Привет, посетитель сайта ZametkiNaPolyah.ru! Продолжаем изучать основы работы компьютерных сетей, напомню, что эти записи основаны на программе Cisco ICND1 и помогут вам подготовиться к экзаменам CCENT/CCNA. В прошлой теме мы перечислили основные и самые важные характеристики компьютерной сети, среди них была и топология компьютерной сети. Как раз про топологию и будет данная запись. Мы узнаем, что топология компьютерной сети влияет на другие ее характеристики, а также поймем, что для понимания принципа работы незнакомой сети нам потребуются два вида схем: физические схемы и логические.
Но рассказам о схемах компьютерной сети и общей информации о существующих топологиях мы не ограничимся, еще мы поговорим про обозначения интерфейсов оборудования Cisco на схемах и диаграммах, это может оказаться полезным не только для чтения схем, но и при работе с оборудованием Cisco при помощи интерфейса командной строки, ведь интерфейсы оборудования в командной строке обозначаются точно так же, как и на схема. Вторая часть этой публикации будет посвящена типовым топологиям компьютерной сети: звезда, общая шина, кольцо, mesh topology.
Перед началом я хотел бы вам напомнить, что ознакомиться с опубликованными материалами первой части нашего курса можно по ссылке: «Основы взаимодействия в компьютерных сетях».
1.11.1 Введение
Содержание статьи:
- 1.11.1 Введение
- 1.11.2 Как читать схемы сетей, построенных на оборудование Cisco
- 1.11.3 Физическая топология сети и ее схемы
- 1.11.4 Логическая топология сети и ее схемы
- 1.11.5 Топология включения узлов сети: общая шина, звезда, full mesh (каждый на каждого) или полносвязная топология и partial mesh
- Топология общая шина
- Топология звезда
- Топология кольцо и плоское кольцо
- Топология mesh (full mesh и partial mesh)
- 1.11.6 Выводы
Здесь мы разберемся зачем вообще нам нужны схемы компьютерной сети и как они нам помогут в повседневной жизни. Также придет понимание того, чем логическая схема или логическая топология компьютерной сети отличается от физической схемы. Не стоит еще и забывать о том, что, например, физические схемы бывают разными: ситуационный план или схема прокладки линий связи по помещениям показывают, как и где был уложен кабель, схема распределения оптических волокон показывает, как была разварена оптика, есть еще схемы кроссировок и еще куча других схем. По-хорошему, все эти схемы нужно уметь читать.
Еще одним немаловажным пунктом этого разговора являются диаграммы, которые вы можете встретить у Cisco, сдавая экзамен ICND1. С этими диаграммами мы разберемся и поймем принцип нумерации физических портов на оборудование Cisco. В рамках данного курса нам будут интересны в большей степени логические схемы сети, так как именно они позволяют увидеть, как работает наша сеть, физические схемы мы перечислим, но уделять большого внимания им не будем.
Также отметим, что для построения компьютерной сети мы можем выбирать одну из нескольких топологий, более того, топологии на разных участках сети можно использовать разные, но если говорить предметно, то в природе существуют следующие топологии: звезда, кольцо, общая шина, full mesh и его частный случай partial mesh. О них мы поговорим во второй части этой темы и разберемся с их недостатками и преимуществами.
Если вы помните, то в прошлой теме мы говорили про характеристики компьютерной сети, тогда мы для себя отмечали, что топология компьютерной сети — это одна из ее важнейших характеристик, сейчас же мы увидим, что топология сети это не только ее характеристика, но и очень сильный фактор, который влияет на другие важные характеристики, например, на стоимость и надежность или отказоустойчивость сети.
1.11.2 Как читать схемы сетей, построенных на оборудование Cisco
Начнем мы с диаграмм, которые могут встречаться в различных курсах Cisco, а также в вопросах на экзаменах, как на ICND1, так и на более сложных треках. Правильно читать сетевые диаграммы вы научитесь со временем, а сейчас же мы поговорим про обозначения физических портов на схемах и диаграммах Cisco, рисунок ниже это демонстрирует. Кстати, стоит сказать, что на физическом уровне модели OSI также есть адресация, которая заключается в номерах портов различных физических устройств.
Рисунок 1.11.1 Диаграмма компьютерной сети, сделанная в Cisco Packet Tracer
Обратите внимание на нумерацию и названия портов на схеме, эту схему я сделал в Cisco Packet Tracer (здесь вы можете найти информацию о том, как установить Cisco Packet Tracer на Windows, вот тут о том, как поставить Packet Tracer на Ubuntu, а если вы еще не умеете им пользоваться, то вам поможет публикация, где мы знакомимся с интерфейсом Cisco Packet Tracer). Особенность нумерации портов оборудования Cisco заключается в том, что это оборудование модульное, впрочем, как и любое другое оборудования вендеров, производящих промышленные устройства связи. Давайте посмотрим на такой простой пример: fa0/1 – это порт устройства Cisco, этот порт имеет пропускную способность 100 Мбит/с и работает по стандарту Fast Ethernet, об этом говорят два символа fa. Вторая часть 0/1 говорит нам о том, что это первый порт модуля под номером ноль. Например, коммутатор Cisco 2960 по своей сути имеет один нулевой модуль и 24 порта стандарта Fast Ethernet (соответственно, их нумерация начинается с fa0/1 по fa0/24), также в этом модуле находится два порта стандарта Gigabit Ethernet с пропускной способностью 1 Гбит/c (для их обозначения можно использовать записи Gi0/1 и Gig0/2), но на самом деле портов может быть и больше.
Все вышесказанное относилось к портам, работающим по стандарту Ethernet, скорее всего, вы будете работать только с этим стандартом. Еще существуют и последовательные интерфейсы или serial-link, такие интерфейсы у Cisco обычно обозначаются так: S4/0 – эта запись говорит о том, что кабель включен в нулевой порт 4-го модуля; Se0/0 – это второй способ обозначения, кроме первых букв ничего не изменяется.
На схемах и диаграммах Cisco еще можно встретить обозначения типа Eth3/2 – это говорит о том, что порт работает по стандарту Ethernet с пропускной способностью 10 Мбит/c, возможно, вы встретите Te или TenGigabit (полоса пропускания такого интерфейса составляет 10 Гбит/c), про скорости выше пока говорить не будем.
Иногда вы можете встреть что-то типа такого: Gi1/2/3, такое обозначение бывает в двух случаях: либо вы работаете с коммутаторами, которые объединены в стек, тогда: 1 – это номер коммутатора в стеке, 2 – номер модуля в этом коммутаторе, 3 – номер порта в модуле; либо это модуль внутри модуля. С модулями Cisco придется работать часто, особенно, это касается каких-то умных устройств, например, маршрутизаторов (портовую емкость которого можно расширять при помощи модулей) или L3 коммутаторов.
Также иногда вы можете встретить порты с непонятной на первый взгляд нумерацией, но это не означает, что логики нумерации у устройства нет, она на самом деле есть, просто нужно обратиться к официальной документации Cisco. Если делать этого не хочется, то можно просто смириться и работать как с обычными портами.
И напоследок поговорим про виртуальные интерфейсы, которых физически нет, но в «мозгах» устройства эти интерфейсы есть, и мы их можем создавать. Во-первых, есть Loopback-интерфейсы, эти интерфейсы чисто виртуальные и они не закреплены ни за какой физической сущностью коммутатора, работают они по принципу IP-адреса 127.0.0.1, то есть они всегда есть, по ним всегда можно получить доступ к устройству, устройство может обращаться к самому себе при помощи этого интерфейса. Обозначаются они так: Loopback1, Loopback2 или Lo1, Lo2.
Также нам могут встретиться суб-интерфейсы, например, fa1/1.123. Такие интерфейсы закрепляются за физическим портом устройства Cisco, номер такого интерфейса указывается после точки, в данном случае – это 123 суб-интерфейс. Для тех, кто знает вланы: номер суб-интерфейса может не совпадать с номером влана, но для удобства обычно делают так, чтобы совпадал.
Сразу стоит отметить: это не все интерфейсы, с которыми вы можете встретиться, их гораздо больше, возможно, в дальнейшем мы познакомимся с ними, если будет такая потребность, на данный момент полученной информации нам должно хватить.
1.11.3 Физическая топология сети и ее схемы
Здесь и далее мы будем считать, что в природе существует два вида топологий: физическая топология сети и логическая топология сети. Первая топология или физическая схема сети показывает, как эта сеть выглядит в реальном мире: где, как и какие кабели уложены, где, как и какое оборудование установлено, как оно запитано, какая длина у какого кабельного пролета, какой кабель в какой порт включен, как разварена оптика, как расшита кросс-панель и так далее. Давайте перечислим несколько разных физических схем (а про физический уровень модели OSI 7 можно почитать тут). Демонстрировать примеры я не буду, но, если вам будет интересно, то при помощи Гугла вы без труда найдете примеры таких схем.
