Как составить уравнение гиперболы 8 класс

Что такое гипербола? Как построить гиперболу? (Для школьников (7-11 классов)).

Математическая гипербола.

Функция заданная формулой (y=frac{k}{x}), где к неравно 0. Число k называется коэффициентом обратной пропорциональности.
Определение гиперболы.
График функции (y=frac{k}{x}) называют гиперболой. Где х является независимой переменной, а у — зависимой.

Что нужно знать, чтобы построить гиперболу?
Теперь обсудим свойства гиперболы:

1. Ветви гиперболы. Если k>o, то ветви гиперболы находятся в 1 и 3 четверти. Если k<0, то ветви гиперболы находятся во 2 и 4 четверти.
гипербола, где k>0 ветви гиперболы находятся в 1 и 3 четверти. гипербола, где k>0 ветви гиперболы находятся в 1 и 3 четверти

гипербола, где k<0 ветви гиперболы находятся во 2 и 4 четверти гипербола, где k<0 ветви гиперболы находятся во 2 и 4 четверти

2.Асимптоты гиперболы. Чтобы найти асимптоты гиперболы необходимо,иногда, уравнение гиперболы упростить. Рассмотрим на примере:
Пример №1:
$$y=frac{1}{x}$$
Знаменатель не может равняться 0, потому что на 0 делить нельзя, поэтому х не равен 0.
$$yneqcolor{red} {frac{1}{x}}+0$$
(frac{1}{x}) дробь отбрасываем, для того чтобы найти вторую асимптоту.
Остается простое число
y≠0 это вторая асимптота.
И так, асимптоты x≠0 и y≠0 в данном примере совпадают с осями координат OX и OY.
k=1, значит гипербола будет находится в первой и третьей четверти. k всегда находится в числители.
Построим примерный график гиперболы.
гипербола y=1/x

Пример №2:
$$y=frac{1}{x+2}-1$$
Находим первую асимптоту.
Знаменатель не может равняться 0, потому что на 0 делить нельзя, поэтому х+2 неравен 0.
х+2≠0
х≠-2 это первая асимптота

Находим вторую асимптоту.

$$y=color{red} {frac{1}{x+2}}-1$$

Дробь (color{red} {frac{1}{x+2}}) отбрасываем
Остается y≠ -1 это вторая асимптота.

Строим примерный график, отмечаем асимптоты (красным проведены прямые х≠-2 и y≠-1):
построим гиперболу

построить гиперболу

Пример №3:

$$begin{align*}
&y=frac{2+x}{1+x} \\
&y=frac{color{red} {1+1}+x}{1+x} \\
&y=frac{1}{1+x}+frac{1+x}{1+x}\\
&y=frac{1}{1+x}+1\\
&y=frac{1}{color{red} {1+x}}+1
end{align*}$$

Находим первую асимптоту.
Знаменатель не может равняться 0, потому что на 0 делить нельзя, поэтому 1+х неравен 0.
1+х≠0
х≠-1 это первая асимптота.

Находим вторую асимптоту.

$$y=color{red}{frac{1}{1+x}}+1$$

(color{red}{frac{1}{1+x}}) Дробь убираем.

Остается y≠1 это вторая асимптота.

Строим примерный график, отмечаем асимптоты (красным проведены прямые х≠-1 и y≠1):
построить гиперболу

построить гиперболу

3. У гиперболы есть центр симметрии относительно начала координат. Рассмотрим на примере:

$$y=frac{1}{x}$$

Возьмем точку А(1;1) с координатами, которая находится на графике у=1/х. На этом же графике лежит точка B(-1;-1). Видно, что точка А симметрична точке В относительна начала координат.
гипербола 1/х

4. Оси симметрии гиперболы. У гиперболы две оси симметрии. Рассмотрим пример:

$$y=frac{1}{x}$$

Первой осью симметрии является прямая y=x. Посмотрим точки (0,5;2) и (2;0,5) и еще точки (-0,5;-2) и (-2;-0,5). Эти точки расположены по разные стороны данной прямой, но на равных расстояниях от нее, они симметричны относительно этой прямой.

Вторая ось симметрии это прямая y=-x.

оси симметрии гиперболы

5. Гипербола нечетная функция.

$$f(-x)=frac{1}{-x}=-frac{1}{x}=-f(x)$$

6. Область определения гиперболы и область значения гиперболы. Область определения смотрим по оси х. Область значения смотрим по оси у. Рассмотрим на примере:

$$y=frac{-1}{x-1}-1$$

а) Находим первую асимптоту.
Знаменатель не может равняться 0, потому что на 0 делить нельзя, поэтому x-1 неравен 0.
x-1≠0
х≠1 это первая асимптота.

Находим вторую асимптоту.

$$y=color{red} {frac{-1}{x-1}}-1$$

Дробь (color{red} {frac{-1}{x-1}}) удаляем.

Остается y≠ -1 это вторая асимптота.

б) k=-1, значит ветви гиперболы будут находится во второй и четвертой четверти.

в) Возьмем несколько дополнительных точек и отметим их на графике.
х=0 y=0
x=-1 y=-0,5
x=2 y=-2
x=3 y=-1,5

г) Область определения смотрим по оси х. Графика гиперболы не существует по асимптоте х≠1, поэтому область определения будет находится
х ∈ (-∞;1)U(1;+∞).

д) Область значения смотрим по оси y. График гиперболы не существует по асимптоте y≠ -1, поэтому область значения будет находится
y ∈ (-∞;-1)U(-1;+∞).

е) функция возрастает на промежутке x ∈ (-∞;1)U(1;+∞).
график гиперболы

построить гиперболу

7. Убывание и возрастание функции гиперболы. Если k>0, функция убывающая. Если k<0 функция возрастающая.

8. Для более точного построения взять несколько дополнительных точек. Пример смотреть в пункте №6.

Подписывайтесь на канал на YOUTUBE и смотрите видео, подготавливайтесь к экзаменам по математике и геометрии с нами.
реклама

В данной публикации мы рассмотрим, что такое гипербола, приведем формулу, с помощью которой задается ее функция, а также на практических примерах разберем алгоритм построения данного вида графика.

