Задача 27867 4.2.78) Составить уравнение прямой,…
Условие
4.2.78) Составить уравнение прямой, симметричной прямой x+2y-6 = 0 относительно точки А(4; 2).
математика 10-11 класс
10576
Решение
★
1 способ
Прямая, симметричная данной, параллельна данной.
Значит ее уравнение имеет вид
x+2y- d=0
Чтобы найти d подставим координаты точки, принадлежащей этой прямой, например точки Е.
Для этого выберем точку F(2;2), принадлежащую данной прямой и найдем координаты точки Е симметричной относительно А
Е(6;2)
6+2*2-d=0
d=10
2 способ
Составим уравнение прямой, перпендикулярной данной и проходящей через точку А
vector{n}_(данной прямой)=(1;2)
vector{n}_(перпендикулярной прямой)=(2;-1)
Скалярное произведение этих векторов равно 0, векторы ортогональны.
2х-у+с=0
Чтобы найти c подставляем координаты точки А
2*4-2=с
с=-6
2х – у – 6 = 0
Найдем расстояние от точки А до данной прямой
d=|4+2*2-6|/sqrt(1+2^2)=2/sqrt(5)
Составим уравнение окружности с центром в точке А и радиусом R=2/sqrt(5).
Эта окружность касается данной прямой и второй прямой, параллельной данной и находящейся на расстоянии 2/sqrt(5) от точки.
(x-4)^2+(y-2)^2=4/5
Решаем систему уравнений
{(x – 4)^2 + (y – 2)^2 = 4/5
{2x – y – 6 = 0 ⇒ y = 2x – 6
(x-4)^2+(2x-6-2)^2=4/5
(x-4)^2=4/25
x-4=2/5 или х-4=-2/5
х=4,4 или х=3,6 – абсцисса точки М
у=2х-6=2*4,4-6=2,8
N(4,4; 2,8)
Прямая, параллельная данной имеет вид
х + 2y – d = 0
Чтобы найти d подставим координаты точки N
4,4+2*2,8 – d=0
d=10
О т в е т. х+2y -10 =0
Все решения
Написать комментарий
Задача 27867 4.2.78) Составить уравнение прямой.
Условие
4.2.78) Составить уравнение прямой, симметричной прямой x+2y-6 = 0 относительно точки А(4; 2).
Решение
1 способ
Прямая, симметричная данной, параллельна данной.
Значит ее уравнение имеет вид
x+2y- d=0
Чтобы найти d подставим координаты точки, принадлежащей этой прямой, например точки Е.
Для этого выберем точку F(2;2), принадлежащую данной прямой и найдем координаты точки Е симметричной относительно А
Е(6;2)
6+2*2-d=0
d=10
2 способ
Составим уравнение прямой, перпендикулярной данной и проходящей через точку А
vector_(данной прямой)=(1;2)
vector_(перпендикулярной прямой)=(2;-1)
Скалярное произведение этих векторов равно 0, векторы ортогональны.
2х-у+с=0
Чтобы найти c подставляем координаты точки А
2*4-2=с
с=-6
2х — у — 6 = 0
Найдем расстояние от точки А до данной прямой
d=|4+2*2-6|/sqrt(1+2^2)=2/sqrt(5)
Составим уравнение окружности с центром в точке А и радиусом R=2/sqrt(5).
Эта окружность касается данной прямой и второй прямой, параллельной данной и находящейся на расстоянии 2/sqrt(5) от точки.
(x-4)^2+(y-2)^2=4/5
(x-4)^2+(2x-6-2)^2=4/5
(x-4)^2=4/25
x-4=2/5 или х-4=-2/5
х=4,4 или х=3,6 — абсцисса точки М
у=2х-6=2*4,4-6=2,8
N(4,4; 2,8)
Прямая, параллельная данной имеет вид
х + 2y — d = 0
Чтобы найти d подставим координаты точки N
4,4+2*2,8 — d=0
О т в е т. х+2y -10 =0
Параметрическое уравнение прямой. Параметрическое уравнение прямой в пространстве
Прямая вместе с точкой являются важными элементами геометрии, с помощью которых строятся многие фигуры в пространстве и на плоскости. В данной статье подробно рассматривается параметрическое уравнение прямой, а также его связь с другими типами уравнений для этого геометрического элемента.
Прямая и уравнения для ее описания
Прямая в геометрии представляет собой совокупность точек, которые соединяют произвольные две точки пространства отрезком с наименьшей длиной. Этот отрезок является частью прямой. Любые другие кривые, соединяющие зафиксированные две точки в пространстве, будут иметь большую длину, поэтому прямыми не являются.
Вам будет интересно: Нейтральная лексика — это. Определение, понятие, значение и примеры
На рисунке выше показаны две черные точки. Синяя линия, соединяющая их, является прямой, а красная — кривой. Очевидно, что длина красной линии между черными точками больше, чем синей.
Существуют несколько видов уравнений прямой, с помощью которых можно описать прямую в трехмерном пространстве или в двумерном. Ниже приведены названия этих уравнений:
- векторное;
- параметрическое;
- в отрезках;
- симметричное или каноническое;
- общего типа.
Вам будет интересно: А. Пушкин «Песнь о вещем Олеге»: жанр и идея
В данной статье рассмотрим параметрическое уравнение прямой, однако выведем его из векторного. Также покажем связь параметрического и симметричного или канонического уравнений.
Уравнение векторное
Понятно, что все приведенные типы уравнений для рассматриваемого геометрического элемента связаны между собой. Тем не менее векторное уравнение является базовым для всех них, поскольку оно непосредственно следует из определения прямой. Рассмотрим, как оно вводится в геометрию.
