Как составить уравнение нормали к графику функции в точке с абсциссой

Касательная и нормаль к графику функции

Основные формулы

Пусть на некотором интервале X задана функция . Нас интересуют геометрические характеристики графика этой функции в некоторой заданной точке при значении аргумента , где . Пусть функция имеет в производную, которую будем обозначать как . Тогда через точку мы можем провести касательную к графику. Тангенс угла α между осью абсцисс x и касательной равен производной функции в точке :
(1) .
А само уравнение касательной имеет вид:
(2) .
В аналитической геометрии тангенс угла между прямой и осью абсцисс называют угловым коэффициентом прямой. Таким образом производная равна угловому коэффициенту касательной в .
См. Геометрический смысл производной

Прямая, перпендикулярная касательной, проведенной через точку , называется нормалью к графику функции в этой точке. Уравнение нормали имеет вид:
(3) .
См. Уравнение прямой с угловым коэффициентом ⇓

Пусть две кривые и пересекаются в точке . Тогда угол φ между касательными к этим кривым в точке называется углом между кривыми. Он определяется по формуле:
(4) , где .
Отсюда .
при .
Вывод формулы ⇓

Определения

Здесь мы приводим определения, которые встречаются в литературе, и имеют отношение к касательной и нормали. Вывод формул приводится в примере 1 ⇓.

Определение касательной приводится здесь. Уравнение касательной:
.

Касательная TM0, нормаль M0N, подкасательная TP, поднормаль PN. Нормалью к графику функции в точке называется прямая, перпендикулярная касательной, проведенной через эту точку. Уравнение нормали:
.
Отрезком касательной называют отрезок между точкой пересечения касательной с осью абсцисс и точкой .
.
Отрезком нормали называют отрезок между точкой пересечения нормали с осью абсцисс и точкой .
.
Подкасательной называют отрезок между точкой пересечения касательной с осью абсцисс и проекции точки на эту ось.
.
Поднормалью называют отрезок между точкой пересечения нормали с осью абсцисс и проекции точки на эту ось.
.
Углом между кривыми в точке их пересечения называют угол между касательными к кривым, проведенных через точку .

Полезные формулы из аналитической геометрии

Далее приводятся некоторые сведения из аналитической геометрии, которые могут оказаться полезными при решении задач.

Уравнение прямой, проходящей через две заданные точки и :
.
Здесь – направляющий вектор прямой.

Умножив это уравнение на , получим уравнение прямой в другом виде:
.
Здесь – вектор нормали прямой. Тогда само уравнение означает равенство нулю скалярного произведения векторов и .

Уравнение прямой, проходящей через точку параллельно вектору имеет вид:
.
Вектор называется направляющим вектором данной прямой. Это уравнение можно написать в параметрическом виде, введя параметр t :

Уравнение прямой, проходящей через точку перпендикулярно вектору имеет вид:
.
Вектор называется вектором нормали данной прямой.

Уравнение прямой с угловым коэффициентом k , проходящей через точку :
.
Угол α между прямой и осью x определяется по формуле:
.
Если две прямые взаимно перпендикулярны, то их угловые коэффициенты и связаны соотношением:
.

Уравнение прямой в отрезках, пересекающей оси координат в точках :
.

Примеры решения задач

Все примеры Ниже рассмотрены примеры решений следующих задач.
1. Найти уравнения касательной и нормали к кривой в точке . Найти длины отрезков касательной, нормали, подкасательной и поднормали. Решение ⇓
2. Составить уравнения касательной и нормали к циссоиде, заданной в параметрическом виде
, проведенных в точке . Решение ⇓
3. Заданной в неявном виде . Решение ⇓
4. Найти угол между кривыми и Решение ⇓

Пример 1

Составить уравнения касательной и нормали к кривой в точке . Найти длины отрезков касательной, нормали, подкасательной и поднормали.

Находим значение функции при :
.

Находим производную:
.
Находим производную в точке :
;
.

Находим уравнение касательной по формуле (2):
;
;
;
– уравнение касательной.
Строим касательную на графике. Поскольку касательная – это прямая, то нам нужно знать положения двух ее точек, и провести через них прямую.
При ;
при .
Проводим касательную через точки и .

Касательная и нормаль к графику функции y=x 2 в точке M0(1;1).

Найдем угол α между касательной и осью абсцисс по формуле (1):
.
Подставляем :
;
.

