Как составить уравнение прямой проходящей через центр окружности

Уравнение окружности и прямой — как между собой связаны

Определение

Окружностью называют замкнутую плоскую кривую, состоящую из всех точек на плоскости, которые равноудалены от заданной точки, лежащей в аналогичной плоскости, что и кривая. Данная точка является центром окружности.

Записать уравнение окружности можно, используя известные свойства геометрической фигуры:

  1. Любые точки окружности равноудалены от ее центра. Расстояние является радиусом.
  2. Зная координаты точек, можно записать формулу для определения расстояния между ними: (|AB|=sqrt{(x_{A}−x_{B})^{2}+(y_{A}−y_{B})^{2}}). Таким образом, квадрат расстояния равен (AB^{2}=(x_{A}−x_{B})^{2}+(y_{A}−y_{B})).

Уравнение для описания окружности, которая имеет радиус R, а ее центр совпадает с точкой (O(x_0;y_0)), имеет вид:

Осторожно! Если преподаватель обнаружит плагиат в работе, не избежать крупных проблем (вплоть до отчисления). Если нет возможности написать самому, закажите тут.

((x-x_0)^2+(y-y_0)^2 = R^2)

В том случае, когда центр окружности лежит в точке начала координат, уравнение окружности приобретает упрощенную форму:

(x^2+y^2=R^2)

Предположим, что существует уравнение некой окружности:

((x-1)^2+(y+2)^2=4)

Центром данной геометрической фигуры является точка C(1;-2). Радиус окружности равен R=2.

Уравнение окружности и прямой

Источник: itest.kz

Определение

Прямая представляет собой линию, которая не имеет начала и не имеет конца, и при этом не искривляется.

Каждую прямую на плоскости можно представить в виде уравнения прямой первой степени. Формула имеет следующий вид:

Ax + By + C = 0

В данном случае А и В не могут одновременно принимать нулевые значения.

С учетом углового коэффициента общее уравнение прямой при значении b, не равном нулю, записывают следующим образом:

y = kx + b

Здесь k является угловым коэффициентом, который можно посчитать, как тангенс угла между рассматриваемой прямой и положительным направлением оси ОХ.

Рассмотрим случай, когда прямая пересекает оси ОХ и ОУ в точках, имеющих следующие координаты:

((a; 0) и (0; b))

Найти рассматриваемую прямую можно с помощью уравнения прямой в отрезках:

(frac{x}{a}+frac{y}{b}=1)

Предположим, что прямая пересекает пару точек (A(x_1;y_1)) и (B(x_2; y_2),) удовлетворяющих данным условиям:

(x_1 ≠ x_2 и y_1 ≠ y_2)

В таком случае уравнение прямой рассчитывают по формуле:

(frac{x-x_1}{x_2-x_1}=frac{y-y_1}{y_2-y_1})

Например, существует некая прямая в прямоугольной системе координат. Данная прямая пересекает пару точек:

(M_1(1;1)) и (M_2(4;2))

Уравнение прямой, проходящей через две обозначенные точки, имеет вид:

(frac{x-1}{4-1}=frac{y-1}{2-1} Leftrightarrow frac{x-1}3=frac{y-1}1)

Преобразуем полученное уравнение:

(frac{x-1}3=frac{y-1}1 Leftrightarrow 1cdot (x-1)=3cdot(y-1) Leftrightarrow x-3y+2=0)

Как составить уравнение прямой, проходящей через центр окружности

Применяя записанные ранее уравнения для прямой и окружности, можно найти уравнение прямой, которая проходит через центр окружности:

(x^2+y^2-6x-8y+16=0)

(x^2+y^2+10x+4y+13=0)

В первую очередь следует рассчитать радиусы и определить координаты центров окружностей:

(x^2 + y^2 – 6x – 8y + 16 = 0)

((x^2 – 6x + 9) + (y^2 – 8y + 16) = 9)

((x – 3)^2 + (y – 4)^2 = 3^2)

(r1 = 3)

(O_1(3;4))

(x^2 + y^2 + 10x + 4y + 13 = 0)

((x^2 + 10x + 25) + (y^2 + 4y + 4) = 16)

((x + 5)^2 + (y + 2)^2 = 4^2)

(r2 = 4)

(O_2(-5;-2))

Уравнение прямой, проходящей через точки (O_1(3;4)) и (O_2(-5;-2)), можно записать следующим образом:

(frac{(x – 3)}{(3 + 5)}=frac{(y – 4)}{(4 + 2)})

(frac{(x – 3)}{8}=frac{(y – 4)}{6})

(3(x – 3) = 4(y – 4))

(3x – 9 = 4y – 16)

(4y = 3x + 7)

(y = frac{3x}{4}+frac{7}{4})

В результате уравнение прямой принимает такой вид:

(y = frac{3x}{4}+frac{7}{4})

Решение задач по теме, примеры

Задача 1

Требуется определить, где находится центр окружности, и чему равен ее радиус. Уравнение окружности:

(x^{2}+(y-3)^{2}=49)

Необходимо представить график окружности в осях абсцисс и ординат.