Начнем с простой схемы прокладки медных линий по помещениям, на такой схеме должна быть вся необходимая информация для монтажника, при помощи которой он сможет определить: как и где прокладывать линию по помещениям, а также какие материалы ему потребуются для осуществления монтажа, включая стяжки и маркировочные бирки.
Следующая схема – это схема расшивки витой пары на кроссе, при помощи такой схемы можно определить, как коммутироваться или другими словами соединять оборудование: какой порт кросса или патч-панели куда ведет, будет совсем здорово, если каждая линия и каждый порт кросса будет промаркирован бирками.
Еще один пример физической схемы – это ситуационный план, на котором показана схема прокладки ВОЛС (оптических линий связи), обычно такие схемы рисуют инженеры проектировщики провайдеров, они нужны для согласования условий с собственниками территорий, по которым будет проложен кабель, для оценки затрат на подключение того или иного объекта к сети провайдера, а также для легализации линий связи в контролирующих организациях, естественно, все физические схемы должны быть отрисованы в соответствие со стандартами и правилами, которых в РФ очень много, более того: проектируемые линии и оборудование связи должно быть в дальнейшем смонтирована так, чтобы не нарушать этих правил (санпины, снипы, госты). Мы, конечно же, с этим всем добром разбираться не будем.
Стоит добавить, что после прокладки оптической линии связи к схемам прилагаются еще и рефлектограммы – это график, по которому можно определить уровень сигнала, на всем протяжении линии, а также длину оптической линии связи, делается этот график при помощи прибора, который называется рефлектометр.
Еще вы можете встретиться со схемами разварки оптического кабеля или схемами распределения оптических волокон: оптический кабель мало проложить, его еще нужно правильно разварить, чтобы затем по этим волокнам кабеля сигнал попадал в нужную точку, а не абы куда, для этого и нужны схемы распределения оптических волокон.
Последняя физическая схема компьютерной сети, о которой мы упомянем, называется схема организации связи или структурная схема, при помощи такой схемы монтажник или полевой инженер сможет включить проектируемое оборудование, а сетевой инженер настроить нужный порт на этом оборудование. То есть, если первые схемы интересовали в большей степени полевых сотрудников, то схема организации связи нужна в равной мере как удаленным, так и полевым инженерам.
Да, чуть было не забыл, часть сетевого оборудования является активным, а это означает, что для его работы необходимо электричество, поэтому в различных проектах и документациях вы можете обнаружить схему подачи питания на оборудование связи.
1.11.4 Логическая топология сети и ее схемы
При помощи логической топологии или логической схемы сети сетевой инженер может понять принцип работы компьютерной сети, определить куда пойдет тот или иной запрос и кто, с кем и как общается. Если схемы физической топологии нужно было рисовать вручную, использую какой-нибудь AutoCAD или Visio, то для схем логической топологии сети можно применять два подхода: рисовать руками, используя AutoCAD, Visio или более специализированный софт или автоматизировать этот процесс при помощи различных скриптов и систем мониторинга, которые будут опрашивать ваши устройства и на основе этого опроса составлять карту вашей сети.
У каждого из этих подходов есть свои плюсы и минусы. Очевидный минус первого подхода: долго и нудно. Очевидный минус второго подхода: возможно, не так точно, как при первом, а также на схемах, составленных автоматически, может быть много лишней и ненужной для вас информации, которая будет просто засорять рабочее пространство или же наоборот – этой информации может быть недостаточно, чтобы сходу оценить обстановку. При использовании автоматизированных средств также стоит учитывать, что ваша компьютерная сеть может быть составлена из оборудования различных производителей, а приложение, которое вы используете для автоматической отрисовки, может «не уметь» работать с оборудованием того или иного производителя из коробки, поэтому придется его учить, делая тонкую настройку или создавая собственные скрипты.
Давайте посмотрим несколько примеров схем логической топологии сети. Начнем мы просто со схемы топологии компьютерной сети, которая показана на рисунке ниже, на этой схеме нет никакой лишней информации. Она просто отображает топологию устройств, отвечающих за передачу данных (коммутаторов, маршрутизаторов и, возможно, серверов, обеспечивающих работу сети, таких как: DNS и DHCP), по ней можно понять, как и какими портами соединены сетевые устройства: коммутаторы и маршрутизаторы, такую схему обычно можно увидеть в системе мониторинга провайдера или крупного предприятия. Глядя на эту схему также можно сделать вывод о некоторых технологиях, используемых для построения такой сети, например, если коммутаторы соединены кольцом, то в сети работает протокол STP или его более поздние версии. На этой схеме вы не увидите конечных абонентов (клиентов), так как для нее это лишняя информация, здесь важно видеть, что происходит с сетевым оборудование, отвечающим за передачу трафика, а конечный абонент, если у него что-то случилось, вам обязательно пожалуется, тут можно не переживать.
Рисунок 1.11.2 Топология сети передачи данных
Обычно системы мониторинга подсвечивают зеленым нормально функционирующие устройства, желтым цветом подсвечиваются устройства, с которыми начинает происходить что-то нехорошее, а красным цветом подсвечиваются вышедшее из строя устройства, хотя в зависимости от приложения, которое используется для мониторинга, цвета могут меняться. Есть и более подробные схемы логической топологии сети, давайте попробуем нарисовать одну такую схему в Cisco Packet Tracer и посмотрим, что из этой схемы можно для себя вынести.
Рисунок 1.11.3 Логическая топология компьютерной сети
На этом рисунке подписаны все устройства, а также указаны их IP-адреса, давайте посмотрим каким путем будут следовать данные, которые отправляет ПК1 на различные узлы нашей сети. Итак, допустим мы отправляем данные с ПК1 на ПК2, трасса, по которой пойдут Ethernet-кадры отмечена на рисунке красным цветом, сперва данные уйдут на коммутатор, а затем он их направит в сторону узла ПК2, обратите внимание: я намеренно написал Ethernet кадр, ведь узлы ПК1 и ПК2 находятся в одной подсети или иначе говоря в одной канальной среде, для общения им достаточно мак-адресов, а коммутатор – это то устройство канального уровня, которое прекрасно умеет работать с мак-адресами.
Но, к сожалению, трасса сильно увеличивается, если нам нужно послать данные из узла ПК1 на узел ПК3, так как они находятся в разных подсетях, в этом случае для доступа к узлу ПК3 нам потребуются услуги маршрутизатора и IP-адреса, ведь коммутатор совершенно ничего не знает про IP-адреса и как с ними работать. Путь, по которому будут идти IP-пакеты между узлами ПК1 и ПК3 на рисунке обозначен зеленым цветом: сначала данные попадают на «Коммутатор 1», затем он их передает на «Коммутатор 2», далее данные попадают на «Роутер 1», затем они возвращаются на «Коммутатор 2», он их пересылает на «Коммутатор 1», а тот в свою очередь отправляет их на ПК3, когда мы поговорим про принципы работы роутеров, вы поймете почему и как это происходит.
Трасса между ПК1 и ПК6 выделена оранжевой линией, думаю, ее уже можно не пояснять. Но стоит сказать, что путь, который будут проделывать сообщения из точки А в точку Б в большей степени зависят от логики, то есть от того, как настроены ваши устройства. Вы можете настроить свою сеть таким образом, что узлы 192.168.1.2 и 192.168.1.3 будут иметь доступ в Интернет, но не будут иметь возможности «достучаться» до других узлов сети, находящейся в вашем управлении, ну это как пример.
Еще нужно отметить, что ни одна схема не сможет точно передать принцип работы компьютерной сети полностью, для полной картины вам все равно придется заходить на коммутаторы и маршрутизаторы и смотреть, как они настроены, либо снабжать свои схемы объемными и подробными комментариями, в которых будут содержаться, особенности и правила настройки того или иного оборудования в той или иной ситуации. Вообще, процесс создания L3 схем довольно кропотливое, но полезное занятии. О том, как рисовать логические схемы компьютерной сети хорошо рассказано вот здесь, просто перейдите по ссылке, повторять эту публикацию у себя я не вижу смысла.
1.11.5 Топология включения узлов сети: общая шина, звезда, full mesh (каждый на каждого) или полносвязная топология и partial mesh
Завершая разговор о физической и логической топологии компьютерных сетей стоит поговорить о типовых схемах включения устройств сети, итак у нас есть четыре топологии сети, которые в равной мере можно отнести как к физической, так и к логической:
- Общая шина – такую топологию компьютерной сети вы, скорее всего, уже не встретите в реальном мире, поскольку вы уже нигде не найдете компьютерных сетей, построенных на хабах и коаксиальном Ethernet кабеле. Особенность такой топологии заключается в том, что все без исключения узлы сети подключены к одному проводу, если длина провода слишком велика, то ставится ретранслятор, который усиливает сигнал. Про особенности хабов и схемы с общей шиной мы поговорим в отдельной теме.