Находим уравнение нормали по формуле (3):
;
;
;
;
;
– уравнение нормали.
Строим нормаль по двум точкам.
При ;
при .
Проводим нормаль через точки и .

Находим длину отрезка касательной . Из прямоугольника имеем:
.
Поясним использованную формулу. Поскольку , то . Тогда
.
Подставляем :
.

Находим длину отрезка подкасательной . Из прямоугольника имеем:
.
Подставляем :
.

Находим длину отрезка нормали . Поскольку и , то треугольники и подобны. Тогда . Из прямоугольника имеем:
.
Подставляем :
.

Находим длину отрезка поднормали . Из прямоугольника имеем:
.

Примечание.
При выводе формул, можно сначала определить длины отрезков подкасательной и поднормали, а затем из прямоугольников, по теореме Пифагора, найти длины отрезков касательной и нормали:
;
.

Уравнение касательной: ; уравнение нормали: ;
длина отрезка касательной: ; длина отрезка нормали: ; длина подкасательной: ; длина поднормали: .

Пример 2

Составить уравнения касательной и нормали к циссоиде, заданной в параметрическом виде , проведенных в точке .

Находим значения переменных при .
;
.
Обозначим эту точку как .

Находим производные переменных x и y по параметру t .
;
;
;
;
.

Подставляя , находим производную y по x в точке .
.

Касательная и нормаль к циссоиде в точке (2;2).

Применяя формулу (2), находим уравнение касательной к циссоиде, проходящей через точку .
;
;
;
.

Применяя формулу (3), находим уравнение нормали к циссоиде в точке .
;
;
;
.

Уравнение касательной: .
Уравнение нормали: .

Пример 3

Составить уравнения касательной и нормали к циссоиде, заданной в неявном виде:
(П3) ,
проведенных в точке .

Для получения уравнение касательной и нормали, нам нужно знать значение производной функции в заданной точке. Функция (П3) задана неявно. Поэтому применяем правило дифференцирования неявной функции. Для этого дифференцируем (П3) по x , считая, что y является функцией от x .
;
;
;
.
Отсюда
.

Находим производную в заданной точке, подставляя .
;
.

Находим уравнение касательной по формуле (2).
;
;
;
.

Находим уравнение нормали по формуле (3).
;
;
;
.

Касательная и нормаль к циссоиде изображены на рисунке ⇑.

Уравнение касательной: .
Уравнение нормали: .

Пример 4

Найти угол между кривыми и .

Найдем множество точек пересечения кривых, решая систему уравнений.

Левые части равны. Приравниваем правые части и выполняем преобразования.
;
(П4) .
Поскольку функция строго монотонна, то уравнение (П4) имеет один корень:
.
При . Кривые пересекаются в единственной точке . Обозначим ее как , где .

Введем обозначения для функций, с помощью которых заданы кривые:
.
Найдем их производные.
;
.
Найдем значения производных в точке , подставляя .
;
.

Ниже приводятся графики функций ⇓ и вывод формулы угла между кривыми.

Вывод формулы для угла между кривыми

Изложим вывод формулы (4). Для иллюстрации используем только что рассмотренный пример ⇑, в котором .

Рассмотрим две кривые, заданные уравнениями и , и пересекающиеся в некоторой точке . Докажем, что угол между кривыми определяется по формуле (4):
, где .
Или ;
при .

Проведем касательные к графикам функций в точке . Углы, которые образуют касательные с осью x обозначим как и . За положительное направление выберем направление против часовой стрелки. На рисунке . Считаем, что значения углов принадлежат интервалам . Согласно геометрическому смыслу производной,
.

В аналитической геометрии принято, что угол φ между прямыми равен наименьшему значению угла между ними.
Если , то ;
если , то .
Таким образом величина угла φ между касательными может находиться только в пределах
(Ф2) .

На рисунке угол между лучами и больше 90°, а между лучами и – меньше. Поэтому .

При доказательстве мы будем использовать соотношение:
, которое выполняется при .
Тогда в силу (Ф2),
.
Случай мы рассмотрим отдельно.

1) Пусть .
Тогда угол между прямыми . И мы имеем:
.
В конце мы подставили (Ф1).

2) Пусть .
Тогда ; . Поэтому . Это можно записать так: . Также применим формулу: . В результате получаем:

.

Этот случай изображен на рисунке ⇑.

3) Пусть .
При этом касательные взаимно перпендикулярны, . В этом случае , что указано в (4).