Решение

Каноническое уравнение окружности имеет вид:

((x-h)^{2}+(y-k)^{2}=r^{2})

В данном случае, центр соответствует О:(h, k), а радиус окружности равен r.

По условиям задачи: (x^{2}+(y-3)^{2}=49)

Таким образом:

(O:(0, 3)qquad r=7)

График:

График

Источник: www.math10.com

Ответ: центр совпадает с точкой, имеющей координаты ((0, 3)qquad r=7)

Задача 2

Нужно определить, в какой точке расположен центр окружности, и чему равен ее радиус. Уравнение окружности:

((x+2)^{2}+y^{2}=36)

Решение

В первую очередь следует записать каноническое уравнение окружности:

((x-h)^{2}+(y-k)^{2}=r^{2})

В данном случае, центр окружности совпадает с точкой, имеющей координаты (h, k), а ее радиус равен r.

Согласно условиям задачи:

((x+2)^{2}+y^{2}=36)

Таким образом:

(O:(-2, 0)qquad r=6)

График:

График

Источник: www.math10.com

Ответ: центр окружности совпадает с точкой (-2, 0), а ее радиус равен 6.

Задача 3

Требуется преобразовать уравнение в сумму квадратов для расчета радиуса и определения центра окружности:

(2x^{2}+2y^{2}+4x+16y+1=0)

Решение

(2x^{2}+2y^{2}+4x+16y+1=0Longrightarrow x^{2}+y^{2}+2x+8y+frac{1}{2}=0)

В таком случае:

(left(x+1right)^{2}+left( y+4right)^{2}-1-16+frac{1}{2}=0Longrightarrow left(x+1right) ^{2}+left(y+4right) ^{2}=frac{33}{2})

В результате расчетов получим:

центр находится в (-1,-4)

радиус равен (sqrt{frac{33}{2}})

Ответ: (O (-1,-4) и r=sqrt{frac{33}{2}})

Задача 4

Центр окружности совпадает с точкой (4,-5). Необходимо записать уравнение данной окружности, учитывая, что она проходит через точку с координатами (7,-3).

Решение

Каноническое уравнение окружности:

((x-h)^{2}+(y-k)^{2}=r^{2})

Центр находится в точке:

(4,-5)

Радиус соответствует r.

Таким образом:

((x-4)^{2}+(y+5)^{2}=r^{2}Longrightarrow r=sqrt{(x-4)^{2}+(y+5)^{2}})

Учитывая, что окружность проходит через точку (7,-3), запишем:

(r=sqrt{left(3right)^{2}+left(2right)^{2}}=sqrt{13})

Ответ: уравнение окружности имеет вид ((x-4)^{2}+(y+5)^{2}=13)

Задача 5

Необходимо записать уравнение окружности, центр которой соответствует точке O(2,-1), касающейся прямой r:y=x+2. Требуется начертить график.

Решение

Зная, что радиус r является расстоянием, на которое удалены точка O:(h, k) и прямая y-x-2=0, запишем:

(O:(2,-1))

(r=d(O,L)=frac{leftvert -2-1-2rightvert }{sqrt{1^{2}+left( -1right) ^{2}}}=frac{5}{sqrt{2}})

Получим уравнение окружности:

((x-h)^{2}+(y-k)^{2}=r^{2}Longrightarrow (x-2)^{2}+(y+1)^{2}=frac{25}{2})

График:

График

Источник: www.math10.com

Ответ: ((x-2)^{2}+(y+1)^{2}=frac{9}{5})

Задача 6

Требуется записать уравнение, описывающее прямую с угловым коэффициентом (k= frac{3}{2}). Искомая прямая пересекает точку А (3;2).

Решение

В первую очередь следует записать стандартную формулу:

(y-y_{0}=k(x-x_{0}))

Применительно к условиям задачи, получим:

(y-(-2)= frac{3}{2} (x-3))

(y+2= frac{3}{2}х-frac{9}{2})

(y= frac{3}{2}х-frac{13}{2})

Ответ: (y= frac{3}{2}х-frac{13}{2})

Алексей М.

