Как составить уравнение общего перпендикуляра двух прямых

Макеты страниц

Рис. 178

Рис. 179

Искомый перпендикуляр представляется уравнениями

или после упрощений

Точку пересечения общего перпендикуляра с прямой (3) найдем из системы (3)-(6). Получим . Аналогично получим Длина общего перпендикуляра равна

Пример 2. Найти уравнения общего перпендикуляра к прямым

Прямые параллельны: Направляющий вектор общего перпендикуляра или, умножая на За начальную точку примем произвольную точку прямой (7). Получим уравнение общего перпендикуляра

где произвольное число. Чтобы найти точку пересечения общего перпендикуляра (9) с прямой (8), надо подставить выражения (8) в уравнение (9). Получим:

Любое из содержащихся здесь уравнений дает ; подставляя в (8), находим так что



5.5.3. Как найти прямую, содержащую общий перпендикуляр?

в) Эта задачка посложнее будет. «Чайникам» рекомендую пропустить данный пункт, не хочу охлаждать вашу искреннюю симпатию к

аналитической геометрии =) Кстати, и более подготовленным читателям, возможно, лучше тоже повременить – дело в том, что по сложности эту задачу

надо бы поставить последней в параграфе, но по логике изложения она должна располагаться здесь. …Впрочем, танцуйте читайте все! 🙂

Итак, требуется найти уравнения прямой , которая содержит общий

перпендикуляр скрещивающихся прямых.

Общий перпендикуляр скрещивающихся прямых – это отрезок, соединяющий данные прямые и перпендикулярный данным прямым:

Вот наш красавец:  – общий перпендикуляр прямых . Он

единственный. Другого такого нет. Нам же требуется составить уравнения прямой ,

которая содержит данный отрезок.

Что известно о прямой «эм»? Известен её направляющий вектор , найденный

в предыдущем пункте. Но, к сожалению, мы не знаем ни одной точки, принадлежащей прямой «эм», не знаем и концов перпендикуляра – точек . Где эта перпендикулярная прямая пересекает две исходные прямые? В Африке, в

Антарктиде? Из первоначального обзора и анализа условия вообще не видно, как решать задачу….

Но есть хитрый ход, связанный с использованием параметрических уравнений прямой.

Решение оформим по пунктам:

1) Перепишем уравнения первой прямой в параметрической форме:

Рассмотрим точку . Координат мы не знаем. НО. Если точка

принадлежит данной прямой, то её координатам  соответствует вполне

конкретное значение параметра, обозначим его через . Тогда координаты

точки запишутся в виде:
, или:

Жизнь налаживается, одна неизвестная – это всё-таки не три неизвестных.

2) Аналогичные действия проведём со второй прямой. Перепишем её уравнения в параметрическом

виде:

Если точка  принадлежит данной прямой, то при вполне конкретном

значении  её координаты должны удовлетворять

параметрическим уравнениям:
, или:

3) Запишем вектор . Ну и что, что нам не известны координаты точек – это же не

мешает из координат конца вектора  вычесть соответствующие координаты начала :

4) Вектор , как и ранее найденный вектор , является направляющим вектором прямой . Таким образом, они коллинеарны, и один вектор можно линейно

выразить через другой с некоторым коэффициентом пропорциональности «лямбда»:
или покоординатно:

Получилась самая, что ни на есть обычная система линейных уравнений с тремя неизвестными , которая стандартно разрешима, например, методом Крамера. Но так извращаться мы, конечно, не будем. Выразим из

3-го уравнения  и подставим эту «лямбду» в первые два уравнения:

Из 2-го уравнения выразим  и подставим в 1-е уравнение:
, а «лямбда» нам не потребуется.

То, что значения параметров получились одинаковыми – чистая случайность.

5) Небо полностью проясняется, подставим найденные значения  в наши

точки:
       

Сам вектор  нам не нужен, так как уже найден его коллега .

И после длинного пути всегда интересно выполнить проверку. Подставим координаты точки  в уравнения :

 –  получены верные равенства.

Подставим координаты  в уравнения :

 – получены верные равенства.

Вывод: найденные точки действительно принадлежат соответствующим прямым.

6) Заключительный аккорд: составим уравнения прямой  по точке  (можно взять ) и направляющему вектору :

В принципе, можно подобрать «хорошую» точку с целыми координатами, но это уже косметика.