  • Определение и функция гиперболы

  • Алгоритм построения гиперболы

    • Пример 1

    • Пример 2

Определение и функция гиперболы

Гипербола – это график функции обратной пропорциональности, которая в общем виде задается следующей формулой:

Функция обратной пропорциональности

Здесь:

  • x – независимая переменная;
  • k ≠ 0;
  • при k > 0 гипербола расположена в I и III четвертях координатной плоскости;
  • при k < 0 график находится во II и IV четвертях.

На рисунке ниже изображен пример гиперболы.

Пример гиперболы

  • Линии графика (зеленым цветом) называются его ветвями.
  • Оси абсцисс и ординат (Ox и Oy) являются асимптотами гиперболы, т.е. ветви бесконечно к ним приближаются, но никогда их не коснутся и не пересекут.
  • Ось симметрии (синим цветом) – это прямая:
    • y = x (при k > 0)
    • y = -x (при k < 0)

Смещение асимптот

Допустим у нас есть функция, заданная формулой:

Пример функции обратной пропорциональности

В этом случае:

  • x = a – это вертикальная асимптота графика (при a ≠ 0) вместо оси Oy;
  • y = b – горизонтальная асимптота (при b ≠ 0) вместо оси Ox.

Канонический вид уравнения гиперболы (координатные оси совпадают с осями графика):

Каноническое уравнение гиперболы

Алгоритм построения гиперболы

Пример 1

Дана функция y = 4/x. Построим ее график.

Решение

Так как k > 0, следовательно, гипербола будет находиться в I и III координатных четвертях.

Чтобы построить график, сначала нужно составить таблицу соответствия значений x и y. То есть мы берем конкретное значение x, подставляем его в формулу функции и получаем y.

x y Расчет y
0,5 8 4 / 0,5 = 8
1 4 4 / 1 = 4
2 2 4 / 2 = 2
4 1 4 / 4 = 1
8 0,5 4 / 8 = 0,5

Теперь отмечаем найденные точки на координатной плоскости и соединяем их плавной линией, которая будет стремиться к осям координат. В итоге получится ветвь гиперболы, расположенная в первой четверти.

Ветвь гиперболы

Чтобы построить ветвь в третьей четверти, вместо x в формулу подставляем -x. Так мы вычислим значения y.

x y Расчет y
-0,5 -8 4 / -0,5 = -8
-1 -4 4 / -1 = -4
-2 -2 4 / -2 = -4
-4 -1 4 / -4 = -1
-8 -0,5 4 / -8 = -0,5

Соединив полученные точки получаем следующий результат. На этом построение гиперболы завершено.

Пример гиперболы в 1 и 3 четвертях координатной плоскости

Пример 2

Рассмотренный выше пример был одним из самых простых (без смещения асимптот). Давайте усложним задачу и построим гиперболу, заданную функцией ниже:

Пример функции обратной пропорциональности

Решение

Так как k < 0, график будет располагаться во второй и четвертой четвертях.

Теперь определяемся с асимптотами, в нашем случае это x = 3 и y = 4 (см. информацию выше про их смещение).

Составим таблицу соответствия значений x и y.

x II четв. y II четв. x IV четв. y IV четв.
-1 4,5 3,5 0
1 5 4 2
2 6 5 3
2,5 8 7 3.5

Остается только нанести рассчитанные точки на координатную плоскость и соединить их плавными линиями.

Пример гиперболы во 2 и 4 четвертях координатной плоскости

Пример 2

Рассмотренный выше пример был одним из самых простых (без смещения асимптот). Давайте усложним задачу и построим гиперболу, заданную функцией ниже:

Что такое гипербола

О чем эта статья:

Статья находится на проверке у методистов Skysmart.
Если вы заметили ошибку, сообщите об этом в онлайн-чат
(в правом нижнем углу экрана).

Понятие гиперболы

Гипербола — это множество точек на плоскости, для которых модуль разности расстояний от двух точек (они же — «фокусы») — величина постоянная и меньшая, чем расстояние между фокусами.

Каноническое уравнение гиперболы в алгебре выглядит так:

, где a и b — положительные действительные числа.

Кстати, канонический значит принятый за образец.

В отличие от эллипса, здесь не соблюдается условие a > b, значит а может быть меньше b. А если a = b, то гипербола будет равносторонней.

Мы помним, что гипербола в математике выглядит так y = 1/x, что значительно отличается от канонической записи.

Вспомним особенности математической гиперболы:

  • Две симметричные ветви.
  • Две асимптоты. Асимптота — это прямая, которая обладает таким свойством, что расстояние от точки кривой до этой прямой стремится к нулю при удалении точки вдоль ветви в бесконечность. Их значение помогает найти специальное уравнение асимптот гиперболы.

Если гипербола задана каноническим уравнением, то асимптоты можно найти так:

Пример 1. Построить гиперболу, которая задана уравнением 5(x^2) — 4(y^2) = 20.

    Приведем данное уравнение к каноническому виду (x^2)/(a^2) — (y^2)/(b^2) = 1.

Чтобы получить «единицу» в правой части, обе части исходного уравнения делим на 20:

  • Сокращаем обе дроби в уме или при помощи трехэтажной дроби:
  • Выделяем квадраты в знаменателях:
  • Готово. Можно начертить гиперболу.
  • Можно было сделать проще и дроби левой части 5(x^2)/20 — 4(y^2)/20 = 1 сразу сократить и получить (x^2)/4 — (y^2)/5 = 1. Нам повезло с примером, потому что число 20 делится и на 4 и на 5. Рассмотрим пример посложнее.

    Пример 2. Построить гиперболу, которая задана уравнением 3(x^2)/20 — 8(y^2)/20 = 1.


    1. Произведем сокращение при помощи трехэтажной дроби:
    2. Воспользуемся каноническим уравнением
      • Найдем асимптоты гиперболы. Вот так:
        Важно! Без этого шага ветви гиперболы «вылезут» за асимптоты.
      • Найдем две вершины гиперболы, которые расположены на оси абсцисс в точках A1(a; 0), A2(-a; 0).

