Как составить уравнение прямой в трехмерном пространстве

При
переходе к трехмерному пространству с
заданной декартовой прямоугольной
системой координат происходит естественное
обобщение уравнений прямой на плоскости
на трехмерный случай. Запишем основные
виды уравнений прямой
в трехмерном пространстве,

Название
уравнения

Вид
уравнения

Геометрический
смысл чисел, входящих в уравнение

Уравнение
прямой
,
проходящей через две заданные точки

,

координаты двух заданных точек, через
которые проходит прямая.

Каноническое
уравнение прямой


координаты заданной точки прямой
;
координаты направляющего вектора.

Параметрическое
уравнение прямой

Геометрический
смысл
итот
же самый, что и в каноническом уравнении,
свободная переменная, параметр.

Обратим
внимание на то, что все, приведенные в
таблице, виды уравнений прямой могут
быть представлены как системы уравнений
двух плоскостей.

Например, уравнение
прямой, проходящей через две заданные
точки:

В
уравнении плоскости
:,,;
координатаотсутствует,
следовательно, плоскостьили, что то же самое,‌‌
.
Аналогично для плоскости:

или

;,,.

Также
и остальные уравнения прямой можно
представить как системы уравнений двух
плоскостей, параллельных координатным
плоскостям. В общем случае плоскости ,
линией пересечения которых является
прямая
,
могут быть расположены произвольно
относительно системы координат. Систему
уравнений двух плоскостей называютобщим
уравнением прямой.
Общее
уравнение прямой – это уравнение линии
пересечения данных плоскостей:

.

(6.17)

В
заключение приведем векторное
уравнение прямой
:

,

(6.18)

где
=
радиус-вектор произвольной точки,
лежащей на прямой,=– радиус-вектор известной, фиксированной
точки этой прямой,– направляющий вектор прямой. Векторное
уравнение прямой, лежащей в плоскости,
имеет вид (6. ), но все векторы, входящие
в него, имеют лишь по две координаты.

6.5. Преобразование координат

Рассматривая
уравнения плоскости и прямой, мы
подчеркивали их связь с выбранным
репером. В этом разделе рассмотрим, как
меняются эти уравнения при переходе от
одного репера к другому.

Будем
рассматривать геометрические пространства
с ортонормированными базисами, то есть
базисами состоящими из единичных
векторов, попарно перпендикулярных
друг другу. Реперы с такими базисами
могу отличаться друг от друга (а) точкой
приложения базиса, (б) направлениями
базисных векторов.

Пусть
точки приложения базиса (,)
– точкии.
Точкаимеет
радиусы-векторыв репере,
ив
репере.
Точкав репереимеет радиус-вектор.

Так
как
=+,
то формулы перехода от одного репера
к другому имеют вид:

или
,
(6.19)

где
-координаты точкив репере,– координаты той же точки в репере,
координаты точки(нового начала координат) в репере.

Равенства
(6.19) можно записать более компактно:

,

(6.20)

где
– радиус вектор точкив репере,– радиус вектор той же точки в репере,– радиус-вектор «нового» начала координат
в «старом» репере.

Пусть
векторы
ив репереимеет
координаты=(),=(),
то есть=,=.
Радиус-вектор точкив
реперахи:

=
=+=

==.

Следовательно,
имеем:

,

или
в матричной форме:

или

(6.21)

где
– столбец координат точкив
репере,=матрица перехода от реперак реперу,
столбцами которой являются координаты
векторовив репере,=– столбец координат точкив репере.

Если
найти матрицу
,
обратную матрице,
то можно выразитьчерез:

=или,

(6.22)

Столбцы
матрицы
– это координаты векторовив репере.

В
случае трехмерного геометрического
пространства будут справедливы равенства
(6.21 ) и (6.22), но векторы
ибудут содержать по три координаты, а
матрицыииметь три строки и три столбца.

Таким
образом, переход от одного репера к
другому удобно выполнять в два шага:

Шаг
1.
Выполнить
перенос начала координат, пользуясь
формулой:
.

Шаг
2.
Выполнить
поворот осей координат, пользуясь
формулой:.

Пример.
Прямая
задана своим общим уравнением:

:

.

Записать
уравнение этой прямой в системе координат,
начало которой является какая-либо
точка прямой
,сонаправлена вектору нормали плоскости,
осьпроходит по прямой,
базис является левой тройкой векторов.

Решение.

1.Найдем
какую-либо точку лежащую на прямой
и перенесем в нее начало координат.
Пусть

.

Новое
начало координат:
.
Пользуясь формулами,
запишем уравнение прямой в системе
координат с началом в точке:

.

2.
Найдем векторы, сонаправленные новым
координатным осям, и, нормировав их,
получим новый базис.

Вектор
нормали плоскости
:.
Напомним, что координаты вектора нормали
к плоскости – это коэффициенты перед
переменными в ее уравнении..

Вектор,
сонаправленный прямой
,
можно найти как векторное произведение
векторов нормалей к плоскостями:

.

,

Вектор,
сонаправленный
найдем, вычислив векторное произведениеи.
Напомним, что тройка (
левая. (см. стр. ).

=)=
(2,-4,-2)=-2(1,-2,-1),.

Итак,
матрица
перехода от базисак базисуимеет
вид:

==

(Вычисление
элементов матрицы
выполните самостоятельно).

3.
Умножим нормальные векторы плоскостей
ина матрицу:

=

=(0,0,-),

=

=(0,-,-).

Уравнения
плоскостей
,и общее уравнение прямойв репереимеет вид:

.

Обратим
внимание на следующий факт:
,
то есть,чтобы
найти матрицу, обратную матрице перехода
от одного ортонормированного базиса к
другому, достаточно ее транспонