k Category: 8 класс, База знаний, Уроки Tag: Гипербола Leave a comment
Гипербола: формулы, примеры решения задач
Определение гиперболы, решаем задачи вместе
Определение гиперболы. Гиперболой называется множество всех точек плоскости, таких, для которых модуль разности расстояний от двух точек, называемых фокусами, есть величина постоянная и меньшая, чем расстояние между фокусами.
Каноническое уравнение гиперболы имеет вид:
,
где a и b – длины полуосей, действительной и мнимой.
На чертеже ниже фокусы обозначены как и .
На чертеже ветви гиперболы – бордового цвета.
При a = b гипербола называется равносторонней.
Пример 1. Составить каноническое уравнение гиперболы, если его действительная полуось a = 5 и мнимая = 3.
Решение. Подставляем значения полуосей в формулу канонического уравения гиперболы и получаем:
.
Точки пересечения гиперболы с её действительной осью (т. е. с осью Ox) называются вершинами. Это точки (a, 0) (- a, 0), они обозначены и надписаны на рисунке чёрным.
Точки и , где
,
называются фокусами гиперболы (на чертеже обозначены зелёным, слева и справа от ветвей гиперболы).
называется эксцентриситетом гиперболы.
Гипербола состоит из двух ветвей, лежащих в разных полуплоскостях относительно оси ординат.
Пример 2. Составить каноническое уравнение гиперболы, если расстояние между фокусами равно 10 и действительная ось равна 8.
Если действительная полуось равна 8, то её половина, т. е. полуось a = 4 ,
Если расстояние между фокусами равно 10, то число c из координат фокусов равно 5.
То есть, для того, чтобы составить уравнение гиперболы, потребуется вычислить квадрат мнимой полуоси b.
Подставляем и вычисляем:
Получаем требуемое в условии задачи каноническое уравнение гиперболы:
.
Пример 3. Составить каноническое уравнение гиперболы, если её действительная ось равна 48 и эксцентриситет .
Решение. Как следует из условия, действительная полуось a = 24 . А эксцентриситет – это пропорция и так как a = 24 , то коэффициент пропорциональности отношения с и a равен 2. Следовательно, c = 26 . Из формулы числа c выражаем квадрат мнимой полуоси и вычисляем:
.
Результат – каноническое уравнение гиперболы:
Если – произвольная точка левой ветви гиперболы () и – расстояния до этой точки от фокусов , то формулы для расстояний – следующие:
.
Если – произвольная точка правой ветви гиперболы () и – расстояния до этой точки от фокусов , то формулы для расстояний – следующие:
.
На чертеже расстояния обозначены оранжевыми линиями.
Для каждой точки, находящейся на гиперболе, сумма расстояний от фокусов есть величина постоянная, равная 2a.
Прямые, определяемые уравнениями
,
называются директрисами гиперболы (на чертеже – прямые ярко-красного цвета).
Из трёх вышеприведённых уравнений следует, что для любой точки гиперболы
,
где – расстояние от левого фокуса до точки любой ветви гиперболы, – расстояние от правого фокуса до точки любой ветви гиперболы и и – расстояния этой точки до директрис и .
Пример 4. Дана гипербола . Составить уравнение её директрис.
Решение. Смотрим в уравнение директрис и обнаруживаем, что требуется найти эксцентриситет гиперболы, т. е. . Вычисляем:
.
Получаем уравнение директрис гиперболы:
Многие задачи на директрисы гиперболы аналогичны задачам на директрисы эллипса. В уроке “Эллипс” это пример 7.
Характерной особенностью гиперболы является наличие асимптот – прямых, к которым приближаются точки гиперболы при удалении от центра.
Асимптоты гиперболы определяются уравнениями
.
На чертеже асимптоты – прямые серого цвета, проходящие через начало координат O.
Уравнение гиперболы, отнесённой к асимптотам, имеет вид:
, где .
В том случае, когда угол между асимптотами – прямой, гипербола называется равнобочной, и если асимптоты равнобочной гиперболы выбрать за оси координат, то её уравнение запишется в виде y = k/x , то есть в виде уравения обратной пропорциональной зависимости.
Пример 5. Даны уравнения асимптот гиперболы и координаты точки , лежащей на гиперболе. Составить уравнение гиперболы.
Решение. Дробь в уравнении асимптот гиперболы – это пропорция, следовательно, нужно сначала найти коэффициент пропорциональности отношения . Для этого подставляем в формулу канонического уравнения гиперболы координаты точки M x и y и значения числителя и знаменателя из уравнения асимптоты, кроме того, умножаем каждую дробь в левой части на коэффициент пропорциональности k.
.
Теперь имеем все данные, чтобы получить каноническое уравнение гиперболы. Получаем:
Гипербола обладает оптическим свойством, которое описывается следующим образом: луч, исходящий из источника света, находящегося в одном из фокусов гиперболы, после отражения движется так, как будто он исходит из другого фокуса.
Решить задачи на гиперболу самостоятельно, а затем посмотреть решения
Пример 6. Фокусы эллипса расположены на оси Ox симметрично относительно начала координат. Составить каноническое уравнение эллипса, если:
1) b = 4 , а один из фокусов в точке (5; 0)
2) действительная ось 6, расстояние между фокусами 8
3) один из фокусов в точке (-10; 0), уравнения асимптот гиперболы
[spoiler title=”источники:”]
http://tutomath.ru/8-klass/kak-postroit-giperbolu.html
http://function-x.ru/curves_hyperbola.html
[/spoiler]