Как составить уравнение окружности если она касается прямой

Решение задач по темам “Уравнение окружности” и “Уравнение прямой”

Этот видеоурок доступен по абонементу

У вас уже есть абонемент? Войти

На прошлых уроках мы вывели уравнение окружности и решили некоторые задачи на уравнение окружности, вывели уравнение прямой и решили соответствующие задачи. На этом уроке мы продолжим решение задач на уравнение окружности и уравнение прямой.

Касательная к окружности

О чем эта статья:

Касательная к окружности, секущая и хорда — в чем разница

В самом названии касательной отражается суть понятия — это прямая, которая не пересекает окружность, а лишь касается ее в одной точке. Взглянув на рисунок окружности ниже, несложно догадаться, что точку касания от центра отделяет расстояние, в точности равное радиусу.

Касательная к окружности — это прямая, имеющая с ней всего одну общую точку.

Если мы проведем прямую поближе к центру окружности — так, чтобы расстояние до него было меньше радиуса — неизбежно получится две точки пересечения. Такая прямая называется секущей, а отрезок, расположенный между точками пересечения, будет хордой (на рисунке ниже это ВС ).

Секущая к окружности — это прямая, которая пересекает ее в двух местах, т. е. имеет с ней две общие точки. Часть секущей, расположенная внутри окружности, будет называться хордой.

Свойства касательной к окружности

Выделяют четыре свойства касательной, которые необходимо знать для решения задач. Два из них достаточно просты и легко доказуемы, а вот еще над двумя придется немного подумать. Рассмотрим все по порядку.

Касательная к окружности и радиус, проведенный в точку касания, взаимно перпендикулярны.

Не будем принимать это на веру, попробуем доказать. Итак, у нас даны:

  • окружность с центральной точкой А;
  • прямая а — касательная к ней;
  • радиус АВ, проведенный к касательной.

Докажем, что касательная и радиус АВ взаимно перпендикулярны, т.е. аАВ.

Пойдем от противного — предположим, что между прямой а и радиусом АВ нет прямого угла и проведем настоящий перпендикуляр к касательной, назвав его АС.

В таком случае наш радиус АВ будет считаться наклонной, а наклонная, как известно, всегда длиннее перпендикуляра. Получается, что АВ > АС. Но если бы это было на самом деле так, наша прямая а пересекалась бы с окружностью два раза, ведь расстояние от центра А до нее — меньше радиуса. Но по условию задачи а — это касательная, а значит, она может иметь лишь одну точку касания.

Итак, мы получили противоречие. Делаем вывод, что настоящим перпендикуляром к прямой а будет вовсе не АС, а АВ.

Курсы подготовки к ОГЭ по математике от Skysmart придадут уверенности в себе и помогут освежить знания перед экзаменом.

Задача

У нас есть окружность, центр которой обозначен О. Из точки С проведена прямая, и она касается этой окружности в точке А. Известно, что ∠АСО = 28°. Найдите величину дуги АВ.

Мы знаем, что касательная АС ⟂ АО, следовательно ∠САО = 90°.

Поскольку нам известны величины двух углов треугольника ОАС, не составит труда найти величину и третьего угла.

∠АОС = 180° – ∠САО – ∠АСО = 180° – 90° – 28° = 62°

Поскольку вершина угла АОС лежит в центре окружности, можно вспомнить свойство центрального угла — как известно, он равен дуге, на которую опирается. Следовательно, АВ = 62°.

Если провести две касательных к окружности из одной точки, лежащей вне этой окружности, то их отрезки от этой начальной точки до точки касания будут равны.

Докажем и это свойство на примере. Итак, у нас есть окружность с центром А, давайте проведем к ней две касательные из точки D. Обозначим эти прямые как ВD и CD . А теперь выясним, на самом ли деле BD = CD.

Для начала дополним наш рисунок, проведем еще одну прямую из точки D в центр окружности. Как видите, у нас получилось два треугольника: ABD и ACD . Поскольку мы уже знаем, что касательная и радиус к ней перпендикулярны, углы ABD и ACD должны быть равны 90°.

Итак, у нас есть два прямоугольных треугольника с общей гипотенузой AD. Учитывая, что радиусы окружности всегда равны, мы понимаем, что катеты AB и AC у этих треугольников тоже одинаковой длины. Следовательно, ΔABD = ΔACD (по катету и гипотенузе).. Значит, оставшиеся катеты, а это как раз наши BD и CD (отрезки касательных к окружности), аналогично равны.

Важно: прямая, проложенная из стартовой точки до центра окружности (в нашем примере это AD), делит угол между касательными пополам.

Задача 1

У нас есть окружность с радиусом 4,5 см. К ней из точки D, удаленной от центра на 9 см, провели две прямые, которые касаются окружности в точках B и C. Определите градусную меру угла, под которым пересекаются касательные.

Решение

Для этой задачи вполне подойдет уже рассмотренный выше рисунок окружности с радиусами АВ и АC. Поскольку касательная ВD перпендикулярна радиусу АВ , у нас есть прямоугольный треугольник АВD. Зная длину его катета и гипотенузы, определим величину ∠BDA.

∠BDA = 30° (по свойству прямоугольного треугольника: угол, лежащий напротив катета, равного половине гипотенузы, составляет 30°).

Мы знаем, что прямая, проведенная из точки до центра окружности, делит угол между касательными, проведенными из этой же точки, пополам. Другими словами:

∠BDC = ∠BDA × 2 = 30° × 2 = 60°

Итак, угол между касательными составляет 60°.

Задача 2

К окружности с центром О провели две касательные КМ и КN. Известно, что ∠МКN равен 50°. Требуется определить величину угла ∠NМК.

Решение

Согласно вышеуказанному свойству мы знаем, что КМ = КN. Следовательно, треугольник МNК является равнобедренным.

Углы при его основании будут равны, т.е. ∠МNК = ∠NМК.

∠МNК = (180° – ∠МКN) : 2 = (180° – 50°) : 2 = 65°

Соотношение между касательной и секущей: если они проведены к окружности из одной точки, лежащей вне окружности, то квадрат расстояния до точки касания равен произведению длины всей секущей на ее внешнюю часть.

Данное свойство намного сложнее предыдущих, и его лучше записать в виде уравнения.

Начертим окружность и проведем из точки А за ее пределами касательную и секущую. Точку касания обозначим В, а точки пересечения — С и D. Тогда CD будет хордой, а отрезок AC — внешней частью секущей.

Задача 1

Из точки М к окружности проведены две прямые, пусть одна из них будет касательной МA, а вторая — секущей МB. Известно, что хорда ВС = 12 см, а длина всей секущей МB составляет 16 см. Найдите длину касательной к окружности МA.

Решение

Исходя из соотношения касательной и секущей МА 2 = МВ × МС.

Найдем длину внешней части секущей:

МС = МВ – ВС = 16 – 12 = 4 (см)

МА 2 = МВ × МС = 16 х 4 = 64

Задача 2

Дана окружность с радиусом 6 см. Из некой точки М к ней проведены две прямые — касательная МA и секущая МB . Известно, что прямая МB пересекает центр окружности O. При этом МB в 2 раза длиннее касательной МA . Требуется определить длину отрезка МO.

Решение

Допустим, что МО = у, а радиус окружности обозначим как R.

В таком случае МВ = у + R, а МС = у – R.

Поскольку МВ = 2 МА, значит:

МА = МВ : 2 = (у + R) : 2

Согласно теореме о касательной и секущей, МА 2 = МВ × МС.