- Топология звезда – эта топология появилась вместе с коммутаторами, ее особенность заключается в том, что есть центральное устройство, от которого включаются все остальные устройства, это и правда похоже на звезду. Обычно сети небольших и средних компаний построены по этой топологии.
- Топология кольцо – это одна из самых надежных схем построения Ethernet сетей, надежнее может быть только компьютерная сеть, построенная по топологии full mesh, но в Ethernet сетях на канальном уровне эта топология используется очень редко из-за своей дороговизны и проблем с эксплуатацией такой сети, в соединительных линиях сети full mesh можно просто запутаться и никогда не распутаться. Вообще, Ethernet сети, построенные по топологии кольцо, не будут работать без дополнительного протокола, который называется STP. Дело все в том, что Ethernet очень чувствителен к петлям, а протокол STP позволяет защититься от петель. Другими словами: в Ethernet сетях нельзя использовать топологию кольцо без STP. Если не верите, то можете проверить: соедините медным патч-кордом два LAN-порта домашнего роутер (в лучшем случае порт на коммутаторе провайдера, от которого вы включены, заблокируется и вам придется звонить в тех. поддержку с просьбой его разблокировать, ну а в худшем случае вы можете устроить небольшой шторм на сети провайдера, и тогда тех. поддержка наберет вас сама, когда обнаружит источник шторма, чтобы рассказать, что она о вас думает).
- Mesh Topology – этот тип топологии компьютерной сети делится на два вида: full mesh и partial mesh, если переводить дословно, то полная сеть и частичная сеть. Хотя правильнее относительно full mesh говорить каждый на каждого, а русский аналог для partial mesh звучит примерно так: неполносвязная топология, так как иногда full mesh называют полносвязной топологией.
Давайте теперь перейдем к более детальному рассмотрению вопроса.
Топология общая шина
Давайте посмотрим, как на схемах будут выглядеть описанные топологии, начнем мы с топологии общая шина, она показана на Рисунке 1.11.4.
Рисунок 1.11.4 Данная компьютерная сеть имеет топологию общая шина
Тут все очевидно: логика работы сети, скорее всего, будет совпадать с физикой, когда мы поговорим про эту топологию более детально, вы поймете почему это так. Особенность общей шины заключается в том, что есть один общий кабель, по которому общаются все устройства сети, эта особенность несет с собой очень большие проблемы, с которыми очень трудно бороться, поэтому вы уже не встретите сети с топологией общая шина. Также стоит добавить, что ни одна из описанных топологий, не несет в себе ограничений на виды сетевого взаимодействия, за исключением топологии с общей шиной.
Дело все в том, что топология с общей шиной не поддерживает режим работы full duplex или полнодуплексный режим, здесь нам будет доступен только half duplex или полудуплексный режим работы, а этого недостаточно для передачи трафика типа H2H, то есть в сети с топологией общая шина не будут работать приложения аудио или видео связи, поскольку для их работы нужно, чтобы обе стороны могли одновременно и получать и отправлять данные, но в режиме half duplex этого сделать невозможно, здесь только одна сторона может отправлять, а другая сторона в этот момент времени должна слушать.
Топология звезда
Следующей в нашем списке идет топология сети звезда, пример этой топологии показан на Рисунке 1.11.5.
Рисунок 1.11.5 Данная компьютерная сеть имеет топологию звезда
Мы уже говорили, что топология звезда стала возможна благодаря появлению коммутаторов, вообще, с появлением коммутаторов сетевые инженеры избавились от многих проблем, которые были присущи сетям, построенным на хабах с топологией общая шина. Пожалуй, минусом такой топологии является ее слабая защищенность от обрывов линий и отключения электропитания.
Тут стоит сказать, что на рисунке можно выделить не одну, а целых три звезды: в основание первой лежит «Коммутатор 1», вторая звезда вырастает из «Коммутатора 2», а третья звезда образуется из «Коммутатора 6», таких звезд можно нагородить очень много, но тогда у вас будет уже скорее «паровозик».
Теперь представьте, что будет, если в нашей сети порвется физическая линия между первым и вторым коммутатором, правильно, шестой коммутатор тоже не будет работать. А если вы провайдер и у вас такая схема, при этом «Коммутатор 2» стоит в одном бизнес-центре, а «Коммутатор 6» в другом, и тут неожиданно происходит авария по электропитанию в здании, где расположен «Коммутатор 2». Клиенты, которые находятся в том же здании, естественно, вам не будут жаловаться, у них ведь тоже нет света, а вот клиенты, которые включены от «Коммутатора 6» вас не поймут, ведь у них свет есть, а услуги нет. Наверное, вам придется в срочном порядке отправляться на «Коммутатор 2» и запитывать его от дизельного генератора или же устанавливать ИБП на узле, где расположен «Коммутатор 2». Думаю, с недостатками такой схемы все понятно.
Топология кольцо и плоское кольцо
От физических обрывов линий и от отключений электропитания вас спасет топология кольцо. Сначала давайте поговорим о классической топологии кольцо (есть еще плоское кольцо). Обратите внимание на Рисунок 1.11.6, здесь показана схема прокладки кабеля, представим, что мы небольшой провайдер и подключаем жилые дома, для этого мы по чердакам протягиваем оптику, физическая схема прокладки кабеля в этом случае может выглядеть примерно так, как показано на рисунке.
Рисунок 1.11.6 Примерно так может выглядеть с точки зрения физики сеть, построенная по топологии кольцо
Будем считать, что точками с подписями на карте показаны места установки провайдерских узлов доступа на технических этажах и чердаках зданий, а соединительные линии показывают, как проложена оптика. Обратите внимание: сверху есть подпись «к нулевому узлу» – это показано, как идет оптика к узлу агрегации, позже в этой части мы поговорим про трехуровневую архитектуру компьютерной сети и тогда вы узнаете, что есть уровень доступа, от которого включаются конечные пользователи, а есть уровень агрегации и ядро сети, на каждом из уровней может быть реализована своя собственная топология, понятно, что сейчас мы смотрим на уровень доступа. Давайте посмотрим, как такая сеть будет выглядеть с точки зрения логики, это показано на Рисунке 1.11.7.
Рисунок 1.11.7 Так выглядит с логической точки зрения топология кольцо
Теперь давайте представим: что будет, если порвется линия между первым и вторым узлом, да, собственно, ничего страшного, наше кольцо распадется на две ветки, правда одна ветка будет состоять только из первого узла, а другая ветка будет включать в себя узлы с первого по шестой, но зато все будет работать, будет лишь незначительный перерыв, связанный с перестроением протокола STP или его более молодых аналогов.
Вообще, из-за того, что в Ethernet не должно быть петель, пришлось разработать протокол STP, который блокирует один из линков в кольце и таким образом, даже если нет никаких обрывов, с точки зрения логики никакого кольца нет, есть две ветки. На Рисунке 1.11.7 STP настроен плохо, так как произошло деление на неравные ветки, одна включает в себя только Узел 6, а другая все остальные узлы, заблокированный порт отмечен оранжевым кружочком, то есть данные между узлом 6 и 5 не передаются, кадры с пятого узла идут на четвертый и так до узла агрегации, давайте посмотрим, как перестроится наше кольцо, если порвать линк между 2 и 3 узлом.
Рисунок 1.11.8 Что происходит, когда в кольце рвется кабель
Через какое-то время наше кольцо перестроится и оранжевый линк станет зеленым, но у нас по-прежнему будет две ветки, а наши абоненты будут получать услугу. Давайте теперь посмотрим, что произойдет, если на четвертом узле отключат питание, тут стоит отметить, что многие вендоры выпускают коммутаторы без тумблеров питания, поэтому как только вы включите коммутатор в сеть, он сразу включится, Cisco в этом плане не исключение, поэтому я просто удалю из схемы четвертый узел.
Рисунок 1.11.9 Что происходит, когда в кольце рвется кабель
И снова спустя небольшой промежуток времени оранжевый линк станет зеленым, и у нас будут две ветки, а все абоненты, кроме тех, что работают от четвертого узла, смогут пользоваться нашими услугами. При этом у провайдеров чаще всего узлы доступа бывают недоступны из-за отключения питания во всем здании или подъезде, реже выбивает автомат, который находится в провайдерском шкафу, и еще реже бывают ситуации, когда коммутатор по тем или иным причинам выходит из строя. Если случаются две последние аварии, то вы об этом узнаете, когда вам начнут поступать звонки от абонентов, включенных с четвертого узла.