    Если y = 0, то каноническое уравнение (x^2)/(a^2) — (y^2)/(b^2) = 1 превращается в (x^2)/(a^2) = 1, из чего следует, что x^2 = a^2 -> x = a, x = -a.

    Данная гипербола имеет вершины A1(2; 0), A2(-2; 0).

    Найдем дополнительные точки — хватит двух-трех.

    В каноническом положении гипербола симметрична относительно начала координат и обеих координатных осей, поэтому вычисления достаточно провести для одной координатной четверти.

    Способ такой же, как при построении эллипса. Из полученного канонического уравнения

    на черновике выражаем:

    Уравнение распадается на две функции:

    — определяет верхние дуги гиперболы (то, что ищем);

    — определяет нижние дуги гиперболы.

    Далее найдем точки с абсциссами x = 3, x = 4:

  • Изобразим на чертеже полученные асимптоты y = (√5/2)x, y = -(√5/2)x, вершины A1(2; 0), A2(-2; 0), дополнительные C1, C2 и симметричные им точки в других координатных четвертях. Аккуратно соединяем соответствующие точки у каждой ветви гиперболы.
  • Может возникнуть техническая трудность с иррациональным угловым коэффициентом √5/2 ≈ 1,12, но это вполне преодолимая проблема.

    Действительная ось гиперболы — отрезок А1А2.

    Расстояние между вершинами — длина |A1A2| = 2a.

    Действительная полуось гиперболы — число a = |OA1| = |OA2|.

    Мнимая полуось гиперболы — число b.

    В нашем примере: а = 2, b = √5, |А1А2| = 4. И если такую гиперболу повернуть вокруг центра симметрии или переместить, то значения не изменятся.

    Форма гиперболы

    Повторим основные термины и узнаем, какие у гиперболы бывают формы.

    Гипербола симметрична относительно точки О — середины отрезка F’F. Она также симметрична относительно прямой F’F и прямой Y’Y, проведенной через О перпендикулярно F’F. Точка О — это центр гиперболы.

    Прямая F’F пересекает гиперболу в двух точках: A (a; 0) и A’ (-a; 0). Эти точки — вершины гиперболы. Отрезок А’А = 2a — это действительная ось гиперболы.

    Несмотря на то, что прямая Y’Y не пересекает гиперболу, на ней принято откладывать отрезки B’O = OB = b. Такой отрезок B’B = 2b (также и прямую Y’Y) можно назвать мнимой осью гиперболы.

    Так как AB^2 = OA^2 + OB^2 = a^2 + b^2, то из равенства следует: AB = c, то есть расстояние от вершины гиперболы до конца мнимой оси равно полуфокусному расстоянию.

    Мнимая ось 2b может быть больше, меньше или равна действительной оси 2а. Если действительная и мнимая оси равны (a = b) — это равносторонняя гипербола.

    Отношение F’F/А’А фокусного расстояния к действительной оси называется эксцентриситетом гиперболы и обозначается e. Эксцентриситет равносторонней гиперболы равен √2.

    Гипербола лежит целиком вне полосы, ограниченной прямыми PQ и RS, параллельными Y’Y и отстоящими от Y’Y на расстояние OA =A’O = a. Вправо и влево от этой полосы гипербола продолжается неограниченно.

    Для тех, кто хочет связать свою жизнь с точными науками, Skysmart предлагает курсы по профильной математике.

    Фокальное свойство гиперболы

    Точки F1 и F2 называют фокусами гиперболы, расстояние 2c = F1F2 между ними — фокусным расстоянием, середина O отрезка F1F2 — центром гиперболы, число 2а — длиной действительной оси гиперболы (соответственно, а — действительной полуосью гиперболы).

    Отрезки F1M и F2M, которые соединяют произвольную точку M гиперболы с ее фокусами, называются фокальными радиусами точки M. Отрезок, соединяющий две точки гиперболы, называется хордой гиперболы.

    Отношение e = a/c, где c = √(a^2 + b^2), называется эксцентриситетом гиперболы. Из определения (2a 1 .

    Геометрическое определение гиперболы, которое выражает ее фокальное свойство, аналогично ее аналитическому определению — линии, которая задана каноническим уравнением гиперболы:

    Рассмотрим, как это выглядит на прямоугольной системе координат:

    • пусть центр O гиперболы будет началом системы координат;
    • прямую, которая проходит через фокусы (фокальную ось), примем за ось абсцисс (положительное направление на ней от точки F1 к точке F2);
    • прямую, перпендикулярную оси абсцисс и проходящую через центр гиперболы, примем за ось ординат (направление на оси ординат выбирается так, чтобы прямоугольная система координат Oxy оказалась правой).

    Воспользуемся геометрическим определением и составим уравнение гиперболы, которое выразит фокальное свойство. В выбранной системе координат определяем координаты фокусов F1(-c, 0) и F2(c, 0). Для произвольной точки M(x, y), принадлежащей параболе, имеем:

    Запишем это уравнение в координатной форме:

    Избавимся от иррациональности и придем к каноническому уравнению гиперболы:

    , т.е. выбранная система координат является канонической.

    Если рассуждать в обратном порядке, можно убедиться, что все точки, координаты которых удовлетворяют уравнению (x^2)/(a^2) — (y^2)/(b^2) = 1, и только они, принадлежат геометрическому месту точек, называемому гиперболой. Именно поэтому аналитическое определение гиперболы эквивалентно его геометрическому определению.

    Директориальное свойство гиперболы

    Директрисы гиперболы — это две прямые, которые проходят параллельно оси.

    ординат канонической системы координат на одинаковом расстоянии (a^2)/c от нее. Если а = 0, гипербола вырождается в пару пересекающихся прямых, и директрисы совпадают.

    Директориальное свойство гиперболы звучит так:

    Гиперболу с эксцентриситетом e = 1 можно определить, как геометрическое место точек плоскости, для каждой из которых отношение расстояния до заданной точки F (фокуса) к расстоянию до заданной прямой d (директрисы), не проходящей через заданную точку, постоянно и равно эксцентриситету e.