(у + R) 2 : 4 = (у + R) × (у – R)

Сократим уравнение на (у + R), так как эта величина не равна нулю, и получим:

Поскольку R = 6, у = 5R : 3 = 30 : 3 = 10 (см).

Ответ: MO = 10 см.

Угол между хордой и касательной, проходящей через конец хорды, равен половине дуги, расположенной между ними.

Это свойство тоже стоит проиллюстрировать на примере: допустим, у нас есть касательная к окружности, точка касания В и проведенная из нее хорда . Отметим на касательной прямой точку C, чтобы получился угол AВC.

Задача 1

Угол АВС между хордой АВ и касательной ВС составляет 32°. Найдите градусную величину дуги между касательной и хордой.

Решение

Согласно свойствам угла между касательной и хордой, ∠АВС = ½ АВ.

АВ = ∠АВС × 2 = 32° × 2 = 64°

Задача 2

У нас есть окружность с центром О, к которой идет прямая, касаясь окружности в точке K. Из этой точки проводим хорду KM, и она образует с касательной угол MKB, равный 84°. Давайте найдем величину угла ОMK.

Решение

Поскольку ∠МКВ равен половине дуги между KM и КВ, следовательно:

КМ = 2 ∠МКВ = 2 х 84° = 168°

Обратите внимание, что ОМ и ОK по сути являются радиусами, а значит, ОМ = ОК. Из этого следует, что треугольник ОMK равнобедренный.

∠ОКМ = ∠ОМК = (180° – ∠КОМ) : 2

Так как центральный угол окружности равен угловой величине дуги, на которую он опирается, то:

∠ОМК = (180° – ∠КОМ) : 2 = (180° – 168°) : 2 = 6°

Написать уравнение окружности

Рассмотрим некоторые примеры, в которых требуется написать уравнение окружности по заданным условиям.

1) Написать уравнение окружности с центром в точке K(5;-1) и радиусом 7.

Уравнение окружности с центром в точке (a;b) и радиусом R имеет вид:

Так как центр окружности — точка K(5; -1), то a=5, b=-1.Подставляем эти данные в уравнение окружности:

2) Напишите уравнение окружности с центром в точке A (8;-3) проходящей через точку C(3;-6).

Так как центр окружности — точка A(8; -3), то a=8, b=-3.

Остаётся найти радиус. Он равен расстоянию от центра окружности до точки, лежащей на окружности, то есть в данном случае радиус окружности равен расстоянию между точками A и C.

Следовательно, уравнение данной окружности

3) Составить уравнение окружности, диаметром которой является отрезок AB, если A (-4; -9), B(6;5).

Центром окружности является середина диаметра, в нашем случае — середина отрезка AB. По формулам координат середины отрезка

Центр окружности — точка O(1;-2). Значит, a=1, b=-2.

Радиус можно найти как расстояние от центра окружности до любой из точек A или B окружности. Например,

Таким образом, уравнение окружности с диаметром AB —

4) Написать уравнение окружности, проходящей через три точки: A(4; -5), B(8; 3) C(-8; 11).

Так как точки A, B C принадлежат окружности, то их координаты удовлетворяют уравнению окружности. Подставив координаты точек в уравнение

получаем систему уравнений:

Поскольку правые части уравнений равны, левые также равны. Приравняв правые части 1-го и 2-го уравнений получим

Приравняем правые части 2-го и 3-го уравнений:

на -1 и сложив результат почленно с уравнением

получаем a=-2, b=3. Подставив этот результат в первое уравнение системы:

Следовательно, уравнение окружности, проходящей через три данные точки —

5) Написать уравнение окружности, описанной около треугольника ABC с вершинами в точках A(2; 6), B(1; 5) C(8; -2).

Решение аналогично решению задания 4. В результате получим уравнение

[spoiler title=”источники:”]

http://skysmart.ru/articles/mathematic/kasatelnaya-k-okruzhnosti

[/spoiler]