Итак, самое страшное, что может случиться в топологии кольцо – это авария на узле агрегации, ведь если этот узел станет недоступен, то упадут и узлы доступа, которые мы пронумеровали. Но стоит отметить, что в качестве узлов агрегации выбираются более надежные и производительные модели коммутаторов. А если говорить про провайдеров, то они стараются защитить узлы агрегации по питанию, устанавливать узлы агрегации в помещениях, к которым можно получить доступ круглосуточно, чтобы в случае чего приехать на узел и запитать его от генератора.
Стоит отметить, что более-менее адекватные провайдеры коммутаторы доступа включают кольцом от коммутаторов агрегации, при этом в узел агрегации может быть включено несколько колец (показано на Рисунке 1.11.10), а узлы агрегации включаются от узла концентрации или ядра сети так, чтобы образовать топологию звезда, но если у провайдера есть свободные деньги и ресурсы, то узлы агрегации кольцуются между собой, хотя это не всегда возможно реализовать в условиях города, чаще всего проблемы административного, а не технического характера.
Рисунок 1.11.10 Несколько колец доступа, включенных от узла агрегации
Преимущества топологии кольцо по сравнению со звездой очевидны, а ее недостатком является стоимость, вам потребуется заплатить больше денег монтажникам за прокладку лишних сотен метров кабеля, а прокладывать оптический кабель не так уж и дешево. Опять же, если мы говорим про провайдеров, то здесь еще могут возникнуть дополнительные ежемесячные траты или операционные расходы, которые провайдеры выплачивают собственнику зданий и конструкций, по которым проложен кабель, просто за то, что этот кабель лежит и к нему, в случае чего, можно будет получить доступ.
Теперь давайте рассмотрим частный случай топологии кольцо, который называется плоское кольцо, может, у этой топологии есть и другие названия, но, к сожалению, я их не знаю. Особенность плоского кольца заключается в том, что физически проложенный кабель не образует никакого кольца, а вот с точки зрения логики кольцо получается. Такое кольцо можно реализовать при помощи оптического кабеля, главное правильно разварить волокна. Дело все в том, что внутри оптического кабеля несколько волокон, по которым можно передавать данные, а для организации кольца нам нужно задействовать два волокна (ведь у нас в кольце две ветки). Сейчас мы не будем лезть в схему разварки волокон, хотя если вам будет интересно, можете написать мне комментарии в блоге, и я постараюсь сделать дополнительную публикацию, в которой полностью опишу эту схему с демонстрацией примеров и всех необходимых схем. Сейчас давайте обратим внимание на Рисунок 1.11.11, на нем показано, как проложен физически кабель и где установлены узлы.
Рисунок 1.11.11 На нашем импровизированном ситуационном плане никакого кольца нет
Обратите внимание, на нашем импровизированном ситуационном плане кольца не видно, это просто цепочка из узлов, включенных друг за другом, но если бы у нас было время на разбирательства в схемах распределения волокон, стало бы понятно, что с точки зрения прохождения сигнала по волокнам кабеля, кольцо есть. Давайте сейчас посмотрим на топологию нашей сети.
Рисунок 1.11.12 С точки зрения логической топологии у нас есть полноценное кольцо
А вот с точки зрения логики подключения устройств кольцо есть. Поэтому-то я в самом начале и написал, что зачастую, чтобы понять принцип работы сети, вам потребуется несколько схем, особенно это актуально в тех случаях, когда вы работает с сетями, построенными на оптических линиях связи. Глядя на Рисунок 1.11.12 нельзя точно сказать: есть ли физически кольцо на самом деле или нет, это можно будет понять только когда порвется кабель, или если у вас есть под рукой нужные схемы.
А что будет, если в плоском кольце рвется кабель, давайте посмотрим, допустим, кабель порвался между третьим и четвертым узлом, тогда узлы с четвертого по шестой станут недоступны. Выглядеть это будет примерно так, как показано на Рисунке 1.11.13.
Рисунок 1.11.13 Что будет, если в плоском кольце порвется кабель
В схеме с полноценным кольцом обрыв кабеля в одном месте не грозил бы нашим абонентам полной потерей сервиса на длительное время, в плоском кольце обрыв кабеля – это уже более печальное событие, на которое придется реагировать гораздо быстрее. Зато плоское кольцо позволяет защититься от выхода из строя одного из узлов. Представим, что в нашем плоском кольце отключили питание на третьем узле, тогда у нас будет схема, которая показана на Рисунке 1.11.14.
Рисунок 1.11.14 Что будет, если один из узлов в плоском кольце отключится по питанию
Как видим, ничего страшного не случилось, наше плоское кольцо защитило абонентов с четвертого, шестого и пятого узлов от проблем с электроэнергией на третьем узле, все абоненты, кроме тех, которые включены с третьего узла, получают услугу.
Таким образом плоское кольцо совершенно не защитит наших пользователей от проблем с обрывом кабеля, зато оно спасает абонентов от проблем с электропитанием на одном из промежуточных узлов, а с точки зрения стоимости прокладки кабеля плоское кольцо обойдется дешевле.
Топология mesh (full mesh и partial mesh)
Перейдем к топологии mesh, как мы уже говорили, здесь у нас есть два вида включения: full mesh или каждый на каждого и partial mesh или частичный mesh. Эта топология нам сейчас не так интересна, так как на канальном уровне в Ethernet сетях вы ее скорее всего не встретите, а про BGP и в частности про внутренние BGP связи в рамках курса Cisco ICND1 разговора нет. Сейчас я лишь продемонстрирую эти топологии, а в дальнейшем, когда мы будем говорить о сетях, отличных от Ethernet, мы попробуем реализовать топологии full mesh и partial mesh.
Для начала давайте посмотрим на сеть с топологией full mesh, то есть каждый на каждого, схема показана на Рисунке 1.11.15.
Рисунок 1.11.15 Компьютерная сеть с топологией full mesh (полносвязная топология)
Здесь мы видим четыре устройства, к каждому устройству подведено по три линии, ведь именно столько соседей у каждого конкретного устройства в сети из четырех узлов, построенной по топологии full mesh, иногда вместо full mesh вы можете услышать полносвязная топология, а вместо partial mesh неполносвязная топология. Итак, заключаем, в топологии каждый на каждого или полносвязной топологии каждый узел должен быть обязательно соединен со всеми другими узлами физической линией (опять же, кроме внутренних BGP связей, где должна быть логическая связь, но необязательно физическая), если будет иначе, то это уже не full mesh, а partial mesh, топология partial mesh из пяти узлов показана на Рисунке 1.11.16.
Рисунок 1.11.16 Топология partial mesh или неполносвязная топология
Как видим, соединений достаточно много, но это не full mesh с точки зрения физики, если бы это был full mesh, то к каждому устройству в сети из пяти узлов, нам бы пришлось подводить по четыре физических линии. Основным плюсом топологии full mesh является ее надежность, но у этой топологии есть два серьезных недостатка (и я даже не могу сказать какой из них хуже). Первый недостаток сетей с полносвязной топологией заключается в высокой стоимости, при этом, если говорить о сетях Ethernet, может получиться так, что часть линий не используются большую часть времени и нужны они лишь на всякий пожарный случай, когда где-то что-то порвется. А еще компьютерные сети с топологией каждый на каждого очень проблематично эксплуатировать, это на нашей схеме было четыре узла по три линии к каждому из узлов, реальные сети гораздо-гораздо больше, и вы со временем просто запутаетесь в огромном множестве проводов.
1.11.6 Выводы
Какие выводы мы можем сделать? Во-первых, нужно учиться читать схемы и диаграммы компьютерных сетей, чтобы понимать, как и что работает. Во-вторых, для понимания того, как работает ваша сеть необходимо и достаточно иметь под рукой два вида схем: схемы физической топологии и схемы логической топологии сети. Естественно, в идеале эти схемы должны быть, особенно, если мы говорим про сети отличные от домашних или какого-то малого офиса. Ведь чем лучше будет ваша сеть задокументирована, тем быстрее вы будете решать различные задачи: будь то задачи по расширению и модернизации или задачи по устранению аварий на сети.
А еще мы с вами выделили четыре топологии, которые вы можете использовать при проектирование своих компьютерных сетей, и разобрались с их особенностями, достоинствами и недостатками, напомню, что это:
- топология звезда, где есть центральный узел, от которого подключаются все остальные узлы;
- топология кольцо, которое защищает нашу сеть от обрывов и проблем с электроэнергией, но для ее реализации потребуется немного больше денег, чем для звезды, у этой топологии есть частный случай, который мы назвали плоское кольцо;
- mesh topology, эта топология делится на два вида: partial mesh или неполносвязная топология и full mesh (полносвязная топология) или каждый на каждого, сети с топологией full mesh обладают повышенной надежностью, но их трудно эксплуатировать и дорого реализовывать;
- и наконец сети с топологией общая шина, о которых лучше забыть.
Итак, при построении компьютерной сети вы можете выбирать: какую топологию использовать, учитывая все плюсы и минусы, а также задачи, которые перед вами стоят. Например, для построения небольшой офисной сети идеально подойдет топология звезда: достаточно поставить коммутатор, от которого будут включаться пользователи, а вот провайдеру для подключения конечных абонентов лучше выбрать на уровне доступа топологию кольцо, так как эта топология может защитить абонентов от обрыва или отключения электропитания.
В математике топология это область геометрии для изучения фигур, которые непрерывно изменяясь сохраняют основное свойство. Раньше её называли «Теорией точечных множеств» или «Анализом положения». Компьютерщики заимствовали название и охарактеризовали им размещение компьютеров и периферийных устройств, и системы взаимодействия между ними.
Что понимается под топологией локальной сети
Программирование и построение компьютерных сетей выросли из математики и поэтому унаследовали математические расчеты и схематику построения устройств и связей. А самим термином топология сети охарактеризовали расположение и схему связей между устройствами. Устройствами выступают компьютеры, концентраторы, роутеры, серверы, принтеры и прочая вспомогательная электроника. Кроме расположения устройств, топология обуславливает компоновку кабелей, варианты размещения коммутирующего оборудования, систему обмена сигналами и прочие запросы потребителей компьютерных технологий.
Соединение в сети вызвано необходимостью объединения ресурсов компьютеров, экономией на периферийных устройствах, и как следствие решением комплексных задач. Исходя из конкретных предполагаемых задач и выстраивается топология компьютерной сети. Существуют семь основных видов соединений.
Виды и примеры топологий компьютерных сетей
Первоначально использовали три базовых вида топологий это шина, кольцо и звезда. С развитием технологий прибавились ещё четыре – полносвязная, ячеистая, дерево и смешанная.
Топология шина
Пожалуй наиболее простая и старая топология локальных сетей. Простота обусловлена наличием всего одной магистрали (кабеля) к которой соединены все устройства. Сигналы передаваемые одним, могут получать все. При этом отдельный компьютер отфильтровывает и принимает необходимую только ему информацию.
Достоинства такой схемы:
- простое моделирование;
- дешевизна конструкции, при условии, что все устройства располагаются недалеко друг от друга;
- поломка одного или даже нескольких устройств не влияет на работоспособность остальных элементов сети.
Недостатки шины:
- неполадки на любом участке, а это обрыв шины или поломка сетевого коннектора нарушают работы всей системы;
- сложность ремонтных работ, прежде всего определения места неисправности;
- очень низкая производительность – в каждый момент только одно устройство передаёт данные остальным, увеличение числа приборов ведёт к существенному снижению производительности;
- сложность расширения сети, для этого приходится полностью заменять участки кабеля.
Именно из-за этих недостатков такие сети морально устарели, не обеспечивают современных требований обмена данными и фактически не применяются. По такой топологии создавались первые локальные сети. Роль шины в таких схемах выполнял коаксиальный кабель. Его прокладывали ко всем компьютерам и возле каждого соединяли т-образным штекером (тройником).
Топология кольцо
В «кольце» устройства подключены последовательно по кругу и по эстафете передают информацию. Четко выделенного центра нет и все приборы практически равнозначны. Если сигнал не предназначен компьютеру, он его транслирует следующему и так до конечного потребителя.
Достоинства соединения кольцом:
- простота компоновки;
- возможность построения длинных сетей;
- не возникает необходимости в дополнительных устройствах;
- устойчивая работа с хорошей скоростью даже при интенсивной передаче данных.
Но кольцевое соединение имеет и ряд недостатков:
- каждый компьютер должен быть в рабочем состоянии и участвовать в трансляции, при обрыве кабеля или поломки одного устройства – сеть не работает;
- на время подсоединения нового прибора схема полностью размыкается, поэтому требуется полное отключение сети;
- сложное моделирование и настройка соединений;
- сложный поиск неисправностей и их устранение.
Основное применение кольца получили при создании соединений для удаленных друг от друга компьютеров, установленных в противоположных концах и на разных этажах зданий. Работают такие сети по специально разработанному стандарту Token Ring (802.5). Для надёжности и повышения объёмов обмена информацией монтируют вторую линию. Она используется либо как аварийная, либо по ней передаются данные в противоположном направлении.
Топология звезда
Самая распространённая и технологичная система создания сетей. Командует всем сервер, контроллер или коммутатор. Все компьютеры как лучи подсоединены к нему. Общение между ними происходит только через центральное устройство. Топология сети в которой все компьютеры присоединены к центральному узлу стала основой для построения современных офисных локальных сетей.
В качестве узла используются активные или пассивные коммутаторы. Пассивный, это просто коробка соединения проводов не требующая питания. Активный коммутатор соединяет схему проводной или беспроводной технологией и требует подключения к питанию. Он может усиливать и распределять сигналы. Топология сети звезда обрела популярность благодаря множеству достоинств:
- высокая скорость и большой объём обмена данными;
- повреждение передающего кабеля или поломка одного элемента (кроме центрального) не снижает работоспособность сети;
- широкие возможности для расширения, достаточно смонтировать новый кабель или настроить доступ на коммутаторе;
- простая диагностика и ремонт;
- легкий монтаж и сопровождение.
Как и большинство сетей, соединение звезда имеет ряд недостатков, все они связаны с необходимостью использования центрального коммутатора:
- дополнительные затраты;
- он же — слабое звено, поломка приводит к неработоспособности всего оборудования;
- число подключаемых устройств и объём передаваемой информации зависит от его характеристик.
Несмотря на недостатки звезда широко используется при создании сетей на больших и маленьких предприятиях. А соединяя между собой коммутаторы получают комбинированные топологии.
Полносвязная или сеточная топология
В полносвязной системе все устройства соединены между собой отдельным кабелями, образующими сетку. Это очень надёжная схема коммуникации. Но целесообразна только при малом количестве соединяемых приборов, работающих с максимальной загрузкой. С ростом количества оборудования резко возрастает число прокладываемых коммуникаций. Поэтому широкого распространения не получила, в отличие от своей производной – частичной сетки.
Ячеистая топология
Частичная сетка или ячеистая топология напрямую связывает только обменивающиеся самыми большими объёмами данных и самые активные компьютеры. Остальные общаются посредством узловых коммутаторов. Сетка соединяющая ячейки, выбирает маршруты для доставки данных, обходя загруженные и разорванные участки.
Преимущества частичной сети:
- надежность, при отказе отдельных каналов коммутации будет найден альтернативный путь передачи данных;
- высокое быстродействие, так как основной поток данных передается по прямым линиям.
Недостатки ячеистой технологии:
- стоимость монтажа и поддержания достаточно высока, т.к. несмотря на частичность сетки всё равно требуется большое количество коммутационных линий;
- трудность построения и коммутирования сети при большом количестве соединяемых устройств.
Из-за дороговизны и сложности построения применяется в основном для построения глобальных сетей.
Топология дерево
Эта топология является комбинацией нескольких звёзд. Архитектура построения предусматривает прямое соединение пассивных или активных коммутаторов.
Такой тип топологии чаще всего используют при монтаже локальных сетей с небольшим количеством приборов, в основном при создании корпоративных коммутаторов. Совмещает довольно низкую стоимость и очень хорошее быстродействие. Особенно при комбинировании различных линий передач — сочетании медных и волоконных кабельных систем, и применении управляемых коммутаторов.
Смешанная топология
Чистое применение какой-то одной топологии редкое явление. Очень часто с целью экономии на коммутационных линиях применяют смешанные схемы. Самыми распространенными из которых являются:
- Звёздно — кольцевая.
- Звёздно — шинная.
В первом случае компьютеры объединены в звёзды посредством коммутаторов, а они уже закольцованы. По сути все без исключения компьютеры заключены в круг. Такое соединение умножает достоинства обеих сетей, так как коммутаторы собирают в одну точку все подключенные устройства. Они могут просто передавать или усиливать сигнал. Если рассмотреть систему технологии распространения данных, то такая топология подобна обычному кольцу.
В звёздно — шинной сети комбинируется топология шин и звёзд. К центральному устройству соединяют единичные компьютеры и сегменты шин. При такой топологической схеме можно использовать несколько центральных устройств, из которых собирают магистральную шину. В конечном результате собирается звёздно — шинная схема. Пользователи могут одновременно использовать звёздную и шинную топологии, и легко дополнять компьютеры.
Смешанные соединяют в себе все плюсы и минусы составляющих их видов топологий локальных сетей.
Программы для создания топологий сети
Для создания и корректировки написано много программ. Среди самых распространённых и наиболее удобных выделяются следующие:
- Microsoft Visio
- eDraw Max
- Схема Сети
- Векторный 2D-редактор CADE для Windows
- Diagram Designer
- Concept Draw Pro
- Dia
- Cisco Packet Tracer LanFlow
- NetProbe
- Network Notepad
Некоторые бесплатные, а за многие придётся заплатить. Но даже у большинства платных есть пробный период, за который можно понять подойдёт она или нет.