    Здесь F и d — один из фокусов гиперболы и одна из ее директрис, расположенные по одну сторону от оси ординат канонической системы координат.

    На самом деле для фокуса F2 и директрисы d2 условие

    можно записать в координатной форме так:

    Избавляясь от иррациональности и заменяя e = a/c, c^2 — a^2 = b^2, мы придем к каноническому уравнению гиперболы. Аналогичные рассуждения можно провести для фокуса F1 и директрисы d1:

    Построение гиперболы

    Чтобы запомнить алгоритм построения гиперболы, рассмотрим чертёж и комментарии к нему.

    Построим основной прямоугольник гиперболы и проведем его диагонали. Если продолжим диагонали прямоугольника за его пределы, получим асимптоты гиперболы.

    В силу симметрии достаточно построить гиперболу в первой четверти, где она является графиком функции:

    Важно учесть, что данная функция возрастает на промежутке [a; ∞], при x = a, y = 0 и ее график приближается снизу к асимптоте y = (b/a) * x. Рисуем график:

    Далее построенный в первой четверти график симметрично отображаем относительно оси Ох и получаем правую ветвь гиперболы. Теперь отобразим правую ветвь гиперболы относительно оси Оу.

    По определению эксцентриситет гиперболы равен

    Зафиксируем действительную ось 2а и начнем изменять фокусное расстояние 2с.

    Так как b^2 = c^2 — a^2, то величина b изменится.

    При этом ε -> 1, b -> 0 и мнимые вершины B1, B2 стремятся к началу координат, асимптоты приближаются к оси Ох. Основной прямоугольник гиперболы выражается в пределе в отрезок A1A2, а сама гипербола выражается в два луча на оси абсцисс: (-∞; -a] и [a; ∞).

    При этом ε -> ∞, b -> ∞ и мнимые вершины B1B2 стремятся к бесконечности, асимптоты приближаются к оси Оу. Основной прямоугольник гиперболы вытягивается вдоль оси ординат и ветви гиперболы приближаются к прямым x = +-a и в пределе сливаются с ними. Гипербола выражается в две прямые x = +-a, которые параллельны оси Оу.

    При этом ε -> ∞, b -> ∞ и мнимые вершины B1B2 стремятся к бесконечности, асимптоты приближаются к оси Оу. Основной прямоугольник гиперболы вытягивается вдоль оси ординат и ветви гиперболы приближаются к прямым x = +-a и в пределе сливаются с ними. Гипербола выражается в две прямые x = +-a, которые параллельны оси Оу.

    Равносторонняя гипербола это такая гипербола, у которой эксцентриситет равен √2. Ее еще называют равнобочной.

    Из определения следует, что в равносторонняя гиперболе a = b, поэтому ее каноническое уравнение выглядит так: x^2 — y^2 = a^2

    Действительно, ε = c/a = √2, откуда c^2 = 2a^2 и b^2 = c^2 — a^2 = a^2. И так как а и b положительные числа, получаем a = b.

    источники:

    http://microexcel.ru/giperbola/

    http://skysmart.ru/articles/mathematic/chto-takoe-giperbola

    Гипербола

    Что такое гипербола? Как построить гиперболу? (Для школьников (7-11 классов)).

    Функция заданная формулой (y=frac), где к неравно 0. Число k называется коэффициентом обратной пропорциональности.
    Определение гиперболы.
    График функции (y=frac) называют гиперболой. Где х является независимой переменной, а у — зависимой.

    Что нужно знать, чтобы построить гиперболу?
    Теперь обсудим свойства гиперболы:

    гипербола, где k y≠0 это вторая асимптота.
    И так, асимптоты x≠0 и y≠0 в данном примере совпадают с осями координат OX и OY.
    k=1, значит гипербола будет находится в первой и третьей четверти. k всегда находится в числители.
    Построим примерный график гиперболы.

    Пример №2:
    $$y=frac<1>-1$$
    Находим первую асимптоту.
    Знаменатель не может равняться 0, потому что на 0 делить нельзя, поэтому х+2 неравен 0.
    х+2≠0
    х≠-2 это первая асимптота

    Находим вторую асимптоту.

    Дробь (color <frac<1>>) отбрасываем
    Остается y≠ -1 это вторая асимптота.

    Строим примерный график, отмечаем асимптоты (красным проведены прямые х≠-2 и y≠-1):

    Находим первую асимптоту.
    Знаменатель не может равняться 0, потому что на 0 делить нельзя, поэтому 1+х неравен 0.
    1+х≠0
    х≠-1 это первая асимптота.

    Находим вторую асимптоту.

    Остается y≠1 это вторая асимптота.

    Строим примерный график, отмечаем асимптоты (красным проведены прямые х≠-1 и y≠1):

    3. У гиперболы есть центр симметрии относительно начала координат. Рассмотрим на примере:

    Возьмем точку А(1;1) с координатами, которая находится на графике у=1/х. На этом же графике лежит точка B(-1;-1). Видно, что точка А симметрична точке В относительна начала координат.

    4. Оси симметрии гиперболы. У гиперболы две оси симметрии. Рассмотрим пример:

    Первой осью симметрии является прямая y=x. Посмотрим точки (0,5;2) и (2;0,5) и еще точки (-0,5;-2) и (-2;-0,5). Эти точки расположены по разные стороны данной прямой, но на равных расстояниях от нее, они симметричны относительно этой прямой.

    Вторая ось симметрии это прямая y=-x.



    5. Гипербола нечетная функция.

    6. Область определения гиперболы и область значения гиперболы. Область определения смотрим по оси х. Область значения смотрим по оси у. Рассмотрим на примере:

    а) Находим первую асимптоту.
    Знаменатель не может равняться 0, потому что на 0 делить нельзя, поэтому x-1 неравен 0.
    x-1≠0
    х≠1 это первая асимптота.

    Находим вторую асимптоту.

    Остается y≠ -1 это вторая асимптота.

    б) k=-1, значит ветви гиперболы будут находится во второй и четвертой четверти.