385 Составить уравнение окружности
в каждом из следующих случаев:
385.1 центр окружности
совпадает с началом координат и ее радиус R=3;
385.2 центр окружности
совпадает с точкой С(2; -3) и ее радиус R=7;
385.3 окружность
проходит через начало координат и ее центр
совпадает с точкой С(6; -8);
385.4 окружность
проходит через точку А(2; 6) и ее центр совпадает с
точкой С(-1; 2);
385.5 точки А(3; 2) и В(-1; 6)
являются концами одного из диаметров окружности;
385.6 центр окружности
совпадает с началом координат и прямая
является касательной к окружности; 385.7 центр окружности
совпадает с точкой С(1; -1) и прямая
является
касательной к окружности;
385.8 окружность
проходит через точки А(3; 1) и В(-1; 3), а ее центр
лежит на прямой
; 385.9 окружность
проходит через три точки А(1; 1), В(1; -1), С(2; 0);
385.10 окружность
проходит через три точки: М
1(-1;
5), М2(-2; -2). М3(5; 5).
386 Точка С(3; -1)
является центром окружности, отсекающей на
прямой
хорду, длина которой равна
6. Составить уравнение этой окружности.
387 Написать уравнения
окружностей радиуса
, касающихся
прямой
в точке М1(3; 1).
388 Составить
уравнение окружности, касающейся прямых
, , причем
одна из них – в точке А(2; 1).
389 Составить
уравнения окружностей, которые проходят через
точку А(1; 0) и касаются прямых
, . 390 Составить
уравнение окружности, которая, имея центр на
прямой
,
касается прямых , .
391 Составить
уравнения окружностей, касающихся прямых
, , причем
одной из них – в точке М
1(1; 2).
392 Составить
уравнения окружностей, проходящих через начало
координат и касающихся прямых
, . 393 Составить
уравнение окружностей, которые, имея центры на
прямой
,
касаются прямых , .
394 Написать уравнения
окружностей, проходящих через точку А(-1; 5) и
касающихся прямых
, . 395 Написать уравнения
окружностей, касающихся прямых
, , . 396 Написать уравнения
окружностей, касающихся прямых
, , . 397 Какие из
нижеприводимых уравнений определяют окружности?
Найти центр С и радиус R каждой из них:
397.1  ; 397.2  ; 397.3 ; 397.4 ; 397.5 ; 397.6 ; 397.7 ; 397.8 ; 397.9 ; 397.10  . 398 Установить, какие
линии определяются следующими уравнениями.
Изобразить эти линии на чертеже.
398.1 ; 398.2 ; 398.3 ; 398.4 ; 398.5 ; 398.6 ; 398.7 ; 398.8 ; 398.9  ; 398.10 . 399 Установить, как
расположена точка А(1; -2) относительно каждой из
следующих окружностей – внутри, вне или на
контуре:
399.1 ; 399.2 ; 399.3 ; 399.4 ; 399.5 . 400 Определить
уравнение линии центров двух окружностей,
заданных уравнениями:
400.1 и ; 400.2 и ; 400.3 и ; 400.4 и . 401 Составить
уравнение диаметра окружности
, перпендикулярного
к прямой
.
402 Вычислить
кратчайшее расстояние от точки до окружности в
каждом из следующих случаев:
402.1 А(6; -8), ; 402.2 В(3; 9), ; 402.3 С(-7; 2), . 403 Определить
координаты точек пересечения прямой
и
окружности
.
404 Определить, как
расположена прямая относительно окружности
(пересекает ли, касаетлся или проходит вне ее),
если прямая и окружность заданы следующими
уравнениями:
404.1  , ; 404.2  , ; 404.3 , . 405 Определить, при
каких значениях углового коэффициента k прямая
: 405.1 пересекает
окружность
; 405.2 касается этой
окружности;
405.3 проходит вне этой
окружности.
406 Вывести условие,
при котором прямая
касается окружности
.
407 Составить уравнние
диаметра окружности
, проходящего
через середину хорды, отсекаемой на прямой
.
408 Составить
уравнение хорды окружности
, делящейся
в точке М(8,5; 3,5) пополам.
409 Определить длину
хорды окружности
, делящейся в точке
А(1; 2) пополам.
410 Дано уравнение
пучка прямых
. Найти прямые этого пучка,
на которых окружность
отсекает хорды
длиною
.
411 Даны окружности , , пересекающиеся
в точках М
1(x1, y1), М2(x2, y2). Доказать, что любая окружность,
проходящая через точки М
1, М2, а также
прямая М
1М2 могут быть определены уравнением
вида
при надлежащем выборе числе и .
412 Составить
уравнение окружности, проходящей через точку А(1;
-1) и точки пересечения окружностей
, . 413 Составить
уравнение окружности, проходящей через начало
координат и точки пересечения окружностей
, . 414 Составить
уравнение прямой, проходящей через точки
пересечения окружностей
, . 415 Вычислить
расстояние от центра окружности
до
прямой, проходящей через точки пересечения
окружностей
, .
416 Определить длину
общей хорды окружностей
, . 417 Центр окружности
лежит на прямой
. Составить
уравнение этой окружности, если известно, что она
проходит через точки пересечения окружностей
, .
418 Составить
уравнение касательной к окружности
в
точке А(-1; 2).
419 Составить
уравнение касательной к окружности
в
точке А(-5; 7).
420 На окружности найти точку М1, ближайшую к прямой , и
вычислить расстояние d от точки М
1 до этой прямой.
421 Точка М1(x1,
y1) лежит на окружности . Составить
уравнение касательной к этой окружности в точке
М
1.
422 Точка М1(x1,
y1) лежит на окружности . Составить
уравнение касательной к этой окружности в точке
М
1.
423 Определить острый
угол, образованный при пересечении прямой
и окружности (углом между прямой
и окружности называется угол между прямой и
касательной к окружности, проведенной к точке их
пересечения).
424 Определить, при
каким углом пересекаются окружности
, (углом между
окружностями называется угол между их
касательными в точке пересечения).
425 Вывести условие,
при котором окружности
, пересекаются под
прямым углом.
426 Доказать, что
окружности
, пересекаются под прямым углом. 427 Из точки А(5/3; -5/3)
проведены касательной к окружности
. Составить
их уравнения.
428 Из точки А(1; 6)
проведены касательные к окружности
. Составить
их уравнения.
429 Дано уравнение
пучка прямых
. Найти прямые этого пучка,
которые касаются окружности
.
430 Из точки А(4; 2)
проведены касательные к окружности
. Определить
угол, образованный этими касательными.
431 Из точки Р(2; -3)
проведены касательные к окружности
. Составить
уравнение хорды, соединяющий точки касания.
432 Из точки С(6; -8)
проведены касательные к окружности
. Вычислить
расстояние d от точки С до хорды, соединяющей
точки касания.
433 Из точки Р(-9; 3)
проведены касательные к окружности
. Вычислить
расстояние d от центра окружности до хорды,
соединяющей точки касания.
434 Из точки Р(4; -4)
проведены касательные к окружности
. Вычислить
длину d хорды, соединяющей точки касания.
435 Вычислить длину
касательной, проведенной из точки А(1; -2) к
окружности
. 436 Составить
уравнение касательных к окружности
, параллельных
прямой
.
437 Составить
уравнения касательных к окружности
, перпендикулярных
к прямой
.
438 Составить
уравнение окружности в полярных координатах в
полярных координатах по данному радиусу R и
полярным координатам центра C(R,
). 439 Составить
уравнение окружности в полярных координатах по
данному радиусу R и полярным координатам центра
окружности:
439.1 C(R, 0); 439.2 C(R, ); 439.3 C(R, ); 439.4 C(R, ). 440 Определить
полярные координаты центра и радиус каждой из
следующих окружностей:
440.1  ; 440.2 ; 440.3 ; 440.4  ; 440.5 ; 440.6 ; 440.7  ). 441 Окружности заданы
уравнениями в полярных координатах. Составить их
уравнения в декартовых прямоугольных
координатах при условии, что полярная ось
совпадает с положительной полуосью Ох, а полюс –
с началом координат.
441.1  ; 441.2 ; 441.3 . 442

Окружности
заданы уравнениями в декартовых прямоугольных
координатах. Составить уравнения этих
окружностей в полярных координатах при условии,
что полярная ось совпадает с положительной
полуосью Ох, а полюс – с началом координат.

442.1 ; 442.2 ; 442.3 ; 442.4 ; 442.5 . 443 Составить полярное
уравнение касательной к окружности
в
точке М
1(R, ).

Содержание:

Окружность:

Определение: Кривой второго порядка называется линия, описываемая уравнением Окружность - определение и вычисление с примерами решения

Замечание: Если коэффициенты Окружность - определение и вычисление с примерами решения

При определенных значениях параметров, входящих в это уравнение, оно дает канонические у равнения окружности, эллипса (не путать с овалом), гиперболы и параболы. Рассмотрим эти кривые второго порядка в указанной последовательности.

Определение: Окружностью называется геометрическое место точек равноудаленных от выделенной точки Окружность - определение и вычисление с примерами решения называемой центром окружности, на расстояние R, которое называется радиусом окружности.

Получим уравнение окружности (Рис. 27). Пусть точка М(х;у) лежит на окружности:

Окружность - определение и вычисление с примерами решения

Рис. 27. Вывод уравнения окружности.

Из рисунка видно, что по теореме Пифагора Окружность - определение и вычисление с примерами решения которое определяет уравнение окружности (Рис. 28): Окружность - определение и вычисление с примерами решения

Рис. 28. Окружность. Окружность - определение и вычисление с примерами решения

Если Окружность - определение и вычисление с примерами решения то уравнение принимает вид Окружность - определение и вычисление с примерами решения который называется каноническим уравнением окружности.

Пример:

Составить уравнение окружности, центр которой совпадает с точкой М (2; 1), прямая линия Окружность - определение и вычисление с примерами решения является касательной к окружности.

Окружность - определение и вычисление с примерами решения

Решение:

Радиус окружности равен расстоянию от центра окружности точки М (2; 1) до прямой l, т.е.

Окружность - определение и вычисление с примерами решения

В уравнении окружности Окружность - определение и вычисление с примерами решения таким образом оно имеет вид: Окружность - определение и вычисление с примерами решения

Пример:

Составить уравнение окружности, касающейся двух параллельных прямых Окружность - определение и вычисление с примерами решения причем одной из них в т. А (1; 2).

Окружность - определение и вычисление с примерами решения

Решение:

Прежде всего определим, на какой из прямых Окружность - определение и вычисление с примерами решения или Окружность - определение и вычисление с примерами решениялежит точка A(1; 2). Для этого подставим ее координаты в уравнения прямых Окружность - определение и вычисление с примерами решения

Окружность - определение и вычисление с примерами решения следовательно, точка A(1; 2) принадлежит линии Окружность - определение и вычисление с примерами решения(в сокращенной форме это предложение пишут так: Окружность - определение и вычисление с примерами решения где значок Окружность - определение и вычисление с примерами решения означает “принадлежит”. Таким образом, диаметр окружности D равен расстоянию от точки A(1; 2) до прямой Окружность - определение и вычисление с примерами решения

Окружность - определение и вычисление с примерами решения

а радиус окружности Окружность - определение и вычисление с примерами решения Найдём координаты центра окружности точки Окружность - определение и вычисление с примерами решения которая делит отрезок АВ пополам. Вначале составим уравнение прямой (АВ) и вычислим координаты точки Окружность - определение и вычисление с примерами решения перейдем от общего уравнения прямой Окружность - определение и вычисление с примерами решения к уравнению прямой с угловым коэффициентом Окружность - определение и вычисление с примерами решения Так как прямаяОкружность - определение и вычисление с примерами решениято её угловой коэффициент Окружность - определение и вычисление с примерами решения Прямая (АВ) проходит через известную точку A(1;2), следовательно, Окружность - определение и вычисление с примерами решения Отсюда находим Окружность - определение и вычисление с примерами решения Таким образом,уравнение прямой (АВ):Окружность - определение и вычисление с примерами решения

Найдем координаты точки B, которая является пересечением прямых Окружность - определение и вычисление с примерами решения и (АВ), т.е. решим систему линейных алгебраических уравнений, составленную из уравнений прямых Окружность - определение и вычисление с примерами решения и (АВ): (В): Окружность - определение и вычисление с примерами решения Подставим выражение для переменной у из второго у равнения в первое, получим Окружность - определение и вычисление с примерами решения Подставив это значение во второе уравнение системы, найдем Окружность - определение и вычисление с примерами решения т.е. Окружность - определение и вычисление с примерами решения

Для вычисления координат точки О применим формулы деления отрезка пополам (О): Окружность - определение и вычисление с примерами решения в этой формуле Окружность - определение и вычисление с примерами решения (координаты точки О), Окружность - определение и вычисление с примерами решения (координаты точки А), Окружность - определение и вычисление с примерами решения (координаты точки В), следовательно, Окружность - определение и вычисление с примерами решения т.е. координаты точки О Окружность - определение и вычисление с примерами решения

Таким образом, уравнение искомой окружности имеет вид: Окружность - определение и вычисление с примерами решения

Окружность в высшей математике

Рассмотрим уравнение

Окружность - определение и вычисление с примерами решения

которое получается из уравнения (I), если положить Окружность - определение и вычисление с примерами решения, Окружность - определение и вычисление с примерами решения.

Если в формулу, выражающую расстояние между двумя точками, подставить Окружность - определение и вычисление с примерами решения, Окружность - определение и вычисление с примерами решения, то получим Окружность - определение и вычисление с примерами решения Из уравнения (1) находим, что Окружность - определение и вычисление с примерами решения, т. е. Окружность - определение и вычисление с примерами решения. Это значит, что все точки Окружность - определение и вычисление с примерами решения, координаты которых удовлетворяют уравнению (1), находятся на расстоянии Окружность - определение и вычисление с примерами решения от начала координат. Следовательно, геометрическое место точек, координаты которых удовлетворяют уравнению (1), есть окружность радиуса Окружность - определение и вычисление с примерами решения с центром в начале координат. Аналогично получаем, что уравнение Окружность - определение и вычисление с примерами решенияОкружность - определение и вычисление с примерами решения определяет окружность радиуса Окружность - определение и вычисление с примерами решения с центром в точке Окружность - определение и вычисление с примерами решения.

Пример:

Найдем уравнение окружности с центром в точке Окружность - определение и вычисление с примерами решения и радиусом, равным 10.

Решение:

ПолагаяОкружность - определение и вычисление с примерами решения, Окружность - определение и вычисление с примерами решения получим Окружность - определение и вычисление с примерами решения.

Разрешим это уравнение относительно Окружность - определение и вычисление с примерами решения, будем иметь

Окружность - определение и вычисление с примерами решения

и

Окружность - определение и вычисление с примерами решения

Первое из этих уравнений есть уравнение верхней половины окружности, второе—нижней.

Центральный угол. Градусная мера дуги

Дуга окружности. Если отметить на окружности точки Окружность - определение и вычисление с примерами решения и Окружность - определение и вычисление с примерами решения, то окружность разделится на две дуги: большую дугу (мажорная дуга) и меньшую дугу (минорная дуга). Если точка Окружность - определение и вычисление с примерами решения является какой-либо точкой дуги Окружность - определение и вычисление с примерами решения, то Окружность - определение и вычисление с примерами решения. Если точки Окружность - определение и вычисление с примерами решения и Окружность - определение и вычисление с примерами решения являются концами диаметра, го каждая дуга является полуокружностью.

Окружность - определение и вычисление с примерами решенияОкружность - определение и вычисление с примерами решения

Центральный угол. Угол, вершина которого находится в центре окружности, называется центральным углом. Дугу окружности можно измерять в градусах. Градусная мера дуги равна градусной мере соответствующего центрального угла: Окружность - определение и вычисление с примерами решения

Сумма всех центральных углов окружности, не имеющих общую внутреннюю точку, равна Окружность - определение и вычисление с примерами решения

Окружность - определение и вычисление с примерами решения

Дуги окружности и их величины

Окружность - определение и вычисление с примерами решения

Пример: Окружность - определение и вычисление с примерами решения минорная дуга: Окружность - определение и вычисление с примерами решения

Окружность - определение и вычисление с примерами решения мажорная дуга: Окружность - определение и вычисление с примерами решения Окружность - определение и вычисление с примерами решения

Конгруэнтные дуги

В окружности конгруэнтным центральным углам соответствуют конгруэнтные дуги и наоборот.

Если Окружность - определение и вычисление с примерами решения

Если Окружность - определение и вычисление с примерами решения

Окружность - определение и вычисление с примерами решения

Длина дуги

Какую часть составляет центральный угол от всей окружности, такую же часть длина дуги составляет от длины всей окружности.

Длина дуги в Окружность - определение и вычисление с примерами решения равна Окружность - определение и вычисление с примерами решения части длины окружности.

Длина дуги, соответствующей центральному углу с градусной мерой Окружность - определение и вычисление с примерами решения, составляет Окружность - определение и вычисление с примерами решения части длины окружности: Окружность - определение и вычисление с примерами решения

Длина дуги выражается единицами измерения длины (мм, см, м, и т.д.)

Окружность - определение и вычисление с примерами решения

Пример №1

Длина окружности равна 72 см. Найдите длину дуги, соответствующей центральному углу Окружность - определение и вычисление с примерами решения.

Решение:

Так как центральный угол Окружность - определение и вычисление с примерами решения составляет Окружность - определение и вычисление с примерами решения часть полного угла, то длина искомой дуги: Окружность - определение и вычисление с примерами решения

Пример №2

Найдите длину дуги, соответствующей центральному углу Окружность - определение и вычисление с примерами решения в окружности радиусом 15 см.

Решение: подставляя значения Окружность - определение и вычисление с примерами решения в формулу длины дуги находим: Окружность - определение и вычисление с примерами решения

Окружность и хорда

Теорема о конгруэнтных хордах

Теорема 1. Хорды, стягивающие конгруэнтные дуги окружности, конгруэнтны.

Обратная теорема 1. Дуги, стягиваемые конгруэнтными хордами окружности, конгруэнтны.

1)Если Окружность - определение и вычисление с примерами решения, то Окружность - определение и вычисление с примерами решения

2)Если Окружность - определение и вычисление с примерами решения

Окружность - определение и вычисление с примерами решения

Доказательство теоремы 1:

Окружность - определение и вычисление с примерами решения

Окружность - определение и вычисление с примерами решения

Теорема о серединном перпендикуляре хорд

Теорема 2.

Диаметр, перпендикулярный хорде, делит хорду и соответствующую дугу пополам.

Если Окружность - определение и вычисление с примерами решения

Окружность - определение и вычисление с примерами решения

Доказательство теоремы 2.