Топология является самым важным фактором быстродействия и надёжности коммуникаций. При этом всегда можно комбинировать основными схемами топологий для того, чтобы добиться наилучшего результата. Важно знать и помнить, как преимущества и недостатки каждого соединения влияют на проектируемую или эксплуатируемую топологическую сеть. Поэтому схему нужно заранее тщательно планировать.
Contents
- 1 Что такое топология сети?
- 2 Топология шины
- 2.1 преимущества
- 2.2 Недостатки
- 3 Кольцевая топология
- 3.1 Топология двойного кольца
- 3.2 преимущества
- 3.3 Недостатки
- 4 Топология звезды
- 4.1 преимущества
- 4.2 Недостатки
- 5 Топология дерева
- 5.1 преимущества
- 5.2 Недостатки
- 6 Топология сетки
- 6.1 преимущества
- 6.2 Недостатки
- 7 Гибридная топология
- 7.1 преимущества
- 7.2 Недостатки
- 8 Какую топологию выбрать?
- 9 ПО для картирования топологии сети
- 10 Обзор сетевых топологий
Что такое топология сети?
Топология сети – это описание расположения узлов (например, коммутаторов и маршрутизаторов) и соединений в сети, часто представляемых в виде графика..
Независимо от того, насколько идентичны две организации, нет двух одинаковых сетей. Тем не менее, многие организации полагаются на устоявшиеся модели топологии сети. Топологии сети описывают, как устройства соединяются вместе и как данные передаются от одного узла к другому..
топология логической сети это концептуальное представление о том, как устройства работают на определенных уровнях абстракции. физическая топология подробно, как устройства физически связаны. Логические и физические топологии могут быть представлены как визуальные диаграммы.
карта топологии сети это карта, которая позволяет администратору видеть физическое расположение подключенных устройств. Наличие карты топологии сети под рукой очень полезно для понимания того, как устройства соединяются друг с другом, и лучших методов устранения неполадок..
Существует много различных типов топологий, которые корпоративные сети построили сегодня и в прошлом. Некоторые из топологий сети, которые мы собираемся рассмотреть, включают топология шины, кольцевая топология, звездная топология, топология сетки, и гибридная топология.
Топология шины
Топология шины – это тип сети, где каждое устройство подключается к одному кабелю, который проходит от одного конца сети к другому. Этот тип топологии часто называют линейная топология. В топологии шины данные передаются только в одном направлении. Если топология шины имеет две конечные точки, она называется топология линейной шины.
Меньшие сети с топологией этого типа используют коаксиальный кабель или кабель RJ45 для объединения устройств. Однако схема топологии шины устарела, и вы вряд ли встретите компанию, использующую топологию шины сегодня..
преимущества
Топологии шины часто использовались в небольших сетях. Одна из главных причин заключается в том, что они сделай макет простым. Все устройства подключены к одному кабелю, поэтому вам не нужно управлять сложной топологической настройкой..
Расположение также помогло сделать экономическую топологию шины экономически выгодной, потому что они можно запустить с помощью одного кабеля. Если требуется добавить больше устройств, вы можете просто подключить свой кабель к другому кабелю..
Недостатки
Однако использование одного кабеля означает, что топологии шины имеют единую точку отказа. Если кабель выходит из строя, вся сеть будет повреждена. Отказ кабеля стоил бы организациям много времени, пока они пытаются возобновить обслуживание. В дополнение к этому, высокий сетевой трафик снизит производительность сети потому что все данные проходят через один кабель.
Это ограничение делает топологии шины подходящими только для небольших сетей. Основная причина в том, что чем больше у вас узлов, тем ниже будет ваша скорость передачи. Стоит также отметить, что шинные топологии ограничены в том смысле, что они полудуплекс, это означает, что данные не могут быть переданы в двух противоположных направлениях одновременно.
Смотрите также: Мониторинг сети, сервера и приложений для малого и среднего бизнеса
Кольцевая топология
В сетях с кольцевой топологией компьютеры соединяются друг с другом в кольцевом формате. Каждое устройство в сети будет иметь двух соседей и не больше или не меньше. Кольцевые топологии обычно использовались в прошлом, но вам было бы трудно найти предприятие, все еще использующее их сегодня.
Первый узел подключен к последнему узлу, чтобы связать цикл вместе. Как следствие размещения в этом формате пакеты должны проходить через все узлы на пути к месту назначения..
В рамках этой топологии один узел выбран для настройки сети и мониторинга других устройств. Кольцевые топологии полудуплекс, но также может быть сделан дуплекс. Чтобы сделать кольцевые топологии полнодуплексными, вам потребуется два соединения между сетевыми узлами для формирования Топология двойного кольца.
Топология двойного кольца
Как упомянуто выше, если кольцевые топологии сконфигурированы, чтобы быть двунаправленными, то они упоминаются как топологии с двумя кольцами. Топологии с двумя кольцами обеспечивают каждый узел двумя соединениями, по одному в каждом направлении. Таким образом, данные могут передаваться в по часовой стрелке или против часовой стрелки направление.
преимущества
В кольцевых топологиях риск коллизий пакетов очень низок из-за использования основанных на токене протоколов, которые позволяют только одной станции передавать данные в данный момент времени. Это усугубляется тем, что данные могут перемещаться по узлам на высоких скоростях который может быть расширен при добавлении большего количества узлов.
Топологии с двумя кольцами обеспечили дополнительный уровень защиты, потому что они были более устойчивы к сбоям. Например, если кольцо выходит из строя внутри узла, то другое кольцо может подняться и поддержать его. Кольцевые топологии были также низкая стоимость установки.
Недостатки
Одна из причин, по которой кольцевые топологии были заменены, заключается в том, что они очень уязвимы к сбоям. еAilure одного узла может вывести из строя всю сеть. Это означает, что сети с топологией кольца должны постоянно управляться, чтобы гарантировать, что все узлы находятся в хорошем состоянии. Тем не менее, даже если узлы были в добром здравии вашей сети все еще может быть сбит в автономном режиме из-за отказа линии электропередачи!
Кольцевые топологии также повышенные проблемы масштабируемости. Например, полоса пропускания используется всеми устройствами в сети. К тому же, больше устройств, которые добавляются в сеть чем больше задержка связи сеть переживает. Это означает, что количество устройств, добавленных в топологию сети, необходимо тщательно контролировать, чтобы убедиться, что сетевые ресурсы не были растянуты за их пределы..
Внесение изменений в кольцевую топологию также было сложным, потому что вы необходимо выключить сеть, чтобы внести изменения к существующим узлам или добавить новые узлы. Это далеко не идеально, так как вам нужно учитывать время простоя каждый раз, когда вы хотите внести изменения в топологическую структуру!
Смотрите также: Инструменты для мониторинга пропускной способности
Топология звезды
Топология «звезда» – это топология, в которой каждый узел в сети подключен к одному центральному коммутатору. Каждое устройство в сети напрямую связано с коммутатором и косвенно связано с любым другим узлом. Связь между этими элементами заключается в том, что центральное сетевое устройство является сервером, а другие устройства рассматриваются как клиенты. Центральный узел отвечает за управление передачей данных по сети и действует как ретранслятор. В топологии «звезда» компьютеры подключаются с помощью коаксиального кабеля, витой пары или оптоволоконного кабеля..
преимущества
Звездные топологии наиболее часто используются, потому что вы может управлять всей сетью из одного местаЦентральный выключатель Как следствие, если узел, который не является центральным узлом, выйдет из строя, то сеть останется работоспособной. Это дает топологиям звезд уровень защиты от сбоев, которые не всегда присутствуют при других настройках топологии. Точно так же ты можно добавлять новые компьютеры без необходимости отключать сеть как вы бы сделали с кольцевой топологией.
С точки зрения физической структуры, для топологии типа звезда требуется меньше кабелей, чем для других типов топологии. Это делает их прост в настройке и управлении в долгосрочной перспективе. Простота общего дизайна значительно облегчает администраторам устранение неполадок при работе с ошибками производительности..
Недостатки
Хотя звездные топологии могут быть относительно безопасны от отказа, если центральный коммутатор выйдет из строя, то вся сеть выйдет из строя. Таким образом, администратору необходимо тщательно контролировать состояние центрального узла, чтобы убедиться, что он не выходит из строя. Производительность сети также привязаны к конфигурации и производительности центрального узла. Топологией Star легко управлять в большинстве случаев, но их установка и использование далеко не дешевы.