    в) Возьмем несколько дополнительных точек и отметим их на графике.
    х=0 y=0
    x=-1 y=-0,5
    x=2 y=-2
    x=3 y=-1,5

    г) Область определения смотрим по оси х. Графика гиперболы не существует по асимптоте х≠1, поэтому область определения будет находится
    х ∈ (-∞;1)U(1;+∞).

    д) Область значения смотрим по оси y. График гиперболы не существует по асимптоте y≠ -1, поэтому область значения будет находится
    y ∈ (-∞;-1)U(-1;+∞).

    е) функция возрастает на промежутке x ∈ (-∞;1)U(1;+∞).

    7. Убывание и возрастание функции гиперболы. Если k>0, функция убывающая. Если k Category: 8 класс, База знаний, Уроки Tag: Гипербола Leave a comment

    Урок алгебры в 8-м классе по теме “Графический способ решения уравнений”

    Разделы: Математика

    Всякое учение и всякое обучение основано на некотором уже ранее имеющемся знании.

    Цели:

    • обобщить и систематизировать свойства графиков некоторых функций, алгоритмы их построения;
    • научить решать уравнения графическим способом, в частности используя возможности компьютерных программ;
    • учить анализировать, выделять главное, сравнивать.

    Формирование компетенций: компетенции самосовершенствования – саморегулирование и саморазвитие, речевое развитие (через устную и самостоятельную работу, формулировка выводов); компетенции социального взаимодействия – сотрудничество; компетенции в общении – устном, письменном; компетенции познавательной деятельности – постановка и решение познавательных задач, проблемные ситуации (их создание и разрешение), прогнозирование деятельности; компетенции информационных технологий – приём, переработка и выдача информации, компьютерная грамотность.

    Тип урока: урок изучения нового материала.

    Средства обучения: компьютер, медиапроектор, презентация (Приложение 1).

    Формы организации учебной деятельности: индивидуальная, коллективная, диалог, работа с текстом слайда, работа в тетради, парная.

    Методы: наглядный, словесный, графический (практический).

    Методы мотивации: поощрение, порицание; создание проблемной ситуации, побуждение к поиску решения; предъявление учебных требований, прогнозирование будущей деятельности, самооценка деятельности; создание ситуации взаимопомощи, заинтересованность в результатах коллективной работы.

    1. Оргмомент (1 мин.)

    2. Актуализация знаний (12 мин.)

    А). По карточкам (на доске):

    №1. Решите уравнение 4х + 8 = –17 + 9х.
    №2. Решите уравнение х 2 + х – 2 = 0.
    №3. Решите уравнение х 2 = .
    №4. Заполните таблицу:

    х –3 –2 –1 0 1 2 3
    у = х 2 9 4 1 0 1 4 9
    х -6 -3 -2 -1 1 2 3 6
    у = -1 -2 -3 -6 6 3 2 1

    (На этом этапе можно организовать взаимопроверку и взаимопомощь, если возникнет такая необходимость).

    Б). Устная фронтальная работа. (Здесь и далее: подчёркивание – моменты управления презентацией)

    Что называется функцией?

    С какими функциями уже знакомы? (На партах – памятка, по которой учащиеся вспоминают связь между графиком и формулой, задающих функцию: Приложение 2).

    Я предлагаю вашему вниманию формулы, задающие некоторые функции. Из этих функций нужно выбрать линейные. Но перед этим давайте вспомним определение линейной функции. (Работаем со слайдом 2).

    Давайте вспомним, что является графиком (гиперссылка) линейной функции.

    Среди выбранных нами линейных функций есть особенные. Что это за функции? Чем отличаются графики? (Разбейте линейные функции на две группы). (Работаем со слайдом 3).

    Остались функции, о которых мы ничего ещё не сказали. Давайте дадим им название, и название их графикам. (Работаем со слайдом 4).

    Что называется уравнением? Корнем уравнения? Что значит решить уравнение? Какие уравнения мы уже можем решать?

    В) Проверяется работа по карточкам №1; №2; №3.

    1) 4х + 8 = –17 + 9х,
    4х – 9х = – 17 – 8,
    – 5х = – 25,
    х = 5.
    Ответ: 5.

    2) х 3 + х – 2 = 0,
    D = в 3 – 4ас = 12 – 4 . 1 . (– 2) = 9 > 0, уравнение имеет два корня.
    х1 = 1;
    х2 = – 2.
    Ответ: 1; – 2. (Могут решать по свойству корней: а + в + с = 0).

    3) х 2 = ,
    х 3 = 6,
    х 3 – 6 = 0. – Мы не располагаем никакими формулами для решения уравнений третьей степени. Как быть?

    Значит, нужен другой способ решения таких уравнений. Как вы думаете, что это может быть за способ (исходя из устной работы). Одним из способов является графический способ. Записывается тема урока, (слайд 5).

    Г). Давайте поставим цель урока. (Научиться решать уравнения с помощью графиков, слайд 6).

    3. Изучение новой темы и первичное закрепление (15 мин.)

    Мы получили уравнение х 3 – 6 = 0. Но строить график функции у = х 3 – 6 мы ещё не умеем. Т.е., что получается: это уравнение и графическим способом мы не можем решить? А может быть, нужно вернуться к первоначальному уравнению: х 2 = (слайд 7). Что мы видим внутри этого уравнения? Есть ли выражения, из которых мы можем составить знакомые нам функции? (Да: у = х 2 и у = ). Что нужно сделать?
    – Построить их графики.

    – В одной координатной плоскости.

    – Дальше найдём координаты точки пересечения.

    – Нет, только значение х.

    Итак, давайте ещё раз выработаем алгоритм решения уравнений графическим способом (каждый этап подтверждается показом в «Живой геометрии», Приложение 3). Используются результаты индивидуальной работы по заполнению таблицы (карточка №4). Учащиеся работают в тетрадях. Некоторые этапы в тетради записываются подробно, (слайд 7).

    • Из уравнения выделяем знакомые нам функции.
    • Строим графики функций в одной координатной плоскости.
    • Находим координаты точек пересечения графиков.
    • Из найденных координат выбираем значение абсциссы, т.е. х.
    • Записываем ответ.

    4. Физминутка (1 мин.)