5.5.4. Как найти расстояние между скрещивающимися прямыми?

5.5.2. Скрещивающиеся прямые

| Оглавление |



Автор: Aлeксaндр Eмeлин

Общий перпендикуляр к двум скрещивающимся прямым. Расстояние между скрещивающимися прямыми

Теорема. Пусть p1 и p2 – две произвольные скрещивающиеся прямые скрещивающиеся прямые . Если рассмотреть всевозможные прямые A1A2, такие, что точка A1 лежит на прямой p1, а точка A2 лежит на прямой p2, то будут выполнены следующие два утверждения:

  1. Среди всех прямых A1A2 существует единственная прямая, перпендикулярная к прямой p1 и к прямой p2 ( общий перпендикуляр к двум скрещивающимся прямым ).
  2. Среди всех отрезков A1A2наименьшую длину имеет отрезок общего перпендикуляра к двум скрещивающимся прямым.

Доказательство. Докажем сначала существование общего перпендикуляра к двум скрещивающимся прямым.

Через произвольную точку прямой p1 проведем прямую , параллельную прямой параллельную прямой p2 , а через произвольную точку прямой p2 проведем прямую , параллельную прямой параллельную прямой p1 . Обозначим буквой α плоскость, проходящую через прямые p1 и , а буквой β плоскость, проходящую через прямые p2 и (рис 1).

Поскольку прямая p1 параллельна прямой , лежащей на плоскости β , то по признаку параллельности прямой и плоскости прямая p1 параллельна плоскости β. Точно так же, поскольку прямая параллельна прямой p2 , лежащей на плоскости β , то прямая по признаку параллельности прямой и плоскости параллельна плоскости β. Таким образом, плоскость α содержит две пересекающиеся прямые p1 и , паралельные плоскости β. В силу признака параллельности плоскостей заключаем, что плоскости α и β параллельны.

Спроектируем прямую p1 на плоскость β. Получим прямую , являющуюся проекцией прямой проекцией прямой p1, и обозначим точку пересечения прямых p2 и буквой B2 (рис. 2).

Спроектируем теперь прямую p2 на плоскость α . Получим прямую , являющуюся проекцией прямой проекцией прямой p2 , и обозначим точку пересечения прямых p1 и буквой B1 (рис. 3).

Доказательство существования общего перпендикуляра к двум скрещивающимся прямым завершено.

Докажем, что построенная прямая B1B2 является единственным общим перпендикуляром к прямым p1 и p2 .

Таким образом, общий перпендикуляр к прямым p1 и p2 является линией пересечения плоскостей γ и δ, то есть прямой B1B2 .

Доказательство единственности общего перпендикуляра к двум скрещивающимся прямым завершено. Утверждение 1 доказано.

Перейдем к доказательству утверждения 2. Для этого рассмотрим произвольный отрезок A1A2 , у которого конец A1 лежит на плоскости α , а конец A2 лежит на плоскости β . Опустим перпендикуляр из точки A1 на плоскость β и обозначим основание этого перпендикуляра символом A3 (рис. 4).

Если отрезок A1A2 не является перпендикуляром к плоскостям α и β, то точка A3 не совпадет с точкой A2 , и треугольник A1A2A3 будет прямоугольным треугольником с гипотенузой A1A2 и катетом A1A3. Поскольку в прямоугольном треугольнике длина катета меньше длины гипотенузы, то

Условие перпендикулярности прямых

I. Выясним условие перпендикулярности двух прямых y=k1x+b1 и y=k2x+b2.

Пусть прямые y=k1x+b1 и y=k2x+b2 образуют с положительным направлением оси Ox углы α1 и α2 соответственно.

Обозначим точки пересечения прямых с осью абсцисс через A и B, точку пересечения прямых — C.

Так как α2 — внешний угол при вершине B треугольника ABC, то

Отсюда угловой коэффициент второй прямой

условие перпендикулярности прямых:

прямые, заданные уравнениями y=k1x+b1 и y=k2x+b2 перпендикулярны, если их угловые коэффициенты обратны по абсолютной величине и противоположны по знаку:

и условие перпендикулярности прямых в этом случае имеет вид:

Уравнение перпендикулярной прямой

Альтернативная формула
Прямая, проходящая через точку M1(x1; y1) и перпендикулярная прямой Ax+By+C=0 , представляется уравнением

назначение сервиса . Онлайн-калькулятор предназначен для составления уравнения перпендикулярной прямой (см. также как составить уравнение параллельной прямой).