Топология дерева
Как следует из названия, древовидная топология – это сетевая структура, имеющая форму дерева с множеством ветвей. Топологии деревьев иметь корневой узел который связан с другой иерархией узлов. иерархия родитель-потомок где существует только одна взаимная связь между двумя связанными узлами. Как правило, топология дерева должна иметь три уровня иерархии для классификации таким образом. Эта форма топологии используется в глобальных сетях выдержать много разложенных устройств.
преимущества
Основная причина, почему древовидные топологии используется для расширения топологии шины и звезды. В этом иерархическом формате легко добавить больше узлов в сеть, когда ваша организация увеличивается в размерах. Этот формат также хорошо подходит для поиска ошибок и устранения неполадок потому что вы можете систематически проверять проблемы с производительностью по всему дереву.
Недостатки
Наиболее существенным недостатком топологии дерева является корневой узел. В случае сбоя корневого узла все его поддеревья становятся разделенными. Все еще будет частичное соединение в сети среди других устройств, таких как родительский узел неисправного.
Поддерживать сеть тоже не просто, потому что чем больше узлов вы добавляете, тем сложнее становится управлять сеть. Другим недостатком древовидной топологии является количество необходимых кабелей. Кабели необходимы для подключения каждого устройства по всей иерархии, что делает макет более сложным по сравнению с более простой топологией.
Топология сетки
Топология сетки – это соединение точка-точка, где узлы взаимосвязаны. В этой форме топологии, данные передаются двумя способами: маршрутизации и затопление. В маршрутизации узлы используют логику маршрутизации для определения кратчайшего расстояния до места назначения пакета. Напротив, при затоплении данные отправляются на все узлы в сети. Наводнение не требует никакой формы логики маршрутизации для работы.
Есть две формы топологии сетки: частичная топология сетки и етопология ULL-сетки. При частичной топологии сетки большинство узлов взаимосвязаны, но есть несколько, которые связаны только с двумя или тремя другими узлами. В топологии с полной сеткой каждый узел взаимосвязан.
преимущества
Сетчатые топологии используются в первую очередь потому, что они надежны. взаимосвязанность узлов делает их чрезвычайно устойчивыми к сбоям. Нет ни одного сбоя компьютера, который мог бы сломать всю сеть. Отсутствие единой точки отказа является одной из причин, почему это популярный выбор топологии. Эта настройка также защищена от взлома.
Недостатки
Однако сетчатые топологии далеки от совершенства. Oни требует огромного количества конфигурации как только они развернуты. Топологическая схема более сложна, чем у многих других топологий, и это отражается в том, сколько времени потребуется для ее настройки. Вам нужно будет разместить целый ряд новых проводов, которые могут быть довольно дорогими.
Гибридная топология
Когда топология состоит из двух или более разных топологий, она называется гибридной топологией. Гибридные топологии чаще всего встречается на крупных предприятиях где отдельные отделы имеют сетевые топологии, которые отличаются от другой топологии в организации. Соединение этих топологий вместе приведет к гибридной топологии. Как следствие, возможности и уязвимости зависят от типов топологии, которые связаны.
преимущества
Существует много причин, по которым используются гибридные топологии, но все они имеют одну общую черту: гибкость. Есть несколько ограничений на структуру, которые гибридная топология не может вместить, и вы может включать несколько топологий в одну гибридную установку. Как следствие, гибридные топологии очень масштабируемы. Масштабируемость гибридных установок делает их хорошо подходящими для больших сетей.
Недостатки
К сожалению, гибридные топологии может быть довольно сложным, в зависимости от топологии, которую вы решили использовать. Каждая топология, которая является частью вашей гибридной топологии, должна управляться в соответствии с ее уникальными требованиями. Это усложняет работу администраторов, поскольку им придется пытаться управлять несколькими топологиями, а не одной. Кроме того, настройка гибридной топологии может оказаться довольно дорогостоящим.
Смотрите также: Инструменты и программное обеспечение для обнаружения сети
Какую топологию выбрать?
Существует ряд факторов, которые необходимо учитывать при выборе топологии. Прежде чем выбрать топологию, вы должны внимательно рассмотреть следующее:
- Необходимая длина кабеля
- Тип кабеля
- Стоимость
- Масштабируемость
Во-первых, вам нужно принять во внимание длину кабеля, который вам нужен предоставлять услуги всем вашим сетевым устройствам. Топология шины является наиболее легкой с точки зрения потребностей в кабеле. В этом смысле это будет самая простая топология для установки и покупки кабеля. Это связано со вторым фактором, вам нужно рассмотрите тип кабеля, который вы собираетесь использовать. Типы кабелей варьируются от витых пар до коаксиальных и оптоволоконных кабелей.
Стоимость установки топологии также очень важна. Чем сложнее выбранная топология, тем больше вам придется заплатить с точки зрения ресурсов и времени, чтобы создать эту настройку..
Последний фактор, который вы хотите принять во внимание, – это масштабируемость.. Если вы планируете повысить вашей сетевой инфраструктуры в будущем вы хотите убедиться, что вы использовать сеть, в которую легко добавлять устройства. Сеть со звездообразной топологией идеально подходит для этого, потому что вы можете добавлять узлы с минимальным нарушением работы. Это не так просто в кольцевой сети, потому что вы добавите время простоя, если добавите какие-либо узлы.
ПО для картирования топологии сети
Теперь, когда мы знаем различные типы топологии, пришло время подумать о том, как спроектировать вашу сеть с нуля. Существует ряд программных продуктов, позволяющих создавать собственные диаграммы топологии сети. Диаграммы топологии сети показывают, как ваша сеть соединяется вместе, и помогают вам создать эффективный дизайн сети. Он также предоставляет вам контрольную точку, которая помогает вам при попытке выполнить поиск и устранение неисправностей для устранения неисправностей..
Существует множество различных продуктов для отображения топологии сети, но один из наиболее широко используемых Microsoft Visio. С помощью Microsoft Visio вы можете создать свою сеть, добавив сетевые элементы на холст. Эта программа позволяет вам разработать схему, которая детализирует вашу сеть. Конечно, создание собственной сети не всегда идеально, особенно когда вы пытаетесь отобразить большую сеть.
В результате вы можете рассмотреть возможность использования другого инструмента, такого как Картограф топологии сети SolarWinds который может автоматически обнаруживать устройства, подключенные к вашей сети. Автообнаружение пригодится, потому что это означает, что вам не нужно составлять структуру сети вручную.
Сетевая топология SolarWinds MapperDownload 14-дневная бесплатная пробная версия
Обзор сетевых топологий
Топология сети, которую вы выбираете для своего предприятия, должна основываться на ваших требованиях к использованию. Количество узлов в вашей сети будет определять, сможете ли вы сделать это с помощью топологии шины или вам понадобится развернуть более сложную сетку или гибридную установку.
Помни что все топологии имеют свои преимущества и недостатки в зависимости от среды, в которой они применяются (даже те, которые устарели!). После того, как вы продумали топологию, которую хотите использовать, вы можете приступить к ее развертыванию..
Один хороший способ планировать заранее – использовать инструмент отображения топологии сети составить макет, который вы собираетесь использовать. Используя такой инструмент, как Картограф топологии сети SolarWinds позволит вам построить свою сеть на диаграмме, чтобы увидеть топологическую структуру в одном месте.
Связанные: 25 лучших инструментов мониторинга сети 2023 года
Навигация
|
3.Топологии локальных вычислительных сетей
|
Разработка общей структуры и топологии сети.
Типичная иерархическая
структура структурированной кабельной
системы включает:
-
горизонтальные
подсистемы (в пределах этажа); -
вертикальные
подсистемы (внутри здания);
Использование
структурированной кабельной системы
вместо хаотически проложенных кабелей
дает предприятию много преимуществ.
-
Универсальность.
Структурированная кабельная система
при продуманной организации может
стать единой средой для передачи
компьютерных данных в локальной
вычислительной сети, организации
локальной телефонной сети, передачи
видеоинформации и даже передачи сигналов
от датчиков пожарной безопасности или
охранных систем. Это позволяет
автоматизировать многие процессы
контроля, мониторинга и управления
хозяйственными службами и системами
жизнеобеспечения предприятия. -
Увеличение срока
службы. Срок морального старения хорошо
структурированной кабельной системы
может составлять 10-15 лет. -
Уменьшение
стоимости добавления новых пользователей
и изменения их мест размещения. Известно,
что стоимость кабельной системы
значительна и определяется в основном
не стоимостью кабеля, а стоимостью
работ по его прокладке. Поэтому более
выгодно провести однократную работу
по прокладке кабеля, возможно, с большим
запасом по длине, чем несколько раз
выполнять прокладку, наращивая длину
кабеля. При таком подходе все работы
по добавлению или перемещению пользователя
сводятся к подключению компьютера к
уже имеющейся розетке. -
Возможность
легкого расширения сети. Структурированная
кабельная система является модульной,
поэтому ее легко расширять. Например,
к магистрали можно добавить новую
подсеть, не оказывая никакого влияния
на существующие подсети. Можно заменить
в отдельной подсети тип кабеля независимо
от остальной части сети. Структурированная
кабельная система является основой
для деления сети на легко управляемые
логические сегменты, так как она сама
уже разделена на физические сегменты. -
Обеспечение более
эффективного обслуживания. Структурированная
кабельная система облегчает обслуживание
и поиск неисправностей по сравнению с
шинной кабельной системой. При шинной
организации кабельной системы отказ
одного из устройств или соединительных
элементов приводит к трудно локализуемому
отказу всей сети. В структурированных
кабельных системах отказ одного сегмента
не действует на другие, так как объединение
сегментов осуществляется с помощью
концентраторов. Концентраторы
диагностируют и локализуют неисправный
участок. -
Надежность.