Мастер

(1094)


11 лет назад

решается так:
ищем центры окружностей:
1) x^2-8x+16 + y^2-4y+4 -9 =0
2) x^2+4x+4 +y^2+12y+36 -36 =0
1) (x-4)^2 +(y-2)^2 =3
2) (x+2)^2+(y+6)^2=6
значит, центр первой окружности (4,2)
второй окружности (-2,-6)
далее ищем уравнение прямой, идущей через эти точки
y=ax+b
Система уравнений
2=4a+b, b=2-4a
-6=-2a+b, b=-6+2a
2-4a=-6+2a
8=6a, a=4/3
b=2-16/3
b=-10/3
y=4/3x-10/3
3y=4x-10
или 4x-3y-10=0

Вика КрыжановскаяПрофи (807)

11 лет назад

http://otvet.mail.ru/question/64858911/

Решение задач по темам “Уравнение окружности” и “Уравнение прямой”

Этот видеоурок доступен по абонементу

У вас уже есть абонемент? Войти

На прошлых уроках мы вывели уравнение окружности и решили некоторые задачи на уравнение окружности, вывели уравнение прямой и решили соответствующие задачи. На этом уроке мы продолжим решение задач на уравнение окружности и уравнение прямой.

Уравнение прямой проходящей через центр окружности

Уравнение окружности и прямой

Обращаем Ваше внимание, что в соответствии с Федеральным законом N 273-ФЗ «Об образовании в Российской Федерации» в организациях, осуществляющих образовательную деятельность, организовывается обучение и воспитание обучающихся с ОВЗ как совместно с другими обучающимися, так и в отдельных классах или группах.

«Управление общеобразовательной организацией:
новые тенденции и современные технологии»

Свидетельство и скидка на обучение каждому участнику

Описание презентации по отдельным слайдам:

ТЕМА: «Уравнение окружности и прямой» Цели урока: Повторить уравнение окружности и прямой. Показать применение уравнений окружности и прямой при решении задач. Совершенствование навыков решения задач методом координат.

1. Как называется геометрическая фигура, состоящая из множества всех точек, равноудаленных от данной точки? Математический диктант Проверить 1. Окружность

2. Как называется хорда, проходящая через центр окружности? Проверить 2. Диаметр

3. Как называется отрезок, соединяющий центр окружности с точкой на окружности? Проверить 3. Радиус

4. Как называется геометрическая фигура, состоящая из множества всех точек плоскости, находящихся от данной точки на расстоянии, не превышающем данного? Проверить 4. Круг

5. Пересекаются ли окружности с центрами А и В, если АВ = 10 см, а радиусы равны 5 см, и 6 см? Проверить 5. Пересекаются

6. Расстояние от центра окружности до точки А равно d, а радиус окружности равен r. Сравните d и r, если точка А лежит вне круга, ограниченного данной окружностью? Проверить 6. d > r

7. Расстояние от центра окружности до точки В равно m, а радиус окружности равен r. Сравните m и r, если точка B лежит внутри круга, ограниченного данной окружностью? Проверить 7. m (0 – 1)2 + (0 + 3)2 = 9 > (0 – 1)2 + (1 + 3)2 = 9 > x

Дана окружность Определите, какие из точек А(-4; 3), В(5; 1), С(-5; 4), D(10; 5) лежат: а) на окружности; б) внутри круга, ограниченного данной окружностью; в) вне круга, ограниченного данной окружностью. (x – 4 )2 + (y + 3)2 = 100 (– 4 – 4)2 + (3 + 3)2 > 100 (5 – 4)2 + (1 + 3)2 100 (10 – 4)2 + (5 + 3)2 = 100

Найдите множество точек, удаленных от окружности на расстояние 3. x 2 + y 2 = 16 x y x 2 + y 2 = 49 x 2 + y 2 = 1

(x + 5)2 + (y – 5)2 = 25 Центр? Радиус? O1(-5;5) r = 5 x y A O O1 450 5 5

Центр? Радиус? x y O1 O E 300 На чертеже расстояние ОО1= , ОЕ – касательная к окружности. EOF = 600. Написать уравнение окружности. ОЕ = ОF, отрезки касательных 6

Домашнее задание п. 93 — 95 № 972(б), 973, 978 (а)

Курс повышения квалификации

Дистанционное обучение как современный формат преподавания

  • Сейчас обучается 940 человек из 80 регионов

Курс повышения квалификации

Методика обучения математике в основной и средней школе в условиях реализации ФГОС ОО

  • Сейчас обучается 318 человек из 70 регионов

Курс профессиональной переподготовки

Математика: теория и методика преподавания в образовательной организации

  • Сейчас обучается 695 человек из 75 регионов

Ищем педагогов в команду «Инфоурок»

Найдите материал к любому уроку, указав свой предмет (категорию), класс, учебник и тему:

5 479 367 материалов в базе

Материал подходит для УМК

«Геометрия», Атанасян Л.С., Бутузов В.Ф., Кадомцев С.Б. и др.

§ 3. Уравнения окружности и прямой

Дистанционные курсы для педагогов

Другие материалы

Вам будут интересны эти курсы:

Оставьте свой комментарий

Авторизуйтесь, чтобы задавать вопросы.