Пример №1 . Составить уравнение прямой, проходящей через точку (2; -1) и перпендикулярной 4x-9y=3 .
Решение. Данную прямую можно представить уравнением y = 4 /9x – 1 /3 (a = 4 /9). Уравнение искомой прямой есть y+1 = -9/4(x-2) , т.е. 9x+4y-14=0 .

Пример №2 . Решая пример 1 (A=4, B=-9) по формуле (2), найдем 4(y+1)+9(x-2)=0 , т.е. 9x+4y-14=0 .

Пример №3 . Составить уравнение прямой, проходящей через точку (-3, -2) перпендикулярно прямой 2y+1=0 .
Решение. Здесь A=0, B=2. Формула (2) дает -2(x+3)=0, т.е. x+3=0 . Формула (1) неприменима, так как a=0 .

[spoiler title=”источники:”]

http://math.semestr.ru/line/perpendicular.php

[/spoiler]

Общий перпендикуляр к двум скрещивающимся прямым. Расстояние между скрещивающимися прямыми

Теорема. Пусть p1 и p2 – две произвольные скрещивающиеся прямые скрещивающиеся прямые . Если рассмотреть всевозможные прямые A1A2, такие, что точка A1 лежит на прямой p1, а точка A2 лежит на прямой p2, то будут выполнены следующие два утверждения:

  1. Среди всех прямых A1A2 существует единственная прямая, перпендикулярная к прямой p1 и к прямой p2 ( общий перпендикуляр к двум скрещивающимся прямым ).
  2. Среди всех отрезков A1A2наименьшую длину имеет отрезок общего перпендикуляра к двум скрещивающимся прямым.

Доказательство. Докажем сначала существование общего перпендикуляра к двум скрещивающимся прямым.

Через произвольную точку прямой p1 проведем прямую , параллельную прямой параллельную прямой p2 , а через произвольную точку прямой p2 проведем прямую , параллельную прямой параллельную прямой p1 . Обозначим буквой α плоскость, проходящую через прямые p1 и , а буквой β плоскость, проходящую через прямые p2 и (рис 1).

Поскольку прямая p1 параллельна прямой , лежащей на плоскости β , то по признаку параллельности прямой и плоскости прямая p1 параллельна плоскости β. Точно так же, поскольку прямая параллельна прямой p2 , лежащей на плоскости β , то прямая по признаку параллельности прямой и плоскости параллельна плоскости β. Таким образом, плоскость α содержит две пересекающиеся прямые p1 и , паралельные плоскости β. В силу признака параллельности плоскостей заключаем, что плоскости α и β параллельны.

Спроектируем прямую p1 на плоскость β. Получим прямую , являющуюся проекцией прямой проекцией прямой p1, и обозначим точку пересечения прямых p2 и буквой B2 (рис. 2).

Спроектируем теперь прямую p2 на плоскость α . Получим прямую , являющуюся проекцией прямой проекцией прямой p2 , и обозначим точку пересечения прямых p1 и буквой B1 (рис. 3).

Доказательство существования общего перпендикуляра к двум скрещивающимся прямым завершено.

Докажем, что построенная прямая B1B2 является единственным общим перпендикуляром к прямым p1 и p2 .

Таким образом, общий перпендикуляр к прямым p1 и p2 является линией пересечения плоскостей γ и δ, то есть прямой B1B2 .

Доказательство единственности общего перпендикуляра к двум скрещивающимся прямым завершено. Утверждение 1 доказано.

Перейдем к доказательству утверждения 2. Для этого рассмотрим произвольный отрезок A1A2 , у которого конец A1 лежит на плоскости α , а конец A2 лежит на плоскости β . Опустим перпендикуляр из точки A1 на плоскость β и обозначим основание этого перпендикуляра символом A3 (рис. 4).

Если отрезок A1A2 не является перпендикуляром к плоскостям α и β, то точка A3 не совпадет с точкой A2 , и треугольник A1A2A3 будет прямоугольным треугольником с гипотенузой A1A2 и катетом A1A3. Поскольку в прямоугольном треугольнике длина катета меньше длины гипотенузы, то

Математический портал

Nav view search

Navigation

Search

  • Вы здесь:
  • Home

Расстояние между двумя скрещивающимися прямыми.

Пусть $L_1: frac=frac=frac$ и $L_2: frac=frac=frac$ — две скрещивающиеся прямые. Расстояние $rho(L_1, L_2)$ между прямыми $L_1$ и $L_2$ можно найти по следующей схеме:

1) Находим уравнение плоскости $P,$ проходящей через прямую $L_1,$ параллельно прямой $L_2:$

Плоскость $P$ проходит через точку $M_1(x_1, y_1, z_1),$ перпендикулярно вектору $overline n=[overline s_1, overline s_2]=(n_x, n_y, n_z),$ где $overline s_1=(m_1, l_1, k_1)$ и $overline s_2=(m_2, l_2, k_2)$ — направляющие вектора прямых $L_1$ и $L_2.$ Следовательно, уравнение плоскости $P: n_x(x-x_1)+n_y(y-y_1)+n_z(z-z_1)=0.$

2) Расстояние между прямыми $L_1$ и $L_2$ равно расстоянию от любой точки прямой $L_2$ до плоскости $P:$

Нахождение общего перпендикуляра скрещивающихся прямых.

Для нахождения общего перпендикуляра прямых $L_1$ и $L_2,$ необходимо найти уравнения
плоскостей $P_1$ и $P_2,$ проходящих, соответственно, через прямые $L_1$ и $L_2,$ перпендикулярно плоскости $P.$

Пусть $P_1: A_1x+B_1y+C_1z+D_1=0;$

Тогда уравнение общего перпендикуляра имеет вид

Пример.

2.214.

а) доказать, что прямые не лежат в одной плоскости, то есть являются скрещивающимися;

б) написать уравнение плоскости, проходящей через прямую $L_2$ параллельно $L_1;$

в) вычислить расстояние между прямыми;

г) написать уравнения общего перпендикуляра к прямым $L_1$ и $L_2.$

Решение.

а) Если прямые $L_1$ и $L_2$ лежат в одной плоскости, то их направляющие вектора $overline(3, 4, -2),$ $overline(6, -4, -1),$ и вектор $overline l,$ соединяющий произвольную точку прямой $L_1$ и произвольную точку прямой $L_2$ компланарны. В качестве такого вектора $overline$ можно выбрать $overline(x_2-x_1, y_2-y_1, z_2-z_1).$ Проверим будут ли эти вектора компланарны.

Следовательно, вектора не компланарны и прямые не лежат в одной плоскости.

б) Запишем уравнение плоскости, проходящей через прямую $L_2$ параллельно $L_1.$ Эта плоскость проходит через точку $M_2(21, -5, 2)$ перпендикулярно вектору $overline n=[overline s_1, overline s_2].$

Таким образом, вектор $overline n$ имеет координаты $overline n(-12, -9, -36).$

Находим уравнение плоскости $$P:,, -12(x-21)-9(y+5)-36(z-2)=0Rightarrow$$ $$Rightarrow-12x-9y-36z+252-45+72=0Rightarrow -12x-9y-36z+279=0Rightarrow$$ $$Rightarrow 4x+3y+12z-93=0.$$

в) Расстояние между прямыми $L_1$ и $L_2$ равно расстоянию от любой точки прямой $L_1$ до плоскости $P:$

Ответ: $frac<76><13>.$

г) Найдем уравнения плоскостей $P_1$ и $P_2,$ проходящих, соответственно, через прямые $L_1$ и $L_2,$ перпендикулярно плоскости $P.$

Имеем, $M_1=(-7, -4, -3)in P_1,$

Таким образом, $$P_1: 54(x+7)-44(y+4)-7(z+3)=54x-44y-7z+378-176-21=$$ $$=54x-44y-7z+181=0.$$

Аналогично находим $P_2:$

Имеем, $M_2=(21, -5, 2)in P_2,$

Таким образом, $$P_1: -45(x-21)-76(y+5)+34(z-2)=-45x-76y+34z+945-380-68=$$ $$=-45x-76y+34z+497=0.$$

Ответ: $left<begin54x-44y-7z+181=0;\ -45x-76y+34z+497=0.endright. $

2.215.

а) доказать, что прямые не лежат в одной плоскости, то есть являются скрещивающимися;

б) написать уравнение плоскости, проходящей через прямую $L_2$ параллельно $L_1;$

в) вычислить расстояние между прямыми;

г) написать уравнения общего перпендикуляра к прямым $L_1$ и $L_2.$

Ответ: б) $4x+12y+12z+76=0;$

г) $left<begin53x-7y-44z-429=0;\ 105x-23y-48z+136=0.endright. $

Как составить уравнение общего перпендикуляра к двум прямым

Признак

a α, b α = A , A a (чертеж 2.1.2). Допустим, что прямые a и b не скрещивающиеся, то есть они пересекаются. Тогда существует плоскость β, которой принадлежат прямые a и b . В этой плоскости β лежат прямая a и точка A . Поскольку прямая a и точка A вне ее определяют единственную плоскость, то β = α. Но b β и b α, следовательно, равенство β = α невозможно.

Теорема

Две скрещивающиеся прямые имеют общий перпендикуляр, и при том только один. Он является общим перпендикуляром параллельных плоскостей, проходящих через эти прямые.

Доказательство

Пусть a и b – данные скрещивающиеся прямые. Проведем через них параллельные плоскости α и β. Прямые, пересекающие прямую a и перпендикулярные плоскости α, лежат в одной плоскости (γ). Эта плоскость пересекает плоскость β по прямой a`, параллельной a. Пусть B – точка пересечения прямых a` и b. Тогда прямая AB, перпендикулярная плоскости α, перпендикулярна и плоскости β, так как β параллельна α. Отрезок AB – общий перпендикуляр плоскостей α и β, а значит, и прямых a и b.
Докажем, что этот общий перпендикуляр единственный. Допустим, что у прямых a и b есть другой общий перпендикуляр CD. Проведем через точку С прямую b`, параллельную b. Прямая CD перпендикулярна прямой b, а значит, и b`. Так как она перпендикулярна прямой a, то она перпендикулярна плоскости α, а значит, параллельна прямой AB. Выходит, что через прямые AB и CD, как через параллельные, можно провести плоскость. В этой плоскости будут лежать наши скрещивающиеся прямые AC и BD, а это невозможно, что и требовалось доказать.

Расстоянием между двумя скрещивающимися прямыми называется длина их общего перпендикуляра.

источники:

http://mathportal.net/index.php/component/content/article/87-visshaya-matematika/analiticheskaya-geometriya/152-rasstoyanie-mezhdu-dvumya-skreshchivayushchimisya-pryamymi

http://hystory-for-vki.narod.ru/index/0-71

1007 Составить канонические
уравнения прямой, проходящей через точку М
1(2; 0; -3) параллельно: 1007.1 вектору a={2; -3;
5};
1007.2 прямой ; 1007.3 оси Ох; 1007.4 оси Оу; 1007.5 оси Oz. 1008 Составить
канонические уравнения прямой, проходящей через
данные точки:
1008.1 (1; -2; 1), (3; 1; -1); 1008.2 (3; -1; 0), (1; 0; -3); 1008.3 (0; -2; 3), (3; -2; 1); 1008.4 (1; 2; -4), (-1; 2; -4). 1009 Составить
параметрические уравнения прямой, проходящей
через точку М
1(1; -1; -3) параллельно: 1009.1 вектору a={2; -3;
4};
1009.2 прямой ; 1009.3 прямой , , . 1010 Составить
параметрические уравнения прямой, проходящей
через данные точки:
1010.1 (3; -1; 2), (2; 1; 1); 1010.2 (1; 1; -2), (3; -1; 0); 1010.3 (0; 0; 1), (0; 1; -2). 1011 Через точки М1(-6; 6; -5), М2(12;
-6; 1) проведена прямая. Определить
точки пересечения этой прямой с координатными
плоскостями.