    5. Закрепление (5 мин.)

    6. Домакшнее задание (слайд 10): (1 мин)

    • п.26;
    • № 623 (а), № 624(а);
    • №4.10 на стр.117 (сборник Л.В.Кузнецовой): Наташа, Настя, Кирилл, Сергей.

    7. Применение в образовательной области (1 мин)

    Умения строить графики, читать графики, находить точки пересечения графиков нужны не только при изучении алгебры, но и при изучении физики, когда вы изучаете, н-р, зависимость плавления тела от температуры, зависимость скорости от времени движения двух тел. На уроках информатики, работая в электронных таблицах Excel, вы будете учиться строить графики, решать уравнения. На уроках химии скорость химических реакций также можно описать графически. Умение строить графики, диаграммы нужны и в повседневной жизни: для описания результатов голосования, удоя молока; в инженерных специальностях это умение очень важно.

    8. Проверочная работа в виде теста (6 мин)

    В – 1:

    1. Какая из функций, приведённых ниже, является линейной:

    а) у = – 2; б) у = х – 2; в) у = х 2 – 2.

    2. График функции у = называется:

    а) прямой; б) гиперболой; в) параболой.

    3. Установите соответствие между функциями и их графиками:

    1) у = ; 2) у = 2х 2 ; 3) у = х – 2; 4) у = 2х.

    А. Б. В. Г.

    4. На рисунке 3 изображены графики функций у = х 3 и у = –2 х – 3. Используя графики, решите уравнение: х 3 = – 2х – 3.

    В – 2:

    1. Какая из функций, приведённых ниже, является линейной:

    а) у = + 1; б) у = + 1; в) у = х 5 + 1.

    2. График функции у = 3х 2 называется:

    а) прямой; б) гиперболой; в) параболой.

    3. Установите соответствие между функциями и их графиками:

    1) у = – ; 2) у = х 2 – 1; 3) у = – х; 4) у = 1 – х.

    А. Б. В. Г.

    4. На рисунке 5 изображены графики функций у = – х 2 + 2 и у = . Используя графики, решите уравнение: – х 2 + 2 = .

    Ответы:

    В – 1: 1. б 2. б 3. 1 – Б; 2 – А; 3 – В; 4 – Г 4. б
    В – 2: 1. а 2. в 3. 1 – В; 2 – Г; 3 – А; 4 – Б 4. а

    9. Рефлексивно-оценочный этап (отвечают письменно в тетради после выполнения теста) (2 мин.) (Слайд 11)

    а) за теоретический опрос;
    б) за фронтальную работу;
    в) за самостоятельную работу.

    Что такое гипербола

    О чем эта статья:

    Статья находится на проверке у методистов Skysmart.
    Если вы заметили ошибку, сообщите об этом в онлайн-чат
    (в правом нижнем углу экрана).

    Понятие гиперболы

    Гипербола — это множество точек на плоскости, для которых модуль разности расстояний от двух точек (они же — «фокусы») — величина постоянная и меньшая, чем расстояние между фокусами.

    Каноническое уравнение гиперболы в алгебре выглядит так:

    , где a и b — положительные действительные числа.

    Кстати, канонический значит принятый за образец.

    В отличие от эллипса, здесь не соблюдается условие a > b, значит а может быть меньше b. А если a = b, то гипербола будет равносторонней.

    Мы помним, что гипербола в математике выглядит так y = 1/x, что значительно отличается от канонической записи.

    Вспомним особенности математической гиперболы:

    • Две симметричные ветви.
    • Две асимптоты. Асимптота — это прямая, которая обладает таким свойством, что расстояние от точки кривой до этой прямой стремится к нулю при удалении точки вдоль ветви в бесконечность. Их значение помогает найти специальное уравнение асимптот гиперболы.

    Если гипербола задана каноническим уравнением, то асимптоты можно найти так:

    Пример 1. Построить гиперболу, которая задана уравнением 5(x^2) – 4(y^2) = 20.

      Приведем данное уравнение к каноническому виду (x^2)/(a^2) – (y^2)/(b^2) = 1.

    Чтобы получить «единицу» в правой части, обе части исходного уравнения делим на 20:

  • Сокращаем обе дроби в уме или при помощи трехэтажной дроби:
  • Выделяем квадраты в знаменателях:
  • Готово. Можно начертить гиперболу.
  • Можно было сделать проще и дроби левой части 5(x^2)/20 – 4(y^2)/20 = 1 сразу сократить и получить (x^2)/4 – (y^2)/5 = 1. Нам повезло с примером, потому что число 20 делится и на 4 и на 5. Рассмотрим пример посложнее.

    Пример 2. Построить гиперболу, которая задана уравнением 3(x^2)/20 – 8(y^2)/20 = 1.

    1. Произведем сокращение при помощи трехэтажной дроби:
    2. Воспользуемся каноническим уравнением
      • Найдем асимптоты гиперболы. Вот так:
        Важно! Без этого шага ветви гиперболы «вылезут» за асимптоты.
      • Найдем две вершины гиперболы, которые расположены на оси абсцисс в точках A1(a; 0), A2(-a; 0).

    Если y = 0, то каноническое уравнение (x^2)/(a^2) – (y^2)/(b^2) = 1 превращается в (x^2)/(a^2) = 1, из чего следует, что x^2 = a^2 -> x = a, x = -a.

    Данная гипербола имеет вершины A1(2; 0), A2(-2; 0).

    Найдем дополнительные точки — хватит двух-трех.

    В каноническом положении гипербола симметрична относительно начала координат и обеих координатных осей, поэтому вычисления достаточно провести для одной координатной четверти.

    Способ такой же, как при построении эллипса. Из полученного канонического уравнения

    на черновике выражаем:

    Уравнение распадается на две функции:

    — определяет верхние дуги гиперболы (то, что ищем);

    — определяет нижние дуги гиперболы.

    Далее найдем точки с абсциссами x = 3, x = 4:

  • Изобразим на чертеже полученные асимптоты y = (√5/2)x, y = -(√5/2)x, вершины A1(2; 0), A2(-2; 0), дополнительные C1, C2 и симметричные им точки в других координатных четвертях. Аккуратно соединяем соответствующие точки у каждой ветви гиперболы.
  • Может возникнуть техническая трудность с иррациональным угловым коэффициентом √5/2 ≈ 1,12, но это вполне преодолимая проблема.