Дано: Окружность - определение и вычисление с примерами решения– центральный угол, Окружность - определение и вычисление с примерами решения

Докажите: Окружность - определение и вычисление с примерами решения

Начертите радиусы Окружность - определение и вычисление с примерами решения и Окружность - определение и вычисление с примерами решения окружности.

Окружность - определение и вычисление с примерами решения

Окружность - определение и вычисление с примерами решения

Следствие 1. Прямая, проходящая через центр окружности и перпендикулярная хорде, делит хорду и ее дугу пополам.

Следствие 2. Центр окружности расположен на серединном перпендикуляре хорды. Серединный перпендикуляр хорды проходит через центр окружности.

Пример: Найдите расстояние от центра до хорды длиной 30 единиц в окружности радиусом 17 единиц. Если Окружность - определение и вычисление с примерами решения, то Окружность - определение и вычисление с примерами решения. Из Окружность - определение и вычисление с примерами решения по теореме Пифагора имеем: Окружность - определение и вычисление с примерами решения

Окружность - определение и вычисление с примерами решения

Теорема о хордах, находящихся на одинаковом расстоянии от центра окружности

Теорема 3.

Конгруэнтные хорды окружности находятся на одинаковом расстоянии от центра окружности.

Если Окружность - определение и вычисление с примерами решения, то Окружность - определение и вычисление с примерами решения

Обратная теорема 3. Хорды, находящиеся на одинаковом расстоянии от центра окружности, конгруэнтны.

Окружность - определение и вычисление с примерами решения

Доказательство теоремы 3

Дано: Окружность с центром Окружность - определение и вычисление с примерами решения

Окружность - определение и вычисление с примерами решения

Докажите: Окружность - определение и вычисление с примерами решения

Доказательство (текстовое): Прямая, проходящая через центр окружности и перпендикулярная хорде, делит хорду и стягивающую ее дугу пополам. Окружность - определение и вычисление с примерами решения и Окружность - определение и вычисление с примерами решения – серединные перпендикуляры конгруэнтных хорд Окружность - определение и вычисление с примерами решения и Окружность - определение и вычисление с примерами решения. Окружность - определение и вычисление с примерами решения, так как они являются половиной конгруэнтных хорд. Начертим радиусы окружности Окружность - определение и вычисление с примерами решения и Окружность - определение и вычисление с примерами решения: Окружность - определение и вычисление с примерами решения. Прямоугольные треугольники, Окружность - определение и вычисление с примерами решения и Окружность - определение и вычисление с примерами решения конгруэнтны (по катету и гипотенузе). Так как Окружность - определение и вычисление с примерами решения и Окружность - определение и вычисление с примерами решения являются соответствующими сторонами данных треугольников, то они конгруэнтны: Окружность - определение и вычисление с примерами решения. Теорема доказана.

Задача. Хорды Окружность - определение и вычисление с примерами решения и Окружность - определение и вычисление с примерами решения находятся на одинаковом расстоянии от центра окружности. Окружность - определение и вычисление с примерами решения. Если радиус окружности равен 41 единице, то найдите Окружность - определение и вычисление с примерами решения.

Решение: Так как хорды Окружность - определение и вычисление с примерами решения и Окружность - определение и вычисление с примерами решения находятся на одинаковом расстоянии от центра, то они конгруэнтны: Окружность - определение и вычисление с примерами решения Окружность - определение и вычисление с примерами решения Соединим точки Окружность - определение и вычисление с примерами решения и Окружность - определение и вычисление с примерами решения с точкой Окружность - определение и вычисление с примерами решения В прямоугольном треугольнике Окружность - определение и вычисление с примерами решенияОкружность - определение и вычисление с примерами решения; Окружность - определение и вычисление с примерами решения; Окружность - определение и вычисление с примерами решения; Окружность - определение и вычисление с примерами решения

Так как Окружность - определение и вычисление с примерами решения

Окружность - определение и вычисление с примерами решения

Угол, вписанный в окружность

Угол, вершина которого лежит на окружности, а стороны пересекают окружность, называется углом вписанным в окружность. Дуга, соответствующая углу, вписанному в окружность, называется дугой, на которую опирается этот угол.

Окружность - определение и вычисление с примерами решения

Окружность - определение и вычисление с примерами решения является углом вписанным в окружность с центром Окружность - определение и вычисление с примерами решения, а Окружность - определение и вычисление с примерами решения дуга, на которую опирается этот угол. Ниже показаны три разных угла, вписанных в окружность.

Окружность - определение и вычисление с примерами решения

Угол, вписанный в окружность:

Теорема 1. Градусная мера угла, вписанного в окружность, равна половине градусной меры дуги, на которую он опирается. Окружность - определение и вычисление с примерами решения

Окружность - определение и вычисление с примерами решения

Доказательство (текстовое): Окружность - определение и вычисление с примерами решения и Окружность - определение и вычисление с примерами решения радиусы окружности и Окружность - определение и вычисление с примерами решения равнобедренный треугольник. Значит, Окружность - определение и вычисление с примерами решения Так как Окружность - определение и вычисление с примерами решения является внешним углом Окружность - определение и вычисление с примерами решения, Окружность - определение и вычисление с примерами решения Если примем, что Окружность - определение и вычисление с примерами решения, то Окружность - определение и вычисление с примерами решения Так как градусные меры центрального угла и опирающейся на него дуги равны, то Окружность - определение и вычисление с примерами решения Следовательно, Окружность - определение и вычисление с примерами решения.

Окружность - определение и вычисление с примерами решения

Следствие 1. Угол, вписанный в окружность, равен половине соответствующего центрального угла.

Следствие 2. Угол, вписанный в окружность и опирающийся на диаметр (полуокружность), является прямым углом.

Окружность - определение и вычисление с примерами решения

Конгруэнтные углы, вписанные в окружность

Следствие 3. Вписанные углы, опирающиеся на одну и ту же дугу, конгруэнтны. Окружность - определение и вычисление с примерами решения, Окружность - определение и вычисление с примерами решения.

Следствие 4. Вписанные углы, опирающиеся на конгруэнтные дуги, конгруэнтны. Если Окружность - определение и вычисление с примерами решения, то Окружность - определение и вычисление с примерами решения.

Окружность - определение и вычисление с примерами решенияОкружность - определение и вычисление с примерами решения

Касательная к окружности

Касательная. Признак касательной

Прямая, имеющая одну общую точку с окружностью, называется касательной. Теорема 1. Касательная к окружности перпендикулярна к радиусу, проведенному в точку касания.

Окружность - определение и вычисление с примерами решения

Прямая Окружность - определение и вычисление с примерами решения является касательной к окружности. Значит, Окружность - определение и вычисление с примерами решения Обратная теорема (признак касательной): Прямая, проходящая через точку окружности и перпендикулярная радиусу, проведенному в эту точку, является касательной окружности.

Прямая, касающаяся обеих окружностей, называется общей касательной этих окружностей. Окружности, касаясь друг друга изнутри или извне, могут иметь общую касательную в одной точке. Также окружности могут касаться одной касательной в разных точках.

Окружность - определение и вычисление с примерами решения

Две окружности могут иметь несколько общих касательных или вообще не иметь общих касательных.