1012
Даны вершины
треугольника А(3; 6; -7), В(-5; 2; 3), С(4; -7; -2). Составить
параметрические уравнения его медианы,
проведенной из вершины С.
1013 Даны вершины
треугольника А(3; -1; -1), В(1; 2; -7), С(-5; 14; -3). Составить
канонические уравнения биссектрисы его
внутреннего угла при вершине С.
1014 Даны вершины
треугольника А(2; -1; -3), В(5; 2; -7), С(-7; 11; 6). Составить
канонические уравнения биссектрисы его внешнего
угла при вершине А.
1015 Дан вершины
треугольника А(1; -2; -4), В(3; 1; -3), С(5; 1; -7). Составить
параметрические уравнения его высоты,
опущенного из вершины В на противоположную
сторону.
1016 Дана прямая , . Вычислить
проекции какого-нибудь ее направляющего вектора
а на координатные оси. Найти общее выражение
проекций произвольного направляющего вектора
этой прямой на координатные оси.
1017 Дана прямая , . Найти
разложение какого-нибудь ее направляющего
вектора а по базису i, j, k. Выразить в общем виде
разложение произвольного направляющего вектора
этой прямой по базису i, j, k.
1018 Составить
канонические уравнения прямой, проходящей через
точку М
1(2; 3; -5) параллельно
прямой
, .
1019 Составить
канонические уравнения следующих прямых:
1019.1 , ; 1019.2 , ; 1019.3 , . 1020 Составить
параметрические уравнения следующих прямых:
1020.1 , ; 1020.2 , . 1021 Доказать
параллельность прямых:
1021.1 и , ; 1021.2 , , и , ; 1021.3 , и ,
.
1022 Доказать
перпендикулярность прямых:
1022.1 и , ; 1022.2 , , и , ; 1022.3 , и ,
.
1023 Найти острый
угол между прямыми
, . 1024 Найти тупой
угол между прямыми
, , и , , . 1025 Определить
косинус угла между прямыми
, и , . 1026 Доказать, что
прямые, заданные параметрическими уравнениями
, , и , , , пересекаются. 1027 Даны прямые , ; при
каком значении l они пересекаются?
1028  

Доказать,
что условие, при котором две прямые и лежат в одной плоскости, может быть
представлено в следующем виде:

.

1029 Составить
уравнения прямой, которая проходит через точку М
1(-1;
2; -3) перпендикулярно к вектору a={6;
-2; -3} и пересекает прямую
.
1030 Составить
уравнения прямой, которая проходит через точку
М(-4; -5; 3) и пересекает две прямые
, .

1031
Составить
параметрические уравнения общего
перпендикуляра двух прямых, заданных
уравнениями
, , и, ,. 1032 Даны
уравнения движения точки М(x; y; z):
, , . Определить скорость v. 1033 Даны
уравнения движения точки М(x; y; z):
, , . Определить расстояние d, которое
пройдет эта точка за промежуток времени от t
1=0
до t2=7.
1034 Составить
уравнения движения точки М(x; y; z), которая, имея
начальное положение М
0(3; -1; -5), движется прямолинейно и равномерно
в направлении вектора s={-2; 6; 3} со скоростью v=21.
1035 Составить
уравнения движения точки М(x; y; z), которая,
двигаясь прямолинейно и равномерно, прошла
расстояние от точки М
1(-7; 12; 5) до точки М2(9; -4; -3) за промежуток времени от t1=0
до t2=4.
1036 Точка М(x; y; z)
движется прямолинейно и равномерно из
начального положения М
0(20; -18; -32)
в направлении, противоположном
вектору s={3; -4; -12}, со скоростью v=26. Составить
уравнения движения точки М и определить точку, с
которой она совпадает в момент времени t=3.
1037 Точки М(x; y; z)
и N(x, y, z) движутся прямолинейно и равномерно:
первая из начального положения М
0(-5;
4; -5) со скоростью vM=14 в направлении вектора s={3; -6; 2}, вторая
из начального положения N
0(-5; 16; -6) со скоростью vN=13 в направлении, противоположном
вектору r={-4; 12; -3}. Составить уравнения движения
каждой из точек и, убедившись, что их траектории
пересекаются, найти:
1037.1 точку Р
пересечения их траекторий;
1037.2 время,
затраченное на движение точки М от М
0
до Р;
1037.3 время,
затраченное на движение точки N от N
0
до Р;
1037.4 длины
отрезков M
0P и N0P.

Добавить комментарий