    Действительная ось гиперболы — отрезок А1А2.

    Расстояние между вершинами — длина |A1A2| = 2a.

    Действительная полуось гиперболы — число a = |OA1| = |OA2|.

    Мнимая полуось гиперболы — число b.

    В нашем примере: а = 2, b = √5, |А1А2| = 4. И если такую гиперболу повернуть вокруг центра симметрии или переместить, то значения не изменятся.

    Форма гиперболы

    Повторим основные термины и узнаем, какие у гиперболы бывают формы.

    Гипербола симметрична относительно точки О — середины отрезка F’F. Она также симметрична относительно прямой F’F и прямой Y’Y, проведенной через О перпендикулярно F’F. Точка О — это центр гиперболы.

    Прямая F’F пересекает гиперболу в двух точках: A (a; 0) и A’ (-a; 0). Эти точки — вершины гиперболы. Отрезок А’А = 2a — это действительная ось гиперболы.

    Несмотря на то, что прямая Y’Y не пересекает гиперболу, на ней принято откладывать отрезки B’O = OB = b. Такой отрезок B’B = 2b (также и прямую Y’Y) можно назвать мнимой осью гиперболы.

    Так как AB^2 = OA^2 + OB^2 = a^2 + b^2, то из равенства следует: AB = c, то есть расстояние от вершины гиперболы до конца мнимой оси равно полуфокусному расстоянию.

    Мнимая ось 2b может быть больше, меньше или равна действительной оси 2а. Если действительная и мнимая оси равны (a = b) — это равносторонняя гипербола.

    Отношение F’F/А’А фокусного расстояния к действительной оси называется эксцентриситетом гиперболы и обозначается e. Эксцентриситет равносторонней гиперболы равен √2.

    Гипербола лежит целиком вне полосы, ограниченной прямыми PQ и RS, параллельными Y’Y и отстоящими от Y’Y на расстояние OA =A’O = a. Вправо и влево от этой полосы гипербола продолжается неограниченно.

    Для тех, кто хочет связать свою жизнь с точными науками, Skysmart предлагает курсы по профильной математике.

    Фокальное свойство гиперболы

    Точки F1 и F2 называют фокусами гиперболы, расстояние 2c = F1F2 между ними — фокусным расстоянием, середина O отрезка F1F2 — центром гиперболы, число 2а — длиной действительной оси гиперболы (соответственно, а — действительной полуосью гиперболы).

    Отрезки F1M и F2M, которые соединяют произвольную точку M гиперболы с ее фокусами, называются фокальными радиусами точки M. Отрезок, соединяющий две точки гиперболы, называется хордой гиперболы.

    Отношение e = a/c, где c = √(a^2 + b^2), называется эксцентриситетом гиперболы. Из определения (2a 1 .

    Геометрическое определение гиперболы, которое выражает ее фокальное свойство, аналогично ее аналитическому определению — линии, которая задана каноническим уравнением гиперболы:

    Рассмотрим, как это выглядит на прямоугольной системе координат:

    • пусть центр O гиперболы будет началом системы координат;
    • прямую, которая проходит через фокусы (фокальную ось), примем за ось абсцисс (положительное направление на ней от точки F1 к точке F2);
    • прямую, перпендикулярную оси абсцисс и проходящую через центр гиперболы, примем за ось ординат (направление на оси ординат выбирается так, чтобы прямоугольная система координат Oxy оказалась правой).

    Воспользуемся геометрическим определением и составим уравнение гиперболы, которое выразит фокальное свойство. В выбранной системе координат определяем координаты фокусов F1(-c, 0) и F2(c, 0). Для произвольной точки M(x, y), принадлежащей параболе, имеем:

    Запишем это уравнение в координатной форме:

    Избавимся от иррациональности и придем к каноническому уравнению гиперболы:

    , т.е. выбранная система координат является канонической.

    Если рассуждать в обратном порядке, можно убедиться, что все точки, координаты которых удовлетворяют уравнению (x^2)/(a^2) – (y^2)/(b^2) = 1, и только они, принадлежат геометрическому месту точек, называемому гиперболой. Именно поэтому аналитическое определение гиперболы эквивалентно его геометрическому определению.

    Директориальное свойство гиперболы

    Директрисы гиперболы — это две прямые, которые проходят параллельно оси.

    ординат канонической системы координат на одинаковом расстоянии (a^2)/c от нее. Если а = 0, гипербола вырождается в пару пересекающихся прямых, и директрисы совпадают.

    Директориальное свойство гиперболы звучит так:

    Гиперболу с эксцентриситетом e = 1 можно определить, как геометрическое место точек плоскости, для каждой из которых отношение расстояния до заданной точки F (фокуса) к расстоянию до заданной прямой d (директрисы), не проходящей через заданную точку, постоянно и равно эксцентриситету e.

    Здесь F и d — один из фокусов гиперболы и одна из ее директрис, расположенные по одну сторону от оси ординат канонической системы координат.

    На самом деле для фокуса F2 и директрисы d2 условие

    можно записать в координатной форме так:

    Избавляясь от иррациональности и заменяя e = a/c, c^2 – a^2 = b^2, мы придем к каноническому уравнению гиперболы. Аналогичные рассуждения можно провести для фокуса F1 и директрисы d1:

    Построение гиперболы

    Чтобы запомнить алгоритм построения гиперболы, рассмотрим чертёж и комментарии к нему.

    Построим основной прямоугольник гиперболы и проведем его диагонали. Если продолжим диагонали прямоугольника за его пределы, получим асимптоты гиперболы.

    В силу симметрии достаточно построить гиперболу в первой четверти, где она является графиком функции:

    Важно учесть, что данная функция возрастает на промежутке [a; ∞], при x = a, y = 0 и ее график приближается снизу к асимптоте y = (b/a) * x. Рисуем график:

    Далее построенный в первой четверти график симметрично отображаем относительно оси Ох и получаем правую ветвь гиперболы. Теперь отобразим правую ветвь гиперболы относительно оси Оу.