Окружность - определение и вычисление с примерами решения

Доказательство теоремы 1. Если прямая Окружность - определение и вычисление с примерами решения – касательная к окружности, значит, она имеет единственную общую точку с окружностью. Допустим, что прямая Окружность - определение и вычисление с примерами решения не перпендикулярна радиусу Окружность - определение и вычисление с примерами решения Проведем Окружность - определение и вычисление с примерами решения и на прямой Окружность - определение и вычисление с примерами решения выделим отрезок Окружность - определение и вычисление с примерами решения Тогда Окружность - определение и вычисление с примерами решения так как Окружность - определение и вычисление с примерами решения Значит, точка Окружность - определение и вычисление с примерами решения также находится на окружности. То есть прямая Окружность - определение и вычисление с примерами решения имеет с окружностью две общие точки, что противоречит условию. Значит, Окружность - определение и вычисление с примерами решения

Окружность - определение и вычисление с примерами решения

Свойства касательных, проведенных к окружности из одной точки

Теорема 2. Отрезки касательных к окружности, проведенных из одной точки, конгруэнтны, и центр окружности находится на биссектрисе угла, образованного касательными.

Окружность - определение и вычисление с примерами решения

Окружность - определение и вычисление с примерами решения и Окружность - определение и вычисление с примерами решения касательные, проведенные из точки Окружность - определение и вычисление с примерами решения к окружности с центром Окружность - определение и вычисление с примерами решения Окружность - определение и вычисление с примерами решения

Углы, образованные секущими и касательными

Прямая, имеющая две общие точки с окружностью, называется секущей окружности.

Углы между двумя секущими

Вершина угла находится внутри окружности

Теорема. Если вершина угла, образованного двумя секущими, находится внутри окружности, то градусная мера угла равна полусумме величин дуг на которые опирается этот угол и угол вертикальный данному. Окружность - определение и вычисление с примерами решения

Окружность - определение и вычисление с примерами решенияОкружность - определение и вычисление с примерами решения

Углы между касательной и секущей

Вершина угла находится на окружности

Теорема. Если вершина угла, образованного касательной и секущей, находится на окружности, то градусная мера угла равна половине градусной меры дуги, на которую он опирается.

Окружность - определение и вычисление с примерами решения

Окружность - определение и вычисление с примерами решения

Углы, образованные касательной и секущей

Вершина угла находится вне окружности

Теорема 1.

Градусная мера угла, образованного секущей и касательной, двумя касательными, двумя секущими окружности (если вершина угла находится вне окружности), равна половине разности градусных мер дуг, находящихся между сторонами угла.

Окружность - определение и вычисление с примерами решения

Отрезки секущих и касательных

Длина отрезков, секущих окружность

Теорема 1. При пересечении двух хорд, произведение отрезков одной хорды, полученных точкой пересечения, равно произведению отрезков второй хорды.

Окружность - определение и вычисление с примерами решения Окружность - определение и вычисление с примерами решения

Теорема 2. Если из точки Окружность - определение и вычисление с примерами решения провести две прямые, пересекающие окружность соответственно в точках Окружность - определение и вычисление с примерами решения и Окружность - определение и вычисление с примерами решения, Окружность - определение и вычисление с примерами решения и Окружность - определение и вычисление с примерами решения то верно равенство Окружность - определение и вычисление с примерами решения

Окружность - определение и вычисление с примерами решения

Теорема 3. Если из точки Окружность - определение и вычисление с примерами решения проведены прямая, которая пересекает окружность в точках Окружность - определение и вычисление с примерами решения и Окружность - определение и вычисление с примерами решения и касательная к окружности в точке Окружность - определение и вычисление с примерами решения то верно равенство: Окружность - определение и вычисление с примерами решения

Окружность - определение и вычисление с примерами решения

Уравнение окружности

Используя формулу расстояния между двумя точками, можно написать уравнение окружности с радиусом Окружность - определение и вычисление с примерами решения и с центром в начале координат. Расстояние между центром окружности Окружность - определение и вычисление с примерами решения и ее любой точкой Окружность - определение и вычисление с примерами решения равно радиусу Окружность - определение и вычисление с примерами решения окружности.

Окружность - определение и вычисление с примерами решения Расстояние между двумя точками

Окружность - определение и вычисление с примерами решения Упрощение

Окружность - определение и вычисление с примерами решения Возведение обеих частей в квадрат

Окружность - определение и вычисление с примерами решения

Уравнение окружности с центром в начале координат и радиусом Окружность - определение и вычисление с примерами решения: Окружность - определение и вычисление с примерами решения

Например, уравнение окружности с центром в начале координат Окружность - определение и вычисление с примерами решения и радиусом 2 имеет вид: Окружность - определение и вычисление с примерами решения

По формуле расстояния между центром окружности Окружность - определение и вычисление с примерами решения и точки Окружность - определение и вычисление с примерами решения на окружности радиуса Окружность - определение и вычисление с примерами решения имеем Окружность - определение и вычисление с примерами решенияВозведя в квадрат обе части, получаем уравнение окружности с центром в точке Окружность - определение и вычисление с примерами решения и радиусом Окружность - определение и вычисление с примерами решения

Окружность - определение и вычисление с примерами решения

Например, уравнение окружности с центром в точке Окружность - определение и вычисление с примерами решения и радиусом 4 имеет вид: Окружность - определение и вычисление с примерами решения

Пример №3

Постройте на координатной плоскости окружность, заданную уравнением Окружность - определение и вычисление с примерами решения

Решение: Напишем уравнение в виде Окружность - определение и вычисление с примерами решения Как видно, Окружность - определение и вычисление с примерами решения

Отметим 4 точки, находящиеся на расстоянии 5 единиц от начала координат. Например, Окружность - определение и вычисление с примерами решенияОкружность - определение и вычисление с примерами решения Проведем окружность через эти точки.

Окружность - определение и вычисление с примерами решения

Пример №4

Точка Окружность - определение и вычисление с примерами решения находится на окружности, центром которой является начало координат. Напишите уравнение этой окружности.

Решение: Записав координаты точки Окружность - определение и вычисление с примерами решения в уравнении Окружность - определение и вычисление с примерами решения, получим: Окружность - определение и вычисление с примерами решения Уравнение этой окружности: Окружность - определение и вычисление с примерами решения

Пример №5

Найдем центр и радиус окружности, заданной уравнением Окружность - определение и вычисление с примерами решения

Решение: Окружность - определение и вычисление с примерами решения

Центр окружности точка Окружность - определение и вычисление с примерами решения Радиус Окружность - определение и вычисление с примерами решения

Пример №6

Мобильные телефоны работают с помощью передачи сигналов посредством спутников из одной передающей станции в другую. Компания мобильного оператора старается расположить передающую станцию так, чтобы обслуживать больше пользователей. Представим, что три больших города находятся в точках Окружность - определение и вычисление с примерами решения На координатной плоскости 1 единица равна расстоянию в 100 км. Передающая станция должна быть расположена в точке, находящейся на одинаковом расстоянии от этих городов. Напишите координаты этой точки и уравнение соответствующей окружности.

Решение: Сначала соединим эти точки и найдем точку пересечения серединных перпендикуляров сторон полученного треугольника. Эта точка Окружность - определение и вычисление с примерами решения Эта точка, являясь центром окружности, показывает месторасположение станции. Расстояние между центром и любой из заданных точек является радиусом окружности, Окружность - определение и вычисление с примерами решения

Уравнение окружности: Окружность - определение и вычисление с примерами решенияОкружность - определение и вычисление с примерами решения

Окружность - определение и вычисление с примерами решения

Заметка. Определив линейные уравнения, соответствующие серединным перпендикулярам, можно найти координаты центра окружности решением системы уравнений.