Допустим, дана точка в пространстве P(x0; y0; z0). Известно, что эта точка принадлежит прямой. Сколько прямых можно провести через нее? Бесконечное множество. Поэтому для того, чтобы можно было провести единственную прямую, необходимо задать направление последней. Направление, как известно, определяется вектором. Обозначим его v¯(a; b; c), где символы в скобках — это его координаты. Для каждой точки Q(x; y; z), которая находится на рассматриваемой прямой, можно записать равенство:
(x; y; z) = (x0; y0; z0) + α × (a; b; c)
Здесь символ α является параметром, принимающим абсолютно любое действительное значение (умножение вектора на число может изменить только его модуль или направление на противоположное). Это равенство называется векторным уравнением для прямой в трехмерном пространстве. Изменяя параметр α, мы получаем все точки (x; y; z), которые образуют эту прямую.
Вам будет интересно: Тайны «Аненербе»: история, артефакты, архивы
Стоящий в уравнении вектор v¯(a; b; c) называется направляющим. Прямая не имеет конкретного направления, а ее длина является бесконечной. Эти факты означают, что любой вектор, полученный из v¯ с помощью умножения на действительное число, также будет направляющим для прямой.
Что касается точки P(x0; y0; z0), то вместо нее в уравнение можно подставить произвольную точку, которая лежит на прямой, и последняя при этом не изменится.
Рисунок выше демонстрирует прямую (синяя линия), которая задана в пространстве через направляющий вектор (красный направленный отрезок).
Не представляет никакого труда получить подобное равенство для двумерного случая. Используя аналогичные рассуждения приходим к выражению:
(x; y) = (x0; y0) + α × (a; b)
Видим, что оно полностью такое же, как и предыдущее, только используются две координаты вместо трех для задания точек и векторов.
Уравнение параметрическое
Сначала получим в пространстве параметрическое уравнение прямой. Выше, когда записывалось векторное равенство, уже упоминалось о параметре, который в нем присутствует. Чтобы получить параметрическое уравнение, достаточно раскрыть векторное. Получаем:
Совокупность этих трех линейных равенств, в каждом из которых имеется одна переменная координата и параметр α, принято называть параметрическим уравнением прямой в пространстве. По сути, мы не сделали ничего нового, а просто явно записали смысл соответствующего векторного выражения. Отметим лишь один момент: число α, хотя и является произвольным, но оно для всех трех равенств одинаковое. Например, если α = -1,5 для 1-го равенства, то такое же его значение следует подставить во второе и в третье равенства при определении координат точки.
Параметрическое уравнение прямой на плоскости подобно таковому для пространственного случая. Оно записывается в виде:
Таким образом, чтобы составить параметрическое уравнение прямой, следует записать в явном виде векторное уравнение для нее.
Получение уравнения канонического
Как выше было отмечено, все уравнения, задающие прямую в пространстве и на плоскости, получаются одно из другого. Покажем, как получить из параметрического уравнения прямой каноническое. Для пространственного случая имеем:
Выразим параметр в каждом равенстве:
Поскольку левые части являются одинаковыми, тогда правые части равенств тоже равны друг другу:
(x — x0) / a = (y — y0) / b = (z — z0) / c
Это и есть каноническое уравнение для прямой в пространстве. Значение знаменателя в каждом выражении является соответствующей координатой направляющего вектора. Значения в числителе, которые вычитаются из каждой переменной, представляют собой координаты точки, принадлежащей этой прямой.
Соответствующее уравнение для случая на плоскости примет вид:
(x — x0) / a = (y — y0) / b
Дальше в статье решим несколько задач, используя полученные знания.
Уравнение прямой через 2 точки
Известно, что две фиксированные точки как на плоскости, так и в пространстве однозначно задают прямую. Предположим, что заданы две следующие точки на плоскости:
Как составить уравнение прямой через них? Для начала следует определить направляющий вектор. Его координаты имеют следующие значения:
PQ¯(x2 — x1; y2 — y1)
Теперь можно записать уравнение в любом из трех видов, которые были рассмотрены в пунктах выше. Например, параметрическое уравнение прямой принимает вид:
x = x1 + α × (x2 — x1);
y = y1 + α × (y2 — y1)
В канонической форме можно переписать его так:
(x — x1 ) / (x2 — x1) = (y — y1) / (y2 — y1)
Видно, что в каноническое уравнение входят координаты обеих точек, причем в числителе можно менять эти точки. Так, последнее уравнение можно переписать следующим образом:
(x — x2) / (x2 — x1) = (y — y2) / (y2 — y1)
Все записанные выражения называются уравнениями прямой через 2 точки.
Задача с тремя точками
Даны координаты следующих трех точек:
Необходимо определить, лежат эти точки на одной прямой или нет.
Решать эту задачу следует так: сначала составить уравнение прямой для любых двух точек, а затем подставить в него координаты третьей и проверить, удовлетворяют ли они полученному равенству.
Составляем уравнение через M и N в параметрической форме. Для этого применим полученную в пункте выше формулу, которую обобщим на трехмерный случай. Имеем:
Теперь подставим в эти выражения координаты точки K и найдем значение параметра альфа, который им соответствует. Получаем:
1 = 5 + α × (-3) => α = 4/3;
-1 = 3 + α × (-1) => α = 4;
-5 = -1 + α × 1 => α = -4
Мы выяснили, что все три равенства будут справедливы, если каждое из них примет отличающееся от других значение параметра α. Последний факт противоречит условию параметрического уравнения прямой, в котором α должны быть равны для всех уравнений. Это означает, что точка K прямой MN не принадлежит, а значит, все три точки на одной прямой не лежат.