Использованная литература:
П.Е. Данько, А.Г. Попов, Т.Я.Кожевникова. Высшая математика в упражнениях и задачах. Часть 1. Москва, Высшая школа, 1980.
Л.Д. Кудрявцев, А.Д. Кутасов, В.И. Чехлов, М.И. Шабунин. Сборник задач по математическому анализу. Том 1. Москва, Физматлит, 2003.

Автор: Олег Одинцов . Опубликовано: 30-06-2021

Уравнение касательной и уравнение нормали к графику функции

Как получить уравнение касательной и уравнение нормали

Касательная – это прямая, которая касается графика функции в одной точке и все точки которой находятся на наименьшем расстоянии от графика функции. Поэтому касательная проходит касательно графика функции под определённым углом и не могут проходить через точку касания несколько касательных под разными углами. Уравнения касательной и уравнения нормали к графику функции составляются с помощью производной.

Уравнение касательной выводится из уравнения прямой.

Выведем уравнение касательной, а затем – уравнение нормали к графику функции.

В нём k – угловой коэффициент.

Отсюда получаем следующую запись:

Значение производной f ‘(x 0 ) функции y = f(x) в точке x 0 равно угловому коэффициенту k = tgφ касательной к графику функции, проведённой через точку M 0 (x 0 , y 0 ) , где y 0 = f(x 0 ) . В этом состоит геометрический смысл производной.

Таким образом, можем заменить k на f ‘(x 0 ) и получить следующее уравнение касательной к графику функции:

В задачах на составление уравнения касательной к графику функции (а мы уже скоро к ним перейдём) требуется привести получившееся по вышеприведённой формуле уравнение к уравнению прямой в общем виде. Для этого нужно все буквы и числа перенести в левую часть уравнения, а в правой части оставить ноль.

Теперь об уравнении нормали. Нормаль – это прямая, проходящая через точку касания к графику функции перпендикулярно касательной. Уравнение нормали:

Переходим к примерам. Для решений потребуется таблица производных (откроется в новом окне).

Для разминки первый же пример прелагается решить самостоятельно, а затем посмотреть решение. Есть все основания надеяться, что для наших читателей эта задача не будет “холодным душем”.

Пример 0. Составить уравнение касательной и уравнение нормали к графику функции в точке M (1, 1) .

Решаем задачи вместе

Пример 1. Составить уравнение касательной и уравнение нормали к графику функции , если абсцисса точки касания .

Решение. Найдём ординату точки касания:

.

Найдём производную функции (функция представляет собой многочлен и её производную можно найти по формулам 1, 2 и 3 в таблице производных):

.

Найдём значение производной в точке касания, то есть угловой коэффициент касательной:

.

Теперь у нас есть всё, что требуется подставить в приведённую в теоретической справке запись, чтобы получить уравнение касательной. Получаем

В этом примере нам повезло: угловой коэффициент оказался равным нулю, поэтому отдельно приводить уравнение к общему виду не понадобилось. Теперь можем составить и уравнение нормали:

На рисунке ниже: график функции бордового цвета, касательная зелёного цвета, нормаль оранжевого цвета.

Следующий пример – тоже не сложный: функция, как и в предыдущем, также представляет собой многочлен, но угловой коэффициен не будет равен нулю, поэтому добавится ещё один шаг – приведение уравнения к общему виду.

Пример 2. Составить уравнение касательной и уравнение нормали к графику функции , если абсцисса точки касания .

Решение. Найдём ординату точки касания:

.

Найдём производную функции:

.

Найдём значение производной в точке касания, то есть угловой коэффициент касательной:

.

Подставляем все полученные данные в “формулу-болванку” и получаем уравнение касательной:

Приводим уравнение к общему виду (все буквы и числа, отличные от нуля, собираем в левой части, а в правой оставляем ноль):

Составляем уравнение нормали:

Пример 3. Составить уравнение касательной и уравнение нормали к графику функции , если абсцисса точки касания .

Решение. Найдём ординату точки касания:

.

.

Найдём значение производной в точке касания, то есть угловой коэффициент касательной:

.

Находим уравнение касательной:

Перед тем, как привести уравнение к общему виду, нужно его немного “причесать”: умножить почленно на 4. Делаем это и приводим уравнение к общему виду:

Составляем уравнение нормали:

Решить задачи самостоятельно, а затем посмотреть решения

Пример 4. Составить уравнение касательной и уравнение нормали к графику функции , если абсцисса точки касания .