Структурированная кабельная система
имеет повышенную надежность, поскольку
производитель такой системы гарантирует
не только качество ее отдельных
компонентов, но и их совместимость.
Выбор типа кабеля
для горизонтальных подсистем:
К горизонтальной
подсистеме предъявляются повышенные
требования к удобству выполнения
ответвлений, а также удобству его
прокладки в помещениях.
В
качестве типа кабеля для горизонтальной
подсистеме я выбрал кабель UTP3
стандарт 10BASE-T.
Неэкранированная
витая пара UTP по характеристикам полосы
пропускания и поддерживаемым расстояниям
также подходит для создания горизонтальных
подсистем. Но так как она может передавать
данные и голос, она используется чаще.
Компьютеры должны поддерживать технологию
Ethernet.
Будут использоваться
16 портовые концентраторы.
Выбор типа кабеля
для вертикальных подсистем:
Кабель
вертикальной (или магистральной)
подсистемы, которая соединяет этажи
здания, должен передавать данные на
большие расстояния и с большей скоростью
по сравнению с кабелем горизонтальной
подсистемы. В прошлом основным видом
кабеля для вертикальных подсистем был
коаксиал. Теперь для этой цели все чаще
используется оптоволоконный кабель.
На данный момент выбор типа кабеля для
вертикальных систем сильно ограничен.
Приходится выбирать между оптоволокном,
толстый коаксиал, и широкополосный
кабель.
Применение
волоконно-оптического кабеля в
вертикальной подсистеме имеет рад
преимуществ. Он передает данные на
значительно большие расстояния без
необходимости регенерации сигнала. Он
имеет сердечник меньшего диаметра,
поэтому может быть проложен в более
узких местах. Так как передаваемые по
нему сигналы являются световыми, а не
электрическими, оптоволоконный кабель
не чувствителен к электромагнитным и
радиочастотным помехам, в отличие от
медного коаксиального кабеля. Это делает
оптоволоконный кабель идеальной средой
передачи данных для промышленных сетей.
Оптоволоконному кабелю не страшна
молния, поэтому он хорош для внешней
прокладки. Он обеспечивает более высокую
степень защиты от несанкционированного
доступа, так как ответвление гораздо
легче обнаружить, чем в случае медного
кабеля (при ответвлении резко уменьшается
интенсивность света).
Оптоволоконный
кабель имеет и недостатки. Он дороже
чем медный кабель, дороже обходится и
его прокладка. Оптоволоконный кабель
менее прочный, чем коаксиальный.
Инструменты, применяемые при прокладке
и тестировании оптоволоконного кабеля,
имеют высокую стоимость и сложны в
работе. Присоединение коннекторов к
оптоволоконному кабелю требует большого
искусства и времени, а следовательно,
и денег.
Хотя толстый
коаксиальный кабель и дешевле, чем
оптоволокно, но с ним гораздо сложнее
работать. Он особенно чувствителен к
различным уровням напряжения заземления,
что часто бывает при переходе от одного
этажа к другому. Эту проблему сложно
разрешить. Поэтому кабелем номер 1 для
горизонтальной подсистемы сегодня
является волоконно-оптический кабель.
Я выбираю
волоконно-оптический кабель в вертикальной
системе, потому что он обладает лучшей
помехоустойчивостью и обладает большим
сроком службы в отличие от коаксиального
кабеля.
10BASE-FL (Fiber Link) —
Улучшенная версия стандарта FOIRL. Улучшение
коснулось увеличения длины сегмента
до 2 км. А так же он имеет больший срок
службы и сможет в будущем поддерживать
высокоскоростные и мультимедийные
приложения.
Определение
топологии сети:
Для начала определим
физические особенности нашей сети:
10 Base-T – кабель на
основе неэкранированной витой пары для
горизонтальных подсистем. На уровне
отдела имеются 16-портовые концентраторы.
10Base-FL- волоконно-оптический кабель для
вертикальной подсистемы.
Максимальная
пропускная способность – 10 Мбит/с.
В качестве основной
топологии сети, на основе которой будет
строить вся сеть, я выбираю топологию
иерархическая звезда. Технология
Ethernetподразумевает
топологию с общей магистралью, но, так
как используется тип 10Base-Tто топология, по которой будет строиться
сеть, будет Иерархическая звезда.
Логическая
структуризация сети:
Наша сеть состоит
из 2304 персональных компьютеров и один
сервер для хранения общей информации.
Эффективность
разделяемой среды для небольшой сети
проявляется в следующих свойствах:
-
Простая топология
сети, допускающая легкое наращивание
числа узлов. -
Отсутствие потерь
кадров из-за переполнения буферов
коммуникационных устройств, так как
новый кадр не передается в сеть, пока
не принят предыдущий.
Простоте протоколов,
обеспечившей низкую стоимость сетевых
адаптеров, повторителей и концентраторов.
Рис. 1 – логическая
структура сети на уровне этажа.
Исходя из
задания, на одном этаже находится по 2
отдела, я решил соединить маршрутизатор
с этажным коммутатором. Который в
дальнейшим будет соединен с коммутаторами
отделов. Это сделано с целью экономии.
Так как дешевле поставить 1 лишний
коммутатор, чем протягивать две
оптико-волоконных линии.
Рис.
2 – логическая структура сети на уровне
отдела.
Рис.
3 – логическая структура сети на уровне
группы.
Размеры единичной
условной комнаты 6×4
м. По заданию
в одной группе 12 компьютеров. Для 1 отдела
отводится 1 комната.
Рис.
4 – логическая структура сети в группе.
Итоговый вид
логической структуры представлен ниже.
Рис. 5 – Итоговый вид логическая структура
сети
Максимальная длина
сегмента в 100м соблюдена.
В
качестве коммуникационного оборудования
разделяющего сеть был выбран коммутатор,
потому что его главное достоинство –
это его высокая производительность по
сравнению с мостами.
Всего
в данной сети планируется использовать
192 концентраторов/16, 18 коммутатора/16 и
1 маршрутизатор, для выхода во внешнюю
среду.
Коммутаторы
в вертикальной системе соединяются с
маршрутизатором через 10Base-FL.Такая
схема соединения позволит минимизировать
количества проводов, при этом оставив
место для расширения сети и добавления
новых пользователей.
Основные требования
к коммуникационным устройствам:
Концентраторы:
Ethernet-
концентратор стандарта 10Base-
T;
16 портовый концентратор с разъемами
RJ-
45; также один порт AUI для подключения
внешнего трансивера.
Исходя
из требований учёта несанкционированного
доступа и достижения высокой надежности
работы сети, нужно воспользоваться
дополнительными свойствами концентратора,
такими как:
-
Поддержка
резервных связей:
концентраторы Ethernet могут образовывать
только иерархические связи без петель.
Поэтому резервные связи всегда должны
соединять отключенные порты, чтобы не
нарушать логику работы сети. Если по
какой-либо причине порт отключается
(срабатывает механизм автосегментации),
концентратор делает активным его
резервный порт. -
Защита
от несанкционированного доступа:
Разработчики концентраторов предоставляют
некоторый способ защиты данных в
разделяемых средах. Наиболее простой
способ – назначение разрешенных МАС –
адресов портам концентратора. В
стандартном концентраторе Ethernet порты
МАС – адресов не имеют. Защита заключается
в том, что администратор вручную
связывает с каждым портом концентратора
некоторый МАС – адрес. Этот МАС – адрес
является адресом станции, которой
разрешается подключаться к данному
порту.
Коммутаторы:
Коммутатор D-Link <DES-1005D/ E> имеет 16портов;
как минимум 1 порт, поддерживающий
технологию 10Base
– FL;
как минимум 4 порта, поддерживающий
технологию 10Base
– T.
В
нашей сети используется 1 Маршрутизатор
ASUS RX3041_v2– для выхода пользователей во
внешнюю сеть.
Соседние файлы в предмете [НЕСОРТИРОВАННОЕ]
- #
- #
- #
- #
- #
- #
- #
- #
- #
- #
- #