Добавить в избранное

  • 07.12.2020 927 —> —> —> —>
  • PPTX 3 мбайт —> —>
  • Оцените материал:

Настоящий материал опубликован пользователем Малышок Елена Александровна. Инфоурок является информационным посредником и предоставляет пользователям возможность размещать на сайте методические материалы. Всю ответственность за опубликованные материалы, содержащиеся в них сведения, а также за соблюдение авторских прав несут пользователи, загрузившие материал на сайт

Если Вы считаете, что материал нарушает авторские права либо по каким-то другим причинам должен быть удален с сайта, Вы можете оставить жалобу на материал.

Автор материала

  • На проекте: 8 лет и 1 месяц
  • Подписчики: 1
  • Всего просмотров: 33216
  • Всего материалов: 28

Московский институт профессиональной
переподготовки и повышения
квалификации педагогов

Дистанционные курсы
для педагогов

548 курсов от 690 рублей

Выбрать курс со скидкой

Выдаём документы
установленного образца!

Учителя о ЕГЭ: секреты успешной подготовки

Время чтения: 11 минут

В России могут создать комиссию по поддержке одаренных детей

Время чтения: 1 минута

В Минпросвещения рассказали о формате обучения школьников после праздников

Время чтения: 1 минута

В России утвердили новые правила аккредитации образовательных учреждений

Время чтения: 1 минута

В Роспотребнадзоре заявили о широком распространении COVID-19 среди детей

Время чтения: 1 минута

Переводить ЕГЭ по математике, физике и химии в компьютерный формат пока не планируется

Время чтения: 2 минуты

В местах сдачи ЕГЭ будут применены антиковидные меры

Время чтения: 1 минута

Подарочные сертификаты

Ответственность за разрешение любых спорных моментов, касающихся самих материалов и их содержания, берут на себя пользователи, разместившие материал на сайте. Однако администрация сайта готова оказать всяческую поддержку в решении любых вопросов, связанных с работой и содержанием сайта. Если Вы заметили, что на данном сайте незаконно используются материалы, сообщите об этом администрации сайта через форму обратной связи.

Все материалы, размещенные на сайте, созданы авторами сайта либо размещены пользователями сайта и представлены на сайте исключительно для ознакомления. Авторские права на материалы принадлежат их законным авторам. Частичное или полное копирование материалов сайта без письменного разрешения администрации сайта запрещено! Мнение администрации может не совпадать с точкой зрения авторов.

Решение задач по темам «Уравнение окружности» и «Уравнение прямой»

Этот видеоурок доступен по абонементу

У вас уже есть абонемент? Войти

На прошлых уроках мы вывели уравнение окружности и решили некоторые задачи на уравнение окружности, вывели уравнение прямой и решили соответствующие задачи. На этом уроке мы продолжим решение задач на уравнение окружности и уравнение прямой.

помогите составить уравнение прямой, проходящей через центр окружности

x2 + y2 + 4x − 2y − 20 = 0 параллельно прямой x − 2y + 3 = 0.
Сделать чертеж.

Ход решения
1) определяем координаты центра окружности, для чего приводим уравнение окружности x2 + y2 + 4x − 2y − 20 = 0 к каноническому виду.
2) определяем угловой коэффициент «к» прямой x − 2y + 3 = 0
3) составляем уравнение прямой проходящей через точку (центр окружности) и имеющую угловой коэффициент «к»

Составьте уравнение прямой, которая параллельна прямой у = 5х – 9 и проходит через центр окружности х2 + у2 – 6х + 2у + 6 = 0,

Ваш ответ

решение вопроса

Похожие вопросы

  • Все категории
  • экономические 43,277
  • гуманитарные 33,618
  • юридические 17,900
  • школьный раздел 606,937
  • разное 16,829

Популярное на сайте:

Как быстро выучить стихотворение наизусть? Запоминание стихов является стандартным заданием во многих школах.

Как научится читать по диагонали? Скорость чтения зависит от скорости восприятия каждого отдельного слова в тексте.

Как быстро и эффективно исправить почерк? Люди часто предполагают, что каллиграфия и почерк являются синонимами, но это не так.

Как научится говорить грамотно и правильно? Общение на хорошем, уверенном и естественном русском языке является достижимой целью.

[spoiler title=”источники:”]

http://b4.cooksy.ru/articles/uravnenie-pryamoy-prohodyaschey-cherez-tsentr-okruzhnosti

http://www.soloby.ru/1107024/%D1%81%D0%BE%D1%81%D1%82%D0%B0%D0%B2%D1%8C%D1%82%D0%B5-%D1%83%D1%80%D0%B0%D0%B2%D0%BD%D0%B5%D0%BD%D0%B8%D0%B5-%D0%BA%D0%BE%D1%82%D0%BE%D1%80%D0%B0%D1%8F-%D0%BF%D0%B0%D1%80%D0%B0%D0%BB%D0%BB%D0%B5%D0%BB%D1%8C%D0%BD%D0%B0-%D0%BF%D1%80%D0%BE%D1%85%D0%BE%D0%B4%D0%B8%D1%82-%D0%BE%D0%BA%D1%80%D1%83%D0%B6%D0%BD%D0%BE%D1%81%D1%82%D0%B8

[/spoiler]

Решение задач по темам «Уравнение окружности» и «Уравнение прямой»

Этот видеоурок доступен по абонементу

У вас уже есть абонемент? Войти

На прошлых уроках мы вывели уравнение окружности и решили некоторые задачи на уравнение окружности, вывели уравнение прямой и решили соответствующие задачи. На этом уроке мы продолжим решение задач на уравнение окружности и уравнение прямой.