Пример 5. Составить уравнение касательной и уравнение нормали к графику функции , если абсцисса точки касания .

Снова решаем задачи вместе

Пример 6. Составить уравнение касательной и уравнение нормали к графику функции , если абсцисса точки касания .

Решение. Найдём ординату точки касания:

.

.

Найдём значение производной в точке касания, то есть угловой коэффициент касательной:

.

Получаем уравнение касательной:

Приводим уравнение к общему виду:

Составляем уравнение нормали:

Распространённая ошибка при составлении уравнений касательной и нормали – не заметить, что функция, данная в примере, – сложная и вычислять её производную как производную простой функции. Следующие примеры – уже со сложными функциями (соответствующий урок откроется в новом окне).

Пример 7. Составить уравнение касательной и уравнение нормали к графику функции , если абсцисса точки касания .

Решение. Найдём ординату точки касания:

.

Внимание! Данная функция – сложная, так как аргумент тангенса ( 2x ) сам является функцией. Поэтому найдём производную функции как производную сложной функции (потребуется формула 9 в таблице производных сложной функции):

.

Найдём значение производной в точке касания, то есть угловой коэффициент касательной:

.

Получаем уравнение касательной:

Приводим уравнение к общему виду:

Составляем уравнение нормали:

Пример 8. Составить уравнение касательной и уравнение нормали к графику функции , если абсцисса точки касания .

Решение. Найдём ординату точки касания:

.

Как и в предыдущем примере, данная функция – сложная, так как степень () сама является функцией. Поэтому найдём производную функции как производную сложной функции (используя формулу 1 в таблице производных сложной функции):

.

Найдём значение производной в точке касания, то есть угловой коэффициент касательной:

.

Геометрическое применение производной: уравнения касательной и нормали, угол между кривыми

Касательная и нормаль к кривой

Касательная прямая – прямая, проходящая через точку кривой и совпадающая с ней в этой точке с точностью до первого порядка.

Прямая, проходящая через точку касания, перпендикулярно касательной, называется нормалью к кривой.

Если кривая определена уравнением $y=f(x)$, то уравнение касательной к ней в точке $M(x_0;y_0)$ имеет вид:

а уравнение нормали:

Задание. Написать уравнение касательной и нормали к кривой $y=x^2-3x+4$ в точке с абсциссой $x_0=0$.

Решение. Находим значение функции в заданной точке:

Далее вычислим значение производной функции в точке $x_0=0$:

а тогда уравнение касательной запишется в виде:

или после упрощения:

$$y-4=-frac<1><-3>(x-0) Rightarrow x-3 y+12=0$$

Ответ. Уравнение касательной: $3x+y-4=0$

Уравнение нормали: $x-3y+12=0$

Угол между кривыми

Углом между кривыми на плоскости в их общей точке $M(x_0;y_0)$ называется наименьший из двух возможных углов между касательными к этим кривым в данной точке. Если уравнения касательных, проведенных к кривым $y=f_1(x)$ и $y=f_2(x)$, соответственно $y=k_<1>x+b_<1>$ и $y=k_<2>x+b_2$, то тангенс угла между кривыми определяется соотношением:

Задание. Найти тангенс угла между кривыми $y=x^2-1$ и $y=x^3-1$ в точке их пересечения, которая имеет большую абсциссу.

Решение. Вначале найдем точки пересечения графиков заданных функций, для этого совместно разрешим уравнение заданных кривых:

Таким образом, искомая точка $x=1$.

Далее находим производные заданных функций в найденной точке:

Итак, искомый тангенс:

Ответ. $operatorname phi=frac<1><7>$

[spoiler title=”источники:”]

http://function-x.ru/derivative_and_tangent.html

http://www.webmath.ru/poleznoe/formules_8_10.php

[/spoiler]

Рассмотрим
кривую, уравнение которой имеет вид

Уравнение
касательной к данной кривой в точке
имеет вид:

(34)

Нормалью
к кривой в данной точке называется
прямая, проходящая через данную точку,
перпендикулярную к касательной в этой
точке.

Уравнение
нормали к данной кривой в точке
имеет вид:

(35)

Длина
отрезка касательной, заключенного между
точкой касания и осью абсцисс называется
длиной
касательной
,
проекция этого отрезка на ось абсцисс
называется
подкасательной.