Задача на параллельность прямых
Даны два уравнения прямых в параметрическом виде. Они представлены ниже:
Необходимо определить, являются ли прямые параллельными. Проще всего определить параллельность двух прямых с использованием координат направляющих векторов. Обращаясь к общей формуле параметрического уравнения в двумерном пространстве, получаем, что направляющие вектора каждой прямой будут иметь координаты:
Два вектора являются параллельными, если один из них можно получить путем умножения другого на некоторое число. Разделим попарно координаты векторов, получим:
Это означает что:
Направляющие вектора v2¯ и v1¯ параллельны, значит, прямые в условии задачи тоже являются параллельными.
Проверим, не являются ли они одной и той же прямой. Для этого нужно подставить координаты любой точки в уравнение для другой. Возьмем точку (-1; 3), подставим ее в уравнение для второй прямой:
-1 = 2 — 6 × λ => λ = 1/2;
3 = 4 — 3,6 × λ => λ ≈ 0,28
То есть прямые являются разными.
Задача на перпендикулярность прямых
Даны уравнения двух прямых:
Перпендикулярны ли эти прямые?
Две прямые будут перпендикулярны, если скалярное произведение их направляющих векторов равно нулю. Выпишем эти вектора:
Найдем их скалярное произведение:
(v1¯ × v2¯) = 2 × 6 + 3 × (-4) = 12 — 12 = 0
Таким образом, мы выяснили, что рассмотренные прямые перпендикулярны. Они изображены на рисунке выше.
4.1.8. Примеры решения задач по теме «Уравнение прямой на плоскости»
Даны уравнения двух сторон параллелограмма: 2Х + У + 3 = 0 и 2Х – 5У + 9 = 0 и уравнение одной из его диагоналей: 2Х – у — 3 = 0. Найти координаты вершин этого параллелограмма.
Выясните, уравнения каких сторон даны в условии задачи: параллельных или
Смежных, и как расположена данная диагональ по отношению к данным сторонам.
Выясним, уравнения каких сторон даны в условии задачи: параллельных или
Следовательно, прямые пересекаются, то есть даны уравнения смежных сторон параллелограмма.
Условие параллельности прямых
.
Пусть даны уравнения сторон АВ и AD. Тогда координаты точки А будут решением системы уравнений:
Теперь определим, уравнение какой диагонали: АС или BD – нам известно. Если это диагональ АС, то на ней лежит точка А, следовательно, координаты этой точки должны удовлетворять уравнению диагонали. Проверим:
Значит, точка А не лежит на данной прямой, то есть дано уравнение диагонали BD.
Тогда вершина В лежит на прямых АВ и BD, значит, ее координаты найдем из системы:
Система уравнений для определения координат точки D составлена из уравнений прямых AD И BD:
Остается найти координаты точки С. Составим уравнения прямых ВС и DC.
Поскольку ВС параллельна AD, их угловые коэффициенты равны. Найдем угловой коэффициент прямой AD:
Тогда ВС можно задать уравнением
Найдем координаты точки С, решив систему из двух полученных уравнений:
Найти точку, симметричную точке А(2; 1) относительно прямой, проходящей через точки В(-1; 7) и С(1; 8).
Представьте себе, что вам нужно Построить искомую точку на плоскости. Последовательность действий при этом можно задать так:
1) провести прямую ВС;
2) провести через точку А прямую, перпендикулярную ВС;
3) найти точку О пересечения этих прямых и отложить на прямой АО по другую сторону прямой ВС отрезок ОА1 = АО.
Представим себе, что нам нужно Построить искомую точку на плоскости. Последовательность действий при этом можно задать так:
4) провести прямую ВС;
5) провести через точку А прямую, перпендикулярную ВС;
6) найти точку О пересечения этих прямых и отложить на прямой АО по другую сторону прямой ВС отрезок ОА1 = АО.
Тогда точка А1 будет симметричной точке А относительно прямой ВС.
Теперь заменим каждое из действий составлением уравнений и вычислением координат точек.
1) Найдем уравнение прямой ВС в виде:
2) Найдем угловой коэффициент прямой ВС:
Прямая АО Перпендикулярна прямой ВС, поэтому
Составим уравнение прямой АО:
3) Найдем координаты точки О как решение системы:
4) Точка О – середина отрезка АА1, поэтому
Найти угол между прямыми L1: 3Х – у + 5 = 0 и L2: 2Х + У – 7 = 0.
Если J – угол между прямыми L1 и L2, то J = A2 — A1, где A2 и A1 – углы, образованные прямыми L1 и L2 с положительной полуосью Ох. Тогда
Где K1 и K2 – угловые коэффициенты прямых L1 и L2.
Если J – угол между прямыми L1 и L2, то J = A2 — A1, где A2 и A1 – углы, образованные прямыми L1 и L2 с положительной полуосью Ох. Тогда
Где K1 и K2 – угловые коэффициенты прямых L1 и L2. Найдем K1 и K2: для L1
Y = 3X + 5, K1 = 3; для второй: Y = -2X + 7, K2 = -2. Следовательно,
Для прямых А1х + В1У + С1 = 0 И А2Х + В2У + С2 = 0
.
Определить, лежит ли точка М(2; 3) внутри или вне треугольника, стороны которого заданы уравнениями 4Х – у – 7 = 0, Х + 3У – 31 = 0, Х + 5У – 7 = 0.
Если точка М расположена внутри треугольника АВС, то ее отклонение δ от каждой стороны треугольника имеет тот же знак, что и для вершины, не лежащей на этой стороне, а если точка М лежит вне треугольника, то по крайней мере с одной из вершин она окажется в разных полуплоскостях относительно стороны треугольника.
Пусть первое уравнение задает сторону АВ, второе – ВС, третье – АС. Найдем координаты точек А, В и С:
Для ответа на вопрос задачи отметим, что:
1) если точка М расположена внутри треугольника АВС, то ее отклонение δ от каждой стороны треугольника имеет тот же знак, что и для вершины, не лежащей на этой стороне (т. е. точка М расположена относительно каждой стороны треугольника в одной полуплоскости с третьей вершиной);
2) если точка М лежит вне треугольника, то по крайней мере с одной из вершин она окажется в разных полуплоскостях относительно стороны треугольника (на рисунке: точки М1 и В расположены по разные стороны от прямой АС).
Составим нормальные уравнения сторон треугольника АВС:
Вычислим соответствующие отклонения:
1) для точек М и А относительно прямой ВС:
2) для точек М и В относительно прямой АС:
3) для точек М и С относительно прямой АВ:
Итак, точки М И С лежат по разные стороны от прямой АВ. Следовательно, точка М расположена вне треугольника АВС.
Ответ: Точка М расположена вне треугольника АВС.
Для треугольника АВС с вершинами А(-3; -1), В(1; 5), С(7; 3) составить уравнения медианы и высоты, выходящих из вершины В.
Составьте уравнение медианы как прямой, проходящей через точки В и М – середину стороны АС, а высоты – как прямой, проходящей через точку В и перпендикулярной стороне АС.
1) Медиана ВМ проходит через точку В и точку М – середину отрезка АС. Найдем координаты точки М:
Тогда уравнение медианы можно записать в виде:
2) Высота ВН перпендикулярна стороне АС. Составим уравнение АС:
Ответ: медиана ВМ: 4Х + У – 9 = 0; высота ВН: 5Х + 2У – 15 = 0.
Определить, при каком значении А прямая
Параллельна оси ординат. Написать уравнение прямой.
Если прямая параллельна оси ординат, то в уравнении Ах + Ву + С = 0
Если прямая параллельна оси ординат, то в уравнении Ах + Ву + С = 0
В = 0, С ≠ 0. Из условия В = 0 получаем: А2 – 1 = 0, А = ± 1.
При А = 1 С = 2 + 7 – 9 = 0 – второе условие не выполняется (получившаяся при этом прямая -4Х = 0 не параллельна оси Оу, а совпадает с ней).
При А = -1 получим: -6Х – 14 = 0, 3Х + 7 = 0.
Составить уравнения всех прямых, проходящих через точку М(2; 3) и отсекающих от координатного угла треугольник площадью 12.
Составьте уравнение искомой прямой «в отрезках»:
Где |A| и |B| — длины отрезков, отсекаемых прямой на координатных осях. Тогда
Откуда |Ab| = 24. Кроме того, координаты точки М(2; 3) должны удовлетворять уравнению «в отрезках».
Составим уравнение искомой прямой «в отрезках»:
Где |A| и |B| — длины отрезков, отсекаемых прямой на координатных осях. Тогда
Откуда |Ab| = 24. Кроме того, координаты точки М(2; 3) должны удовлетворять уравнению «в отрезках». Таким образом, для А и B можно составить систему уравнений:
Следовательно, условию задачи удовлетворяют три прямые:
источники:
http://24simba.ru/zdorove-i-bezopasnost/5109-parametricheskoe-uravnenie-prjamoj-parametricheskoe-uravnenie-prjamoj-v-prostranstve/
http://matica.org.ua/metodichki-i-knigi-po-matematike/lineinaia-algebra-i-analiticheskaia-geometriia/4-1-8-primery-resheniia-zadach-po-teme-uravnenie-priamoi-na-ploskosti
Задача 27867 4.2.78) Составить уравнение прямой.
Условие
4.2.78) Составить уравнение прямой, симметричной прямой x+2y-6 = 0 относительно точки А(4; 2).
Решение
1 способ
Прямая, симметричная данной, параллельна данной.
Значит ее уравнение имеет вид
x+2y- d=0
Чтобы найти d подставим координаты точки, принадлежащей этой прямой, например точки Е.
Для этого выберем точку F(2;2), принадлежащую данной прямой и найдем координаты точки Е симметричной относительно А
Е(6;2)
6+2*2-d=0
d=10
2 способ
Составим уравнение прямой, перпендикулярной данной и проходящей через точку А
vector_(данной прямой)=(1;2)
vector_(перпендикулярной прямой)=(2;-1)
Скалярное произведение этих векторов равно 0, векторы ортогональны.
2х-у+с=0
Чтобы найти c подставляем координаты точки А
2*4-2=с
с=-6
2х – у – 6 = 0
Найдем расстояние от точки А до данной прямой
d=|4+2*2-6|/sqrt(1+2^2)=2/sqrt(5)
Составим уравнение окружности с центром в точке А и радиусом R=2/sqrt(5).
Эта окружность касается данной прямой и второй прямой, параллельной данной и находящейся на расстоянии 2/sqrt(5) от точки.
(x-4)^2+(y-2)^2=4/5
(x-4)^2+(2x-6-2)^2=4/5
(x-4)^2=4/25
x-4=2/5 или х-4=-2/5
х=4,4 или х=3,6 – абсцисса точки М
у=2х-6=2*4,4-6=2,8
N(4,4; 2,8)
Прямая, параллельная данной имеет вид
х + 2y – d = 0
Чтобы найти d подставим координаты точки N
4,4+2*2,8 – d=0
О т в е т. х+2y -10 =0
Осевая и центральная симметрия
О чем эта статья:
Что такое симметрия
Симметрия — это соразмерность, пропорциональность частей чего-либо, расположенных по обе стороны от центра. Говоря проще, если обе части от центра одинаковы, то это симметрия.
Ось симметрии фигуры — это прямая, которая делит фигуру на две симметричные части. Чтобы наглядно понять, что такое ось симметрии, внимательно рассмотрите рисунок.
Центр симметрии — это точка, в которой пересекаются все оси симметрии.
Вернемся к рисунку: на нем мы видим фигуры, имеющие ось и центр симметрии.
Рассмотрите фигуры с осевой и центральной симметрией.
- Ось симметрии угла — биссектриса.
- Ось симметрии равностороннего треугольника — биссектриса, медиана, высота.
- Оси симметрии прямоугольника проходят через середины его сторон.
- У ромба две оси симметрии — прямые, содержащие его диагонали.
- У квадрата 4 оси симметрии, так как он сразу и квадрат, и ромб.
- Ось симметрии окружности — любая прямая, проведенная через ее центр.
Витрувианский человек да Винчи — хрестоматийный пример симметрии. Принято считать, что, чем предмет симметричнее, тем он красивее. Хотя, по секрету, в природе нет ничего абсолютно симметричного, так уж задумано. Вся идеальная симметрия — дело рук человека.
Осевая симметрия
Вот как звучит определение осевой симметрии:
Осевой симметрией называется симметрия, проведенная относительно прямой. При осевой симметрии любой точке, расположенной по одну сторону прямой, всегда соответствует другая точка на второй стороне этой прямой.
При этом отрезки, соединяющие эти точки, перпендикулярны оси симметрии.
Осевая симметрия часто встречается в повседневной жизни. К сожалению, не на фото в паспорте и не в стрелках на глазах. Но её вполне себе можно встретить в половинках авокадо, на морде кота или в зданиях вокруг. Осевая симметрия — неотъемлемая часть архитектуры. Оглядитесь и поищите примеры осевой симметрии вокруг вас.
В геометрии есть фигуры, обладающие осевой симметрией: квадрат, треугольник, ромб, прямоугольник.
Давайте разберемся, как построить фигуру, симметричную данной относительно прямой.
Пример 1. Постройте треугольник A1B1C1 ,симметричный треугольнику ABC относительно прямой.
- Проведем из вершин треугольника ABC три прямые, перпендикулярные оси симметрии, выведем эти прямые на другую сторону оси симметрии.
- Найдем расстояние от вершин треугольника ABC до точек на оси симметрии.
- С другой стороны прямой отложим такие же расстояния.
- Соединяем точки отрезками и строим треугольник A1B1C1, симметричный треугольнику ABC.
- Получаем два треугольника, симметричных относительно оси симметрии.
Пример 2. Постройте треугольник, симметричный треугольнику ABC относительно прямой d.
- Строим по уже известному алгоритму. Проводим прямые, перпендикулярные прямой d, из вершин треугольника ABC и выводим их на другую сторону оси симметрии.
- Измеряем расстояние от вершин до точек на прямой.
- Откладываем такие же расстояния на другой стороне оси симметрии.
- Соединяем точки и строим треугольник A1B1C1.
Пример 3. Построить отрезок A1B1, симметричный отрезку AB относительно прямой l.
- Проводим через точку А прямую, перпендикулярную прямой l.
- Проводим через точку В прямую, перпендикулярную прямой l.
- Измеряем расстояния от точек А и В до прямой l.
- Откладываем такое же расстояние на перпендикулярных прямых от прямой l по другую сторону и ставим точки A1 и B1.
- Соединяем точки A1 и B1.
Больше примеров и увлекательных заданий — на курсах по математике в онлайн-школе Skysmart!
Центральная симметрия
Теперь поговорим о центральной симметрии — вот ее определение:
Центральной симметрией называется симметрия относительно точки.
Фигуры с центральной симметрией, как и фигуры с осевой симметрией, окружают нас повсюду. Центральную симметрию можно заметить в живой природе, в разрезе фруктов и в цветах.
Давайте разберемся, как построить центральную симметрию и рассмотрим алгоритм построения фигур с центральной симметрией.
Пример 1: Постройте треугольник A1B1C1 ,симметричный треугольнику ABC, относительно центра (точки О).
- Соединяем точки ABC c центром и выводим эти прямые на другую сторону оси.
- Измеряем отрезки AO, BO, CO и откладываем равные им отрезки с другой стороны от центра (точки О).
- Получившиеся точки соединяем отрезками A1B1 A1C1 B1C1.
- Получаем треугольник A1B1C1, симметричный треугольнику ABC, относительно центра.
Пример 2. Построить отрезок A1B1, симметричный отрезку AB относительно центра (точки О).
- Измеряем расстояние от точки B до точки О и от точки А до точки О.
- Проводим прямую из точки А через точку О и выводим ее на другую сторону.
- Проводим прямую из точки B через точку О и выводим ее на другую сторону.
- Чертим на противоположной стороне отрезки А1О и B1О, равные отрезкам АО и АB.
- Соединяем точки A1 и B1 и получаем отрезок A1B1, симметричный данному.
Задачи на самопроверку
В 8 классе геометрия — сплошная симметрия: центральная, осевая, зеркальная да какая угодно. Чтобы во всем этом не поплыть, больше тренируйтесь. Чертите и приглядывайтесь, угадывайте вид симметрии и решайте больше задачек. Вот несколько упражнений для тренировки. Мы в вас очень верим!
Задачка 1. Рассмотрите симметричные геометрические рисунки и назовите вид симметрии.
Мы рассмотрели примеры осевой и центральной симметрии и знаем, что:
Симметрия относительно прямой — осевая
Симметрия относительно точки — центральная
Задачка 2. Пусть M и N какие-либо точки, l — ось симметрии. М1 и N1 — точки,
симметричные точкам M и N относительно прямой l. Докажите, что MN = М1N1.
Подсказка: опустите перпендикуляры из точек N и N1 на прямую MМ1.
Задачка 3. Постройте фигуру, симметричную данной относительно прямой a.