помогите составить уравнение прямой, проходящей через центр окружности

x2 + y2 + 4x − 2y − 20 = 0 параллельно прямой x − 2y + 3 = 0.
Сделать чертеж.

Ход решения
1) определяем координаты центра окружности, для чего приводим уравнение окружности x2 + y2 + 4x − 2y − 20 = 0 к каноническому виду.
2) определяем угловой коэффициент «к» прямой x − 2y + 3 = 0
3) составляем уравнение прямой проходящей через точку (центр окружности) и имеющую угловой коэффициент «к»

Геометрия

План урока:

Уравнение линии в координатах

Если какое-то уравнение содержит две переменные – х и у, то какие-то пары значений этих чисел будут являться его решением, а какие-то нет. Однако каждой такой паре чисел можно сопоставить точку на координатной плоскости. Все вместе такие точки могут образовать линию, которую можно обозначить буквой L. В таком случае исходное уравнение называют уравнением линии L.

Мы уже рассматривали некоторые уравнения линий на плоскости, когда изучали графики функций. Если некоторую функцию у = у(х) рассматривать как уравнение, то тогда график функции у(х) будет той самой линией, которая задается уравнением. Например, парабола может быть задана уравнением у = х 2 .

Однако уравнение линии не обязательно выглядит как функция. Наиболее простой задачей является определение факта, принадлежит ли та или иная точка той линии, которая задана уравнением.

Задание. Какие из точек А (2;1), В (3; 2), С (– 2; 5) и D(0; 0) принадлежат линии, заданной уравнением:

Решение. Надо просто подставить координаты точек в уравнение и посмотреть, превратится ли оно при этом в верное равенство. Сначала подставляем точку А (2; 1):

Получилось верное равенство, значит, А принадлежит заданной линии. Теперь подставляем координаты В (3; 2):

Равенство неверное, следовательно, В на заданной линии не лежит. Проверяем третью точку С (– 2; 5):

Получили, что и С не является частью линии. Проверяем последнюю точку D (0; 0):

Справедливость равенства означает, что D принадлежит линии.

Использование координат и уравнений линии порождает две обратные друг другу задачи:

1) по заранее заданному уравнению определить геометрический вид линии;

2) для заданной геометрической фигуры, построенной на координатной плоскости, найти уравнение линии.

Геометрия занимается в первую очередь решением второй задачи. Первая же задача рассматривается по большей части в курсе алгебры при изучении графиков функций.

Уравнение окружности

Попытаемся составить уравнение окружности, про которую нам известен ее радиус (обозначим его буквой r) и координаты центра окруж-ти(х0; у0). Пусть некоторая точка М с координатами (х; у) лежит на окруж-ти. Тогда, по определению окруж-ти, расстояние между С и М равно радиусу r:

Но расстояние между точками М и С может быть вычислено по формуле

Если же точка М НЕ лежит на окруж-ти, то длина отрезка МС не будет равна r, и потому координаты М не будут удовлетворять уравнению (1). Получается, что (1) как раз и является уравнением окруж-ти.

Задание. Составьте уравнение окружности, имеющей радиус 5, если ее центр находится в точке (6; 7), и проверьте, лежат на ней точки H(2; 10)и Р(3; 8).

Решение. Сначала запишем уравнение окруж-ти в общем виде

Это и есть уравнение окруж-ти. При желании можно раскрыть скобки в правой части, но делать это необязательно. Теперь будем подставлять в полученное уравнение координаты точек Н и Р:

Проверка показала, что Н находится на окруж-ти, а Р – нет.

Задание. Начертите окружность, заданную уравнением

Именно эти значения и являются параметрами окруж-ти, которые нужны нам для ее построения. Ее центр находится в точке (х0; у0), то есть в (1; – 2), радиус равен r, то есть 2. В итоге выглядеть она будет так:

Особый случай представляет окруж-ть, центр которой находится в начале координат, то есть в точке (0; 0). В этом случае параметры x0 и y0 окруж-ти равны нулю, и уравнение

Например, окруж-ть с радиусом 4, если ее центр совпадает с началом координат, описывается уравнением:

Если при подстановке координат точки в уравнение получилось неверное равенство, то возможны два случая: либо точка находится внутри окруж-ти, либо она находится вне нее. Заметим, что в уравнении окруж-ти

левая часть представляет собой квадрат расстояния между точкой (х; у) и центром окруж-ти (х0; у0). Если оно больше квадрата радиуса, то точка находится вне окруж-ти, а если меньше – то внутри нее.