Координаты точек, находящихся на окружности, и тригонометрические отношения

Если точка Окружность - определение и вычисление с примерами решения при повороте радиуса Окружность - определение и вычисление с примерами решения вокруг точки Окружность - определение и вычисление с примерами решения против движения часовой стрелки на угол Окружность - определение и вычисление с примерами решения преобразуется в точку Окружность - определение и вычисление с примерами решения то Окружность - определение и вычисление с примерами решения

Окружность - определение и вычисление с примерами решения

Для координат точки Окружность - определение и вычисление с примерами решения соответствующей углу поворота Окружность - определение и вычисление с примерами решения на окружности, верны формулы Окружность - определение и вычисление с примерами решения В этих формулах Окружность - определение и вычисление с примерами решения – угол, отсчитываемый от положительной оси Окружность - определение и вычисление с примерами решенияпротив движения часовой стрелки. Если точка Окружность - определение и вычисление с примерами решения не находится на оси ординат, то Окружность - определение и вычисление с примерами решения.

Синусы смежных углов равны, а косинусы взаимно противоположны.

Окружность - определение и вычисление с примерами решения

Из этих формул при Окружность - определение и вычисление с примерами решения почленным делением получаем:

Окружность - определение и вычисление с примерами решения

С помощью формул, приведенных выше, вычисление синуса, косинуса, тангенса для тупого угла можно свести к вычислению синуса, косинуса, тангенса острого угла, соответственно.

Сектор и сегмент

Сектор часть круга, ограниченная центральным углом, образованным двумя радиусами и соответствующей этому углу дугой. Площадь сектора, соответствующего центральному углу, составляет ту часть площади круга, которую составляет центральный угол от полного угла.

Окружность - определение и вычисление с примерами решения

Например, часть круга, соответствующая центральному углу Окружность - определение и вычисление с примерами решения, составляет Окружность - определение и вычисление с примерами решения часть всего круга. Так как площадь круга Окружность - определение и вычисление с примерами решения, то площадь этого сектора будет Окружность - определение и вычисление с примерами решения Сегмент часть круга, ограниченная хордой и соответствующей дугой.

Окружность - определение и вычисление с примерами решения

Окружность - определение и вычисление с примерами решения

Площадь сектора

Площадь сектора: Окружность - определение и вычисление с примерами решения

Площадь сегмента: Окружность - определение и вычисление с примерами решения

Указание: При нахождении площади сегмента, соответствующего большей дуге, к площади соответствующего сектора прибавляется площадь Окружность - определение и вычисление с примерами решения

Окружность - определение и вычисление с примерами решения

  • Эллипс
  • Гипербола
  • Парабола
  • Многогранник
  • Сфера в геометрии
  • Шар в геометрии
  • Правильные многогранники в геометрии
  • Многогранники

Уравнение окружности и прямой — как между собой связаны

Определение

Окружностью называют замкнутую плоскую кривую, состоящую из всех точек на плоскости, которые равноудалены от заданной точки, лежащей в аналогичной плоскости, что и кривая. Данная точка является центром окружности.

Записать уравнение окружности можно, используя известные свойства геометрической фигуры:

  1. Любые точки окружности равноудалены от ее центра. Расстояние является радиусом.
  2. Зная координаты точек, можно записать формулу для определения расстояния между ними: (|AB|=sqrt{(x_{A}−x_{B})^{2}+(y_{A}−y_{B})^{2}}). Таким образом, квадрат расстояния равен (AB^{2}=(x_{A}−x_{B})^{2}+(y_{A}−y_{B})).

Уравнение для описания окружности, которая имеет радиус R, а ее центр совпадает с точкой (O(x_0;y_0)), имеет вид:

Осторожно! Если преподаватель обнаружит плагиат в работе, не избежать крупных проблем (вплоть до отчисления). Если нет возможности написать самому, закажите тут.

((x-x_0)^2+(y-y_0)^2 = R^2)

В том случае, когда центр окружности лежит в точке начала координат, уравнение окружности приобретает упрощенную форму:

(x^2+y^2=R^2)

Предположим, что существует уравнение некой окружности:

((x-1)^2+(y+2)^2=4)

Центром данной геометрической фигуры является точка C(1;-2). Радиус окружности равен R=2.

Уравнение окружности и прямой

Источник: itest.kz

Определение

Прямая представляет собой линию, которая не имеет начала и не имеет конца, и при этом не искривляется.

Каждую прямую на плоскости можно представить в виде уравнения прямой первой степени. Формула имеет следующий вид:

Ax + By + C = 0

В данном случае А и В не могут одновременно принимать нулевые значения.

С учетом углового коэффициента общее уравнение прямой при значении b, не равном нулю, записывают следующим образом:

y = kx + b

Здесь k является угловым коэффициентом, который можно посчитать, как тангенс угла между рассматриваемой прямой и положительным направлением оси ОХ.

Рассмотрим случай, когда прямая пересекает оси ОХ и ОУ в точках, имеющих следующие координаты:

((a; 0) и (0; b))

Найти рассматриваемую прямую можно с помощью уравнения прямой в отрезках:

(frac{x}{a}+frac{y}{b}=1)

Предположим, что прямая пересекает пару точек (A(x_1;y_1)) и (B(x_2; y_2),) удовлетворяющих данным условиям:

(x_1 ≠ x_2 и y_1 ≠ y_2)

В таком случае уравнение прямой рассчитывают по формуле:

(frac{x-x_1}{x_2-x_1}=frac{y-y_1}{y_2-y_1})

Например, существует некая прямая в прямоугольной системе координат. Данная прямая пересекает пару точек:

(M_1(1;1)) и (M_2(4;2))

Уравнение прямой, проходящей через две обозначенные точки, имеет вид:

(frac{x-1}{4-1}=frac{y-1}{2-1} Leftrightarrow frac{x-1}3=frac{y-1}1)

Преобразуем полученное уравнение:

(frac{x-1}3=frac{y-1}1 Leftrightarrow 1cdot (x-1)=3cdot(y-1) Leftrightarrow x-3y+2=0)

Как составить уравнение прямой, проходящей через центр окружности

Применяя записанные ранее уравнения для прямой и окружности, можно найти уравнение прямой, которая проходит через центр окружности:

(x^2+y^2-6x-8y+16=0)

(x^2+y^2+10x+4y+13=0)

В первую очередь следует рассчитать радиусы и определить координаты центров окружностей:

(x^2 + y^2 – 6x – 8y + 16 = 0)

((x^2 – 6x + 9) + (y^2 – 8y + 16) = 9)

((x – 3)^2 + (y – 4)^2 = 3^2)

(r1 = 3)

(O_1(3;4))

(x^2 + y^2 + 10x + 4y + 13 = 0)

((x^2 + 10x + 25) + (y^2 + 4y + 4) = 16)

((x + 5)^2 + (y + 2)^2 = 4^2)

(r2 = 4)

(O_2(-5;-2))

Уравнение прямой, проходящей через точки (O_1(3;4)) и (O_2(-5;-2)), можно записать следующим образом:

(frac{(x – 3)}{(3 + 5)}=frac{(y – 4)}{(4 + 2)})

(frac{(x – 3)}{8}=frac{(y – 4)}{6})

(3(x – 3) = 4(y – 4))

(3x – 9 = 4y – 16)

(4y = 3x + 7)

(y = frac{3x}{4}+frac{7}{4})

В результате уравнение прямой принимает такой вид:

(y = frac{3x}{4}+frac{7}{4})

Решение задач по теме, примеры

Задача 1

Требуется определить, где находится центр окружности, и чему равен ее радиус. Уравнение окружности:

(x^{2}+(y-3)^{2}=49)

Необходимо представить график окружности в осях абсцисс и ординат.

Решение

Каноническое уравнение окружности имеет вид:

((x-h)^{2}+(y-k)^{2}=r^{2})

В данном случае, центр соответствует О:(h, k), а радиус окружности равен r.

По условиям задачи: (x^{2}+(y-3)^{2}=49)

Таким образом:

(O:(0, 3)qquad r=7)

График:

График

Источник: www.math10.com

Ответ: центр совпадает с точкой, имеющей координаты ((0, 3)qquad r=7)

Задача 2

Нужно определить, в какой точке расположен центр окружности, и чему равен ее радиус. Уравнение окружности:

((x+2)^{2}+y^{2}=36)

Решение

В первую очередь следует записать каноническое уравнение окружности:

((x-h)^{2}+(y-k)^{2}=r^{2})

В данном случае, центр окружности совпадает с точкой, имеющей координаты (h, k), а ее радиус равен r.

Согласно условиям задачи:

((x+2)^{2}+y^{2}=36)

Таким образом:

(O:(-2, 0)qquad r=6)

График:

График

Источник: www.math10.com

Ответ: центр окружности совпадает с точкой (-2, 0), а ее радиус равен 6.

Задача 3

Требуется преобразовать уравнение в сумму квадратов для расчета радиуса и определения центра окружности:

(2x^{2}+2y^{2}+4x+16y+1=0)

Решение

(2x^{2}+2y^{2}+4x+16y+1=0Longrightarrow x^{2}+y^{2}+2x+8y+frac{1}{2}=0)

В таком случае:

(left(x+1right)^{2}+left( y+4right)^{2}-1-16+frac{1}{2}=0Longrightarrow left(x+1right) ^{2}+left(y+4right) ^{2}=frac{33}{2})

В результате расчетов получим:

центр находится в (-1,-4)

радиус равен (sqrt{frac{33}{2}})

Ответ: (O (-1,-4) и r=sqrt{frac{33}{2}})

Задача 4

Центр окружности совпадает с точкой (4,-5). Необходимо записать уравнение данной окружности, учитывая, что она проходит через точку с координатами (7,-3).

Решение

Каноническое уравнение окружности:

((x-h)^{2}+(y-k)^{2}=r^{2})

Центр находится в точке:

(4,-5)

Радиус соответствует r.

Таким образом:

((x-4)^{2}+(y+5)^{2}=r^{2}Longrightarrow r=sqrt{(x-4)^{2}+(y+5)^{2}})

Учитывая, что окружность проходит через точку (7,-3), запишем:

(r=sqrt{left(3right)^{2}+left(2right)^{2}}=sqrt{13})

Ответ: уравнение окружности имеет вид ((x-4)^{2}+(y+5)^{2}=13)

Задача 5

Необходимо записать уравнение окружности, центр которой соответствует точке O(2,-1), касающейся прямой r:y=x+2. Требуется начертить график.

Решение

Зная, что радиус r является расстоянием, на которое удалены точка O:(h, k) и прямая y-x-2=0, запишем:

(O:(2,-1))

(r=d(O,L)=frac{leftvert -2-1-2rightvert }{sqrt{1^{2}+left( -1right) ^{2}}}=frac{5}{sqrt{2}})

Получим уравнение окружности:

((x-h)^{2}+(y-k)^{2}=r^{2}Longrightarrow (x-2)^{2}+(y+1)^{2}=frac{25}{2})

График:

График

Источник: www.math10.com

Ответ: ((x-2)^{2}+(y+1)^{2}=frac{9}{5})

Задача 6

Требуется записать уравнение, описывающее прямую с угловым коэффициентом (k= frac{3}{2}). Искомая прямая пересекает точку А (3;2).

Решение

В первую очередь следует записать стандартную формулу:

(y-y_{0}=k(x-x_{0}))

Применительно к условиям задачи, получим:

(y-(-2)= frac{3}{2} (x-3))

(y+2= frac{3}{2}х-frac{9}{2})

(y= frac{3}{2}х-frac{13}{2})

Ответ: (y= frac{3}{2}х-frac{13}{2})

Для построения
окружности необходимо знать центр
окружности и радиус.

Центр окружности
нам задан, а радиус окружности – это
расстояние от центра к касательной.

Найдем расстояние
от точки M
до прямой L.

,
где

A = 2, B = 3, C = 1

Составим уравнение
окружности

Ответ:

10.2. Найти площадь треугольника, две вершины которого находятся в фокусах данного эллипса, а третья – в центре окружности.

Для нахождения
площади треугольника необходимо найти
его три точки. Эти точки можно получить,
если привести уравнения кривых к
каноническому виду.

По одному только
виду трудно сразу сказать, к какому типу
кривой принадлежит уравнение. Сначала
его необходимо привести к каноническому
виду.

–уравнение
окружности

–одну точку нашли

Приведём к
каноническому виду уравнение

–уравнение эллипса

Найдём фокусное
расстояние

Так как параметр
,
то эллипс расположен вдоль оси OY:

Мы получили три
точки треугольника, найдём его площадь

,
,.

Ответ: 10.

Примечание.
Всегда нужно смотреть на соотношение
коэффициентов a и b. Если a > b, то эллипс
(гипербола), вытянута по горизонтали и
фокусы, соответственно, на горизонтальной
прямой. Если a < b, то вытянута по
вертикали.

10.3. Найти уравнения гиперболы, вершины которой находятся в фокусах, а фокусы – в вершинах данного эллипса.

Приведём уравнение
к каноническому виду

,
.

Найдём фокусы
эллипса

Теперь рассмотрим
для гиперболы

,

Найдём параметр
b
гиперболы

Составим уравнение
гиперболы

Ответ:

10.4. Составить
каноническое уравнение параболы, фокус
которой лежит на оси OX слева от начала
координат, а параметр P равен расстоянию
от фокуса данной гиперболы до асимптоты.

Приведём к
каноническому виду уравнение гиперболы

Получим:

Гипербола имеет
две асимптоты, но расстояние от любого
фокуса до любой из них одинаково.

Асимптота проходит
через начало координат и точку (a,
b)

Составим уравнение
прямой

Составим уравнение
параболы, следует также учесть что, по
заданию фокус лежит на оси ОХ, слева от
начала координат.

Ответ:
.

10.5. Составить
каноническое уравнение параболы, фокусы
которой совпадают с фокусами данного
эллипса. Написать уравнение директрисы.

Приведём к
каноническому виду

Фокус параболы
находится

Отсюда находим
параметр P.

Составим уравнение
параболы

Составим уравнение
директрисы. Директриса – это прямая, в
данном случае вертикальная.

Уравнение директрисы

Ответ:
,

  1. Полярная система координат

11.1. Построить
в полярной системе координат кривую.
Написать ее уравнение в декартовых
координатах.

Составим таблицу
соответствий и построим график данной
функции

0

15

30

45

60

75

90

105

120

135

150

165

180

1

0.5

0.13

0

0.13

0.5

1

1.5

1.87

2

1.87

1.5

1

Это
график кардиоиды.

Напишем уравнение
функции в декартовых координатах.

Если полюс полярной
системы координат находится в начале
прямоугольной системы координат, а
положительная ось ОХ совпадает с полярной
осью, а ось ОУ перпендикулярна ОХ, то
зависимость между координатами следующая:

–в заданной
функции содержится синус, который можем
выразить из формулы
и подставить в исходную функцию:.
Заменими
получим функцию, заданную в полярной
системе координат в неявном виде.

Ответ:
.

0

Соседние файлы в предмете [НЕСОРТИРОВАННОЕ]

  • #
  • #
  • #
  • #
  • #
  • #
  • #
  • #
  • #
  • #

    03.03.2016959.94 Кб5PT.pdf

  • #

Добавить комментарий