Длина
отрезка нормали, заключенного между
точкой касания и осью абсцисс называется
длиной
нормали
,проекция
этого отрезка на ось абсцисс называется
поднормалью.

Пример
17

Написать
уравнения касательной и нормали к кривой
в точке, абсцисса которой равна.

Решение:

Найдем
значение функции в точке
:

Найдем
производную заданной функции в точке

Уравнение
касательной найдем по формуле (34):

Уравнение
нормали найдем по формуле (35):

Ответ:
Уравнение
касательной :

Уравнение
нормали :.

Пример
18

Написать
уравнения касательной и нормали, длины
касательной и подкасательной, длины
нормали и поднормали для эллипса

в
точке
,
для которой.

Решение:

Найдем
как производную функции, заданной
параметрически по формуле (10):

Найдем
координаты точки касания
:
и значение производной в точке касания
:

Уравнение
касательной найдем по формуле (34):

Найдем
координаты
точкипересечения
касательной с осью:

Длина
касательной равна длине отрезка
:

Согласно
определению, подкасательная
равна

Где
угол
– угол между касательной и осью. Поэтому,– угловой коэффициент касательной,
равный

Таким
образом, подкасательная
равна

Уравнение
нормали найдем по формуле (35):

Найдем
координатыточкипересечения нормали с осью:

Длина
нормали равна длине отрезка
:

Согласно
определению, поднормаль
равна

Где
угол
– угол между нормалью и осью. Поэтому,– угловой коэффициент нормали, равный

Поэтому,
поднормаль
равна:

Ответ:
Уравнение
касательной :

Уравнение
нормали :

Длина
касательной
;
подкасательная;

Длина
нормали
; поднормаль

Задания
7.
Написать
уравнения касательной и нормали:

1. К параболе в точке, абсцисса которой

.

2.
К окружности
в точках пересечения её с осью абсцисс

.

3.
К циклоиде
в точке, для которой

.

4.
В каких точках кривой
касательная параллельна:

а)
оси Оx; б) прямой

.

10.
Промежутки монотонности функции.
Экстремумы функции.

Условие
монотонности функции:

Для
того, чтобы дифференцируемая на
функцияне возрастала, необходимо и достаточно,
чтобы во всех точках, принадлежащихее производная была неположительна .

(36)

Для
того, чтобы дифференцируемая на
функцияне убывала, необходимо и достаточно,
чтобы во всех точках, принадлежащихее производная была неотрицательна.

(37)

Промежутки,
на которых производная функции сохраняет
определенный знак, называются промежутками
монотонности
функции

Пример
19

Найти
промежутки монотонности функции
.

Решение:

Найдем
производную функции
.

Найдем
промежутки знакопостоянства полученной
производной. Для этого

разложим полученный
квадратный трехчлен на множители:

.

Исследуем
знак полученного выражения, используя
метод интервалов.

Таким
образом, получаем согласно (36), (37),что
заданная функция возрастает на
и убывает на.

Ответ:
Заданная
функция
возрастает наи убывает на.

Определение
Функция
имеет в точкелокальный
максимум (минимум)
,
если существует такая окрестность
точки
,
что для всехвыполняется условие

().

Локальный
минимум или максимум функции
называетсялокальным
экстремумом.

Необходимое
условие существования экстремума
.

Пусть
функция
определена в некоторой окрестности
точки.
Если функцияимеет
в точкеэкстремумом, то производнаяв точкелибо равна нулю, либо не существует.

Точка
называетсякритической
точкой

функции
,
если производнаяв точкелибо равна нулю, либо не существует.

Достаточные
условия наличия экстремума в критической
точке
.

Пусть
точка
является критической.

Первое
достаточное условие экстремума:

Пусть
функция
непрерывна в некоторой окрестноститочкии дифференцируема в каждой точке.

Точка
является локальным максимумом, если
при переходе через

производная
функции меняет знак с плюса на минус.

Точка
является локальным минимумом, если при
переходе через

производная
функции меняет знак с минуса на плюс.

Пример
20

Найти
экстремумы функции
.

Решение:

Найдем
производную заданной функции

Приравнивая
в полученной производной к нулю числитель
и знаменатель, найдем критические точки:

Исследуем
знак производной, используя метод
интервалов.

Из
рисунка видно, что при переходе через
точку
производная меняет знак с плюса на
минус. Следовательно, в точке
локальный максимум.