4.1.8. Примеры решения задач по теме «Уравнение прямой на плоскости»
Даны уравнения двух сторон параллелограмма: 2Х + У + 3 = 0 и 2Х – 5У + 9 = 0 и уравнение одной из его диагоналей: 2Х – у – 3 = 0. Найти координаты вершин этого параллелограмма.
Выясните, уравнения каких сторон даны в условии задачи: параллельных или
Смежных, и как расположена данная диагональ по отношению к данным сторонам.
Выясним, уравнения каких сторон даны в условии задачи: параллельных или
Следовательно, прямые пересекаются, то есть даны уравнения смежных сторон параллелограмма.
Условие параллельности прямых
.
Пусть даны уравнения сторон АВ и AD. Тогда координаты точки А будут решением системы уравнений:
Теперь определим, уравнение какой диагонали: АС или BD – нам известно. Если это диагональ АС, то на ней лежит точка А, следовательно, координаты этой точки должны удовлетворять уравнению диагонали. Проверим:
Значит, точка А не лежит на данной прямой, то есть дано уравнение диагонали BD.
Тогда вершина В лежит на прямых АВ и BD, значит, ее координаты найдем из системы:
Система уравнений для определения координат точки D составлена из уравнений прямых AD И BD:
Остается найти координаты точки С. Составим уравнения прямых ВС и DC.
Поскольку ВС параллельна AD, их угловые коэффициенты равны. Найдем угловой коэффициент прямой AD:
Тогда ВС можно задать уравнением
Найдем координаты точки С, решив систему из двух полученных уравнений:
Найти точку, симметричную точке А(2; 1) относительно прямой, проходящей через точки В(-1; 7) и С(1; 8).
Представьте себе, что вам нужно Построить искомую точку на плоскости. Последовательность действий при этом можно задать так:
1) провести прямую ВС;
2) провести через точку А прямую, перпендикулярную ВС;
3) найти точку О пересечения этих прямых и отложить на прямой АО по другую сторону прямой ВС отрезок ОА1 = АО.
Представим себе, что нам нужно Построить искомую точку на плоскости. Последовательность действий при этом можно задать так:
4) провести прямую ВС;
5) провести через точку А прямую, перпендикулярную ВС;
6) найти точку О пересечения этих прямых и отложить на прямой АО по другую сторону прямой ВС отрезок ОА1 = АО.
Тогда точка А1 будет симметричной точке А относительно прямой ВС.
Теперь заменим каждое из действий составлением уравнений и вычислением координат точек.
1) Найдем уравнение прямой ВС в виде:
2) Найдем угловой коэффициент прямой ВС:
Прямая АО Перпендикулярна прямой ВС, поэтому
Составим уравнение прямой АО:
3) Найдем координаты точки О как решение системы:
4) Точка О – середина отрезка АА1, поэтому
Найти угол между прямыми L1: 3Х – у + 5 = 0 и L2: 2Х + У – 7 = 0.
Если J – угол между прямыми L1 и L2, то J = A2 – A1, где A2 и A1 – углы, образованные прямыми L1 и L2 с положительной полуосью Ох. Тогда
Где K1 и K2 – угловые коэффициенты прямых L1 и L2.
Если J – угол между прямыми L1 и L2, то J = A2 – A1, где A2 и A1 – углы, образованные прямыми L1 и L2 с положительной полуосью Ох. Тогда
Где K1 и K2 – угловые коэффициенты прямых L1 и L2. Найдем K1 и K2: для L1
Y = 3X + 5, K1 = 3; для второй: Y = -2X + 7, K2 = -2. Следовательно,
Для прямых А1х + В1У + С1 = 0 И А2Х + В2У + С2 = 0
.
Определить, лежит ли точка М(2; 3) внутри или вне треугольника, стороны которого заданы уравнениями 4Х – у – 7 = 0, Х + 3У – 31 = 0, Х + 5У – 7 = 0.
Если точка М расположена внутри треугольника АВС, то ее отклонение δ от каждой стороны треугольника имеет тот же знак, что и для вершины, не лежащей на этой стороне, а если точка М лежит вне треугольника, то по крайней мере с одной из вершин она окажется в разных полуплоскостях относительно стороны треугольника.
Пусть первое уравнение задает сторону АВ, второе – ВС, третье – АС. Найдем координаты точек А, В и С:
Для ответа на вопрос задачи отметим, что:
1) если точка М расположена внутри треугольника АВС, то ее отклонение δ от каждой стороны треугольника имеет тот же знак, что и для вершины, не лежащей на этой стороне (т. е. точка М расположена относительно каждой стороны треугольника в одной полуплоскости с третьей вершиной);
2) если точка М лежит вне треугольника, то по крайней мере с одной из вершин она окажется в разных полуплоскостях относительно стороны треугольника (на рисунке: точки М1 и В расположены по разные стороны от прямой АС).
Составим нормальные уравнения сторон треугольника АВС:
Вычислим соответствующие отклонения:
1) для точек М и А относительно прямой ВС:
2) для точек М и В относительно прямой АС:
3) для точек М и С относительно прямой АВ:
Итак, точки М И С лежат по разные стороны от прямой АВ. Следовательно, точка М расположена вне треугольника АВС.
Ответ: Точка М расположена вне треугольника АВС.
Для треугольника АВС с вершинами А(-3; -1), В(1; 5), С(7; 3) составить уравнения медианы и высоты, выходящих из вершины В.
Составьте уравнение медианы как прямой, проходящей через точки В и М – середину стороны АС, а высоты – как прямой, проходящей через точку В и перпендикулярной стороне АС.
1) Медиана ВМ проходит через точку В и точку М – середину отрезка АС. Найдем координаты точки М:
Тогда уравнение медианы можно записать в виде:
2) Высота ВН перпендикулярна стороне АС. Составим уравнение АС:
Ответ: медиана ВМ: 4Х + У – 9 = 0; высота ВН: 5Х + 2У – 15 = 0.