Задание. Определите для точек M(3; 4), N(2; 3), F(4; 4), лежат ли они на окруж-ти

внутри нее или за пределами окруж-ти.

Решение.Снова подставляем координаты точек в уравнение окруж-ти:

Это ошибочное равенство, ведь в реальности левая часть больше:

Это значит, что F(4; 4) лежит вне окруж-ти. Убедиться в правильности сделанных выводов можно, построив заданную окруж-ть и отметив точки M, N и F:

Рассмотрим несколько более сложных задач по данной теме.

Задание.Запишите уравнение окружности с центром С(– 4; 2), и окруж-ть проходит через точку А(0; 5).

Решение. В данном случае радиус окруж-ти явно не указан, и его надо найти. Подставим в уравнение окруж-ти известные нам данные:

Задание. Даны точки К (– 2; 6) и М (2; 0). Запишите уравнение окруж-ти, в которой КМ будет являться диаметром.

Решение. Для составления уравнения нужно знать радиус окруж-ти и координаты ее центра. Обозначим центр буквой С. Ясно, что центр окруж-ти делит любой ее диаметр пополам, на два одинаковых радиуса, то есть является серединой диаметра. То есть С – середина КМ, а потому для поиска координат С используем формулы:

Итак, координаты центра теперь известны, это (0; 3). Чтобы найти радиус, поступим также, как и в предыдущей задаче – подставим координаты точек С и, например, К, в уравнение окруж-ти

Обратите внимание, что нам необязательно вычислять радиус, ведь для уравнении окруж-ти нужна его величина, возведенная в квадрат, и мы ее нашли. Теперь можем записать уравнение окончательно

Задание. Дано уравнение окружности

(x — 2) 2 + (y — 4) 2 = 9

Найдите точки этой окруж-ти, абсцисса которых равна 2.

Решение. Напомним, что абсцисса – это координат х точки. Она нам уже известна, х = 2. Остается только найти ординату, то есть координату у. Для этого подставим известное нам значение абсциссы в уравнение и решим его:

Обратите внимание, что у квадратного уравнения нашлось сразу 2 корня, они соответствуют двум точкам, (2; 1) и (2; 7).

Ответ: (2; 1) и (2; 7).

Задание. Составьте уравнение окружности, проходящей через точки D(3; 8), L(6; 7) и K(7; 0).

Решение. Эта задача сложнее предыдущих и потребует громоздких вычислений. Нам надо найти радиус окруж-ти r и ее центр (х0; у0). Запишем для точки D(3; 8) уравнение окруж-ти:

Далее раскроем скобки в левой части, используя формулу квадрата разности (это необходимо для упрощения дальнейших расчетов):

В итоге нам удалось составить три уравнения, которые содержат три переменные: r, х0 и у0.Вместе они образуют систему уравнений, которую можно попробовать решить:

Далее можно, например, вычесть из (2) уравнение (3):

Нам удалось найти одно из интересующих нас чисел, у0. С помощью (5) легко найдем и х0:

x0 = 7y0 — 18 = 7*3 — 18 = 21 — 18 = 3

Итак, центр окруж-ти находится в точке (3; 3). Осталось найти радиус окруж-ти. Для этого подставим в уравнение окруж-ти вычисленные нами координаты центра, а также координаты одной из точек из условия, например, K(7; 0):

Радиус окруж-ти равен 5. Теперь мы можем окончательно записать уравнение окруж-ти

Чтобы убедиться в правильности найденного решения, можно подставить в полученное уравнение координаты трех точек из условия и посмотреть, обращают ли они его в верное равенство. Вместо этого мы для наглядности просто построим в координатной плоскости получившуюся окруж-ть и отметим на ней точки из условия:

Ответ: (х – 3) 2 + (у – 3) 2 = 25

Уравнение прямой

Пусть на координатной плоскости построена произвольная прямая m. Для составления его уравнения отметим две точки А(х1; у1) и В(х2; у2) так, чтобы прямая m оказалась серединным перпендикуляром для отрезка АВ:

Тогда, согласно свойству серединного перпендикуляра,про любую точку М(х; у), лежащую на m, можно сказать, что она равноудалена от А и В, и наоборот, любая точка, НЕ лежащая на m, НЕ равноудалена от А и В. Это означает, что для точки M, если она лежит на m, должно выполняться равенство:

Квадратные корни равны, если одинаковы их подкоренные выражения, поэтому

Заметим, что так как точки А и В – различные, то хотя бы одна из разностей (2х2 – 2х1) и (2у2 – 2у1) будет не равна нулю, поэтому в (2) хотя бы один их коэффициентов а и b точно ненулевой. Это означает, что уравнение (2) является уравнением первой степени. Заметим, что (2) называют общим уравнением прямой, так как оно описывает любую прямую на плоскости. При более глубоком изучении геометрии вы познакомитесь с множеством других видов уравнений прямой (нормальным, каноническим, тангенциальным, параметрическим и т. п.).