    По определению эксцентриситет гиперболы равен

    Зафиксируем действительную ось 2а и начнем изменять фокусное расстояние 2с.

    Так как b^2 = c^2 – a^2, то величина b изменится.

    При этом ε -> 1, b -> 0 и мнимые вершины B1, B2 стремятся к началу координат, асимптоты приближаются к оси Ох. Основной прямоугольник гиперболы выражается в пределе в отрезок A1A2, а сама гипербола выражается в два луча на оси абсцисс: (-∞; -a] и [a; ∞).

    При этом ε -> ∞, b -> ∞ и мнимые вершины B1B2 стремятся к бесконечности, асимптоты приближаются к оси Оу. Основной прямоугольник гиперболы вытягивается вдоль оси ординат и ветви гиперболы приближаются к прямым x = +-a и в пределе сливаются с ними. Гипербола выражается в две прямые x = +-a, которые параллельны оси Оу.

    При этом ε -> ∞, b -> ∞ и мнимые вершины B1B2 стремятся к бесконечности, асимптоты приближаются к оси Оу. Основной прямоугольник гиперболы вытягивается вдоль оси ординат и ветви гиперболы приближаются к прямым x = +-a и в пределе сливаются с ними. Гипербола выражается в две прямые x = +-a, которые параллельны оси Оу.

    Равносторонняя гипербола это такая гипербола, у которой эксцентриситет равен √2. Ее еще называют равнобочной.

    Из определения следует, что в равносторонняя гиперболе a = b, поэтому ее каноническое уравнение выглядит так: x^2 – y^2 = a^2

    Действительно, ε = c/a = √2, откуда c^2 = 2a^2 и b^2 = c^2 – a^2 = a^2. И так как а и b положительные числа, получаем a = b.

    [spoiler title=”источники:”]

    http://urok.1sept.ru/articles/570256

    http://skysmart.ru/articles/mathematic/chto-takoe-giperbola

    [/spoiler]

    1. Определение обратной пропорциональности
    2. График обратной пропорциональности
    3. Примеры

    Определение обратной пропорциональности

    О прямоугольной системе координат на плоскости и графическом способе задания функций – см. §35-36 справочника для 7 класса.

    Допустим, что у нас есть 1000 руб. Спрашивается, сколько тетрадей мы сможем купить, в зависимости от их цены. Составим таблицу:

    Цена 1 тетради, руб.

    25

    50

    100

    125

    200

    250

    500

    Кол-во, шт.

    40

    20

    10

    8

    5

    4

    2

    Графическое представление полученных результатов:

    Графическое представление полученных результатов

    Результат вполне ожидаемый: чем больше цена, тем меньше то количество, которое мы можем себе позволить за определённую ограниченную сумму.

    Можно привести и другие примеры, где зависимость между величинами будет аналогичной:

    • время, которое придётся потратить на дорогу между двумя городами (при заданном расстоянии), в зависимости от скорости;
    • длина фанерного листа в зависимости от ширины при заданной площади;
    • время заполнения бассейна (заданный объём) в зависимости от количества открытых труб, и т.п.

    Если обобщить формулы, описывающие подобные зависимости, то получаем:

    $${left{ begin{array}{c} -infty lt x lt +infty – аргумент, quad любое quad действительное quad число \ k = const neq 0-параметр, quad константа \ y = frac{k}{x} – функция end{array} right.}$$

    Функция такого вида называется обратной пропорциональностью.

    Если $k gt 0$, то чем больше x, тем меньше y – функция убывает.

    Если $k lt 0$, то чем больше x, тем больше y – функция возрастает.

    (Сравните с прямой пропорциональностью – см. §37 справочника для 7 класса)

    График обратной пропорциональности

    Графиком обратной пропорциональности является кривая, которую называют гиперболой.

    Чтобы построить гиперболу, нужно 1) составить таблицу, в которой рассчитать значения y=k/x для некоторых значений x, 2) отметить полученные точки на координатной плоскости и 3) соединить их плавной кривой.

    Например: $y = frac{8}{x}$

    График обратной пропорциональности

    Свойства графика обратной пропорциональности:

    • Гипербола не пересекает осей координат, приближаясь к осям, она изгибается и «убегает» на бесконечность.
    • У гиперболы две ветки. Если $k gt 0$, ветки лежат в 1 и 3 четверти, если $k lt 0$, во 2 и 4 четверти.
    • Ветки гиперболы симметричны относительно начала координат. Поэтому достаточно рассчитать одну ветку, а вторую начертить как отображение первой.
    • Ветки гиперболы симметричны относительно биссектрис соответствующих четвертей: при $k gt 0$ – относительно биссектрисы 1 и 3 четверти, при $k gt 0$ – 2 и 4 четверти.

    Примеры

    Пример 1. Постройте графики следующих функций

    Пример 1 a)

    Пример 1 б)

    Пример 2. Постройте на одном чертеже графики функций

    $$ y = frac{1}{x}, y = frac{3}{x}, y = frac{-3}{x} $$

    Сделайте выводы.

    x

    $frac{1}{x}$

    $frac{3}{x}$

    $- frac{3}{x}$

    Пример 2

    Чем больше k по абсолютной величине, тем дальше от начала координат пересечение графика с биссектрисой соответствующей четверти («изгиб» графика).

    При изменении знака k на противоположный график отражается относительно осей координат.

    Пример 3. Постройте на одном чертеже графики функций

    $$ y = frac{x}{3}, y = frac{3}{x} $$

    Решите с помощью графиков уравнение: $ frac{x}{3} = frac{3}{x}$.

    При каких x выполняется неравенство $ frac{x}{3} gt frac{3}{x}$?

    Пример 3

    Уравнение $frac{x}{3} = frac{3}{x}$ имеет два корня: $x_{1,2} = pm3$.

    Неравенство $frac{x}{3} gt frac{3}{x}$ выполняется при $ x in Bbb (-3;0) bigcup (3;+infty)$.

    Добавить комментарий