При
переходе через точку
производная меняет знак с минуса на
плюс.

Следовательно,
в точке

локальный минимум.

При
переходе через точку
производная не меняет знак. Следовательно,
критическая точкане является экстремумом заданной
функции.

Ответ:

локальный максимум,

локальный минимум.

Второе
достаточное условие экстремума:

Если
первые
производные функциив точкеравны нулю, а-ная
производная функциив точкеотлична от нуля, то точкаявляется экстремумом функции,
причем,

если

,
(38)

то
-локальный
минимум

если

,
(39)

то
-локальный
максимум.

Пример
21

Найти
экстремумы функции, пользуясь второй
производной
.

Решение:

ОДЗ:
.

Найдем
первую производную заданной функции

Найдем
критические точки функции:

Точку
мы не рассматриваем, так как функция
определена только в левой окрестности.

Найдем
вторую производную

Находим

Таким
образом, на основании (39) делаем вывод
о том, что при
– локальный максимум.

Ответ:

локальный максимум.

Задания
8.

Исследовать
на возростание и убывание функции:

1.

2.

3.

4.

5.

6.

Исследовать
на экстремумы функции:

7.

8.

9.

10.

Соседние файлы в предмете [НЕСОРТИРОВАННОЕ]

  • #
  • #
  • #
  • #
  • #
  • #
  • #
  • #
  • #
  • #
  • #

Задание. Найти тангенс угла между кривыми $y=x^2-1$ и
$y=x^3-1$ в точке их пересечения, которая имеет большую абсциссу.

Решение. Вначале найдем точки пересечения графиков заданных функций, для этого совместно разрешим уравнение заданных кривых:

$$begin{array}{c}
left{begin{array}{l}
y_{1}=x^{2}-1 \
y_{2}=x^{3}-1
end{array} Rightarrow x^{2}-1=x^{3}-1 Rightarrow x^{3}-x^{2}=0 Rightarrowright. \
Rightarrow x_{1,2}=0, x_{3}=1
end{array}$$

Таким образом, искомая точка $x=1$.

Далее находим производные заданных функций в найденной точке:

$$begin{array}{c}
y_{1}^{prime}=left(x^{2}-1right)^{prime}=left(x^{2}right)^{prime}-(1)^{prime}=2 x-0=2 x, y_{1}^{prime}(1)=2 \
y_{2}^{prime}=left(x^{3}-1right)^{prime}=left(x^{3}right)^{prime}-(1)^{prime}=3 x^{2}-0=3 x^{2}, y_{2}^{prime}(1)=3
end{array}$$

Итак, искомый тангенс:

$$operatorname{tg} phi=frac{3-2}{1+2 cdot 3}=frac{1}{7}$$

Ответ. $operatorname{tg} phi=frac{1}{7}$

Назначение сервиса. Данный сервис предназначен для нахождения уравнения нормали к кривой. Решение оформляется в формате Word. Для получения уравнения необходимо выбрать вид заданной функции.

Функция задана в явном виде

Функция задана в неявном виде

Функция задана в параметрическом виде

Пример
Задание №1

Найти уравнение нормали к параболе y = 1/2*x2 в точке (-2;2).

Решение находим с помощью калькулятора.

Запишем уравнения нормали в общем виде:

уравнения нормали в общем виде

По условию задачи x0 = -2, тогда y0 = 2

Теперь найдем производную:

y’ = (1/2•x2)’ = x

следовательно:

f'(-2) = -2 = -2

В результате имеем:



или

yk = 1/2•x+3

Задание №2

Написать уравнения нормали к кривой y2-1/2*x3-8 в точке M0(0;2).

Решение.

Поскольку функция задана в неявном виде, то производную ищем по формуле:

Уравнение нормали для неявной функции

Для нашей функции:





Тогда:



или



следовательно:

Fx‘(0;2) = 3/4•02/2 = 0

В результате имеем:



или

x = 0

Задание №3

Написать уравнения нормали к эллипсу, заданному в параметрической форме: x = 5*sqrt(2)*cos(t);y = 3*sqrt(2)*sin(t) в точке M0(-5;3).

Решение.

Запишем уравнения нормали в для функции, заданной в параметрической форме:

(x – x0)x’ + (y – y0)y’ = 0

Данной точке M0(-5;3) соответствует значение t = 3/4•π

Для нашей функции:





следовательно:

Добавить комментарий