В последнем примере коэффициент с равен нулю, поэтому его просто не записали.

Заметим важный аспект – одна и та же прямая может описываться различными уравнениями вида (2). Например, пусть уравнение прямой выглядит так:

Это уравнение равносильно предыдущему, хотя у них и различны коэффициенты а, b и c. Это значит, что однозначно определить эти коэффициенты при решении задач в большинстве случаев невозможно. Поэтому удобней рассмотреть два отдельных случая.

1) Если коэффициент b в уравнении прямой (2) не равен нулю, то его можно привести к виду:

Из курса алгебры мы помним, что ее графиком как раз является прямая. В большинстве случаев уравнение прямой удобно записывать именно в таком виде. Напомним, что число k называется угловым коэффициентом прямой.Поэтому (3) так и называют – уравнением прямой с угловым коэффициентом. В качестве примера подобных уравнений можно привести:

Каждое из них описывает вертикальную прямую, параллельную оси Оу.

Задание. Прямая задана уравнением

Постройте ее на координатной плоскости

Решение. Для построения прямой надо всего лишь найти две различные точки, лежащие на ней, и соединить их. Мы будем брать произвольные значения координаты х, подставлять их в уравнение и находить соответствующее им значение координаты у. Подставим х = 1:

Получили другую точку (– 1; – 1). Осталось отметить эти две точки на и соединить их:

Задание. Составьте уравнение прямой, проходящей через точки D(1; 10) и Е(– 1; – 4).

Решение. Задачу можно решить разными способами.

Способ 1 – универсальный и более сложный.

В общем виде уравнение прямой выглядит так:

Нам надо найти коэффициенты а, b и c. Для этого просто подставляем координаты известных точек в уравнение. Начнем с координат D:

Нам удалось выразить коэффициента двумя различными выражениями (1) и (2). Так как в них одинаковы левые части, то можно приравнять и правые части:

Мы можем взять любое значение коэффициента с (кроме нуля), и при этом получатся различные, но равносильные друг другу уравнения. Удобно взять с = 3, тогда в уравнении исчезнут дроби:

Это и есть ответ задания.

Далее рассмотрим более простой способ, который, однако, может потребовать анализа различных вариантов.

Уравнение прямой может иметь либо вид

если прямая является графиком линейной функции, либо вид

если прямая параллельна оси Оу. Во втором случае у всех точек прямой абсцисса должна быть одинакова, однако у точек D(1; 10) и Е(– 1; – 4) она различна, поэтому ее точно можно описать уравнением

Надо найти коэффициенты k и d. Подставим в уравнение координаты D(1; 10):

Итак, уравнение можно записать так:

Задание. Запишите уравнение прямой, если ей принадлежат точки:

Подставим сюда уже известное нам значение d:

В (1) и (2) мы выразили d с помощью разных выражений, которые теперь можно приравнять:

То, что коэффициент k оказался нулевым, означает, что прямая параллельна оси Ох.

в) Попытаемся сделать те же действия, что и в двух предыдущих примерах, подставляя точки в уравнение у = kx + d:

На этот раз мы не смогли найти коэффициент k, а вместо этого получили ошибочное равенство. То есть уравнение просто не имеет решений. Что же это значит? Из этого факта следует, что в этом примере уравнение прямой НЕ может иметь вид

Значит, оно имеет другой вид:

Действительно, у обеих точек (2; 7) и (2; 8) одинаковы абсциссы. Это значит, что прямая, проходящая через них, вертикальная. Коэффициент С как раз равен значению этой абсциссы, так что уравнение выглядит так:

Ответ а) у = 1,5х + 3; б) у = 8; в) х = 2.

Задание. Найдите площадь треугольника MON, изображенного на рисунке, если известно, что M и N лежат на прямой, задаваемой уравнением:

Решение. ∆MON – прямоугольный, и для вычисления его площади нужно найти длины OM и ON. По рисунку видно, что М лежит на оси Ох, то есть у неё ордината нулевая:

Зная это, легко найдем и абсциссу М, ведь координаты М при их подстановке в уравнение прямой должны давать верное равенство:

Далее рассмотрим точку N. Она уже лежит на Оу, а потому у нее нулевой оказывается абсцисса:

Напомним, что площадь прямоугольного треугольника может быть вычислена по формуле:

Задачи на пересечение двух фигур

Метод координат помогает находить точки, в которых пересекаются те или иные геометрические фигуры. В большинстве случаев надо просто составить систему из уравнений, задающих эти фигуры, и найти их общее решение. В курсе алгебры мы уже рассматривали как решение простых, в основном линейных систем, так и решение более сложных, нелинейных систем. Рассмотрим несколько задач на эту тему.