Определить, при каком значении А прямая
Параллельна оси ординат. Написать уравнение прямой.
Если прямая параллельна оси ординат, то в уравнении Ах + Ву + С = 0
Если прямая параллельна оси ординат, то в уравнении Ах + Ву + С = 0
В = 0, С ≠ 0. Из условия В = 0 получаем: А2 – 1 = 0, А = ± 1.
При А = 1 С = 2 + 7 – 9 = 0 – второе условие не выполняется (получившаяся при этом прямая -4Х = 0 не параллельна оси Оу, а совпадает с ней).
При А = -1 получим: -6Х – 14 = 0, 3Х + 7 = 0.
Составить уравнения всех прямых, проходящих через точку М(2; 3) и отсекающих от координатного угла треугольник площадью 12.
Составьте уравнение искомой прямой «в отрезках»:
Где |A| и |B| – длины отрезков, отсекаемых прямой на координатных осях. Тогда
Откуда |Ab| = 24. Кроме того, координаты точки М(2; 3) должны удовлетворять уравнению «в отрезках».
Составим уравнение искомой прямой «в отрезках»:
Где |A| и |B| – длины отрезков, отсекаемых прямой на координатных осях. Тогда
Откуда |Ab| = 24. Кроме того, координаты точки М(2; 3) должны удовлетворять уравнению «в отрезках». Таким образом, для А и B можно составить систему уравнений:
Следовательно, условию задачи удовлетворяют три прямые:
[spoiler title=”источники:”]
http://skysmart.ru/articles/mathematic/osevaya-i-centralnaya-simmetriya
http://matica.org.ua/metodichki-i-knigi-po-matematike/lineinaia-algebra-i-analiticheskaia-geometriia/4-1-8-primery-resheniia-zadach-po-teme-uravnenie-priamoi-na-ploskosti
[/spoiler]
§ 1. Уравнения прямой на плоскости
Напомним,
что прямая
на плоскостиможет быть задана следующими уравнениями
(см. рис. 1):
общим:
(1)
Здесь
–нормальный
вектор прямой
(т.е. любой ненулевой вектор, перпендикулярный
этой прямой).
и– любые действительные числа, за
исключением случая
Рис.1.
Если
прямая проходит через точку
и имеет нормальный векторто её уравнение может быть записано в
виде
(2)
Уравнение
(2) равносильно векторному уравнению
где
каноническим:
(3)
Здесь
–направляющий
вектор
прямой, т.е. любой ненулевой вектор,
коллинеарный этой прямой.
и– любые действительные числа, за
исключением случаяОтметим, что в уравнении (3)формально
допускается 0 в знаменателе.
Это не означает, конечно, что допустимо
деление на 0: формулу (3) следует считать
эквивалентом равенства
в котором никакого деления на 0 нет.
Приведём примеры: уравнениеопределяет прямуюпараллельную осиуравнение осиимеет вид
параметрическим:
(4)
Число
называетсяпараметром.
Система уравнений (4) равносильна
векторному уравнению
(см. рис. 2).
Рис.2.
Параметр
имеет прозрачныйгеометрический
смысл: модуль
числа
означает, сколько векторов“укладывается” на вектореа знак обозначает расположение точкина прямойприточканаходится с той стороны, куда направлен
вектора при– в противоположной стороне.
с
угловым коэффициентом
(см. рис. 3):
(5)
Рис.3.
Здесь
– угловой коэффициент, т.е.где– угол наклона прямойк осиУравнением (5) может быть задана любая
прямая, не коллинеарная оси
“в
отрезках”
(см. рис. 4):
(6)
Рис.4.
Здесь
– отрезки, отсекаемые прямойот осей координат. При этом допускается,
чтоилиУравнением (6) может быть задана любая
прямая, за исключением прямых, коллинеарных
какой-либо из осей координат, а также
прямых, проходящих через начало координат.
Замечание.
Уравнения (1)-(6) задают прямые не только
в прямоугольной, но и в произвольной
косоугольной
системе координат. При этом вектор
будет по-прежнему направляющим вектором
прямой (т.е. вектором, коллинеарным этой
прямой). Однако, векторв уравнениях (1), (2) может уже не быть
перпендикулярным данной прямой. “Угловой
коэффициент”в уравнении (5) может не равняться тангенсу
угла между прямой и осью абсцисс. Наконец,
числаив уравнении (6) в косоугольной системе
координат будут не истинными длинами
отсекаемых на осях отрезков, аотносительными
длинами
(если
и– базисные векторы, то на осиотрезки следует измерять “в векторах”,
а на оси– “в векторах”).
Задача
1. Написать
каноническое, параметрическое и общее
уравнение прямой, проходящей через
точки
и
Решение.
Направляющим вектором прямой
можно считать векторВ качестве точкиможно взятьилиПусть, например,Тогда по формуле (3) получим:
(7)
Это
каноническое уравнение прямой
Приравняем эти дроби к числуполучим:откуда
Это
параметрическое уравнение прямой
Из равенства (7) имеем:т.е.
Это
общее уравнение прямой
Задача
2. Дана прямая
Составить уравнение прямойпроходящей через точкуи параллельной прямойа также прямойпроходящей через точкуи перпендикулярной прямой
Решение.
(см. рис. 5)
Рис.5.
Из
уравнения прямой
находим ее нормальный вектор:Взявзапишем равенство (2):т.е.Это уравнение прямой
Заметим,
что вектор
является направляющим вектором прямойа значит, можно записать уравнение этой
прямой согласно равенству (3). Мы получим:откудаилиЭто уравнение прямой
Задача
3. Найти угол
между прямыми
и
Решение.