Задание. Две прямые заданы уравнениями:

Определите, в какой точке они пересекаются.

Решение. Если точка пересечения прямых существует, то ее координаты являются решением каждого из двух уравнений. Таким, образом, нам надо просто решить систему:

Мы нашли единственное решение системы – это пара чисел (3; – 2). Эта же пара определяет координаты искомой нами точки.

Задание. Найдите точки пересечения окруж-ти и прямой, если они задаются уравнениями

Решаем квадратное уравнение, используя дискриминант:

Мы нашли два различных значения у. Это значит, что прямая пересекается с окруж-тью в двух различных точках, а найденные нами числа – их ординаты. Отметим, что возможны случаи, когда корень только один (и тогда у окруж-ти с прямой одна общая точка, то есть они касаются), и когда корней вовсе нет (тогда окруж-ть и прямая не пересекаются). В нашем же примере осталось найти абсциссы точек. Для этого используем уравнение (3):

Получили в итоге пары точек (3; 8) и (6; 7), в которых заданная окруж-ть и прямая пересекаются.

Ответ: (3; 8) и (6; 7).

Задание. Две окруж-ти заданы уравнениями:

Для ее решения сначала раскроем скобки в обоих уравнениях и приведем подобные слагаемые:

Нам удалось выразить у через х. Теперь снова запишем одно из исходных уравнений окруж-ти, но заменим в нем у с помощью только что найденного выражения:

Мы нашли абсциссы точек пересечения окруж-тей, теперь можно вернуться к (1), чтобы найти и ординаты:

Получили точки (5; 2) и (4; 3).

В конце решим одну задачу чуть более высокого уровня сложности.

Задание. К окруж-ти радиусом 5, чей центр совпадает с началом координат, построена касательная в точке (3; 4). Составьте уравнение этой касательной.

Решение. Сначала составим уравнение окруж-ти. Так как ее центр находится в начале координат, а радиус имеет длину 5, то оно примет вид:

Нам надо найти коэффициенты k и d, а для этого надо составить какие-нибудь уравнения с этими переменными. Нам известно, что касательная проходит через точку (3; 4), а потому эти координаты можно подставить в (2):

Обратите внимание, что мы получили квадратное уравнение относительно переменной х. Если бы нам были известны k и d, то мы смогли бы его решить, и тогда мы определили бы точки пересечения прямой и окруж-ти. В этой задаче k и d нам неизвестны, но мы знаем, что окруж-ть и прямая касаются, то есть имеют ровно одну общую точку. Но тогда и квадратное уравнение (4) должно иметь только одно решение! Это означает, что его дискриминант равен нулю. Сначала выпишем коэффициенты квадратного уравнения, используемые при вычислении дискриминанта:

Теперь у нас есть два уравнения, (3) и (5), которые содержат только переменные k и d. Осталось лишь совместно решить их. Для этого подставим (3) в (5):

В рамках урока мы выяснили, как выглядят уравнения окруж-ти и прямой, а также научились решать несколько типовых заданий, в которых эти уравнения необходимо использовать. Хотя формулы, используемые при этом, могут показаться слишком сложными, главное – просто набить руку в их применении, решая как можно больше задач.

источники:

http://sprashivalka.com/tqa/q/14347758

http://100urokov.ru/predmety/urok-3-linii-na-ploskosti

Ответ:

Объяснение:

1) приведём уравнение окружности к стандартному виду:

x² + y² – 6x + 4y + 9 = 0  

(x²-6x+9)+(y²+4y+4) =4

(x-3)²+(y+2)²=2²

центр окружности -точка В(3; -2), радиус окружности R=2

Составим уравнение прямой, проходящей через точку A (−1; 2) и центр окружности В(3; -2)

Прямая, проходящая через две точки A1(x1; y1) и A2(x2; y2), представляется уравнением:(х-х₁)/(х₂-х₁)=(у-у₁)/(у₂-у₁)

(х+1)/(3+1) = (у-2)/(-2-2)

(х+1)/4 = (у-2)/-4

х+1 =-(у-2)

х+1=-у+2

у=-х+1   уравнение прямой

Ответ у=-х+1

2) Центр окружности О(1;3) и С(4;-1)∈ окр

Найдём радиус окружности, т.е. длину отрезка ОС:

R=OC=√(4-1)²+(-1-3)² = √(3²+4²)= 5

Уравнение окружности имеет вид (x – a)² + (y – b)² = R², где a и b – координаты центра A окружности  

(x-1)²+(y-3)²=5²

Ответ:   (x-1)²+(y-3)²=25

Добавить комментарий