Найдём нормальные векторы этих прямых:
Уголмежду прямыми равен углу между их
нормальными векторами. Следовательно,
Отсюда
обычно под углом между прямыми берут
острый угол, образованный этими прямыми.
Поэтому мы можем считать, что угол равен
Задача
4. Составить
уравнение прямой, симметричной прямой
относительно:
а)
начала координат; б) оси абсцисс; в)
точки
Решение.
а) Симметрия относительно начала
координат переводит точку
в точкуПоэтому уравнение симметричной прямой
мы получим, заменяянаинаТаким образом, искомое уравнение будет
таково:или
б)
Симметрия относительно оси абсцисс
задается формулами
Отсюда получаем:
в)
(см. рис. 6)
Рис.6.
Возьмём
какую-нибудь точку прямой
например,(для этого достаточно подобрать числаудовлетворяющие уравнению).
Пусть– точка, симметричная точкеотносительно точкиТогдаиСледовательно,Отсюда получаем уравнение прямойт.е.
Замечание.
Решение задачи 4(в) может быть упрощено,
если использовать формулу симметрии
плоскости относительно точки (см. раздел
«Геометрические преобразования»).
Задача
5. Спроектировать
току
на прямую
Решение.
(см. рис. 7)
Рис.7.
Обозначим
через
прямую
Уравнение этой прямой можно переписать
в виде
Найдём нормальный вектор прямойЭтот вектор может быть принят в качестве
направляющего вектора прямойЗапишем параметрические уравнения
прямой
(8)
Теперь
найдем координаты точки
пересечения прямыхиподставив формулы (8) в уравнение прямойполучим:ОтсюдаПодставим теперь это значениев (8), получим:Таким образом,Точка– это и есть проекция точкина прямую
Задача
6. Составить
уравнение высоты
медианыи биссектрисытреугольникаесли
Решение.
(см. рис. 8).
Рис.8.
Имеем:
Векторявляется нормальным вектором прямойт.е.В качестве точкипрямойвозьмём точкуЗапишем теперь уравнение высотыт.е.
Далее,
направляющим вектором прямой
может служить векторЕсли направляющий вектор умножить на
2, то он по-прежнему останется направляющим
вектором. Поэтому возьмёмОтсюда получаем уравнение прямойили
Составим
теперь уравнение биссектрисы
Найдём длины векторовиВекторыиимеют одинаковую длину, поэтому векторнаправлен по биссектрисе углаа значит, является направляющим вектором
прямойВычисляем:Запишем каноническое уравнение прямойотсюда получаем:
Замечание.
Если
и– векторы, то вектор– вектор, направленный по биссектрисе
угла, образованного векторамииа вектор– по биссектрисе смежного угла (см. рис.
9).
Рис.9.
Если
тоа
Задача
7. Даны
уравнения двух сторон параллелограмма:
и координаты его центра:Составить уравнения двух других сторон
и уравнения диагоналей.
Решение
(см. рис. 10).
Рис.10.
Обозначим
вершины параллелограмма буквами
а его центр буквойМожно считать, что даны уравнения сторониНайдём вершинурешив систему
Прибавим
к первому уравнению удвоенное второе,
получим:
откудаДалее,Следовательно,Затем вычисляем:
Отсюда
Через точкупроводим прямую, параллельнуюполучаемАналогично получаем уравнениет.е.Теперь найдём точку
Отсюда
т.е.
Осталось
получить уравнения диагоналей
иИмеем:Взявполучим уравнениеа значит,Аналогично получим уравнениеоткуда получаем:т.е.
Задача
8. Даны
координаты одной из вершин треугольника:
и уравнения двух его медиан:Найти координаты двух других вершин
треугольника.
Решение..
Так как точка
не удовлетворяет уравнениям данных
прямых, то можно считать, что– это вершинаа данные прямые – медианы, выходящие
из вершинисоответственно (см. рис. 11).
Рис.11.
Обозначим
данные прямые через
иВозьмём какую-нибудь точку на прямойПусть– точка, симметричная точкеотносительноТогда
Следовательно,
Через точкупроводим прямуют.е.Точкунайдём, пересекая прямыеи
Получаем:
Аналогично
находим точку
А именно, возьмём точку на прямойПусть– точка, симметричная точкеотносительноТогдаУравнение прямойпараллельнойи проходящей черезТочкунаходим из системы
Отсюда
Задача
9. Через точку
провести прямую, пересекающую положительные
части осей координат и образующую с
осями координат треугольник наименьшей
площади.
Решение
(см. рис. 12).
Рис.12.
Пусть
– искомая прямая и– отрезки, отсекаемые прямойот осей координат. ТогдаЗапишем уравнение прямой“в отрезках” (см. формулу (6)):Так кактоОтсюдаНайдём площадь треугольникаНайдём наименьшее значение функциина множествеДля этого вычислим производную:Очевидно,приСоставим таблицу:
-
2
–
0
4
Из
таблицы видно, что функция
имеет в точкеминимум, равныйПриполучаем:а значит, уравнение прямойтаково:или
Соседние файлы в папке СРС
- #
- #
- #
- #
- #
- #
- #
- #
MrSolar
Знаток
(333),
закрыт
14 лет назад
Ника
Высший разум
(181432)
14 лет назад
Найдем угловой коэффициент данной прямой:
у=-0,5х+3, к=-0,5.
Так как искомая прямая симметрична относительно точки А, то она параллельна данной прямой и их угловые коэффициенты равны. тогда она имеет вид:
у=-0,5х+в.
Что бы найти в, возьмем проивольную точку на данной прямлй и найдем ей симметричную точку относительно точки А:
М (0;3), М1(4*2-0;2*2-3) = М1(8:1),
1=-0,5*8+в; =5
Итак искомая прямая: у=-0,5х+5 или х+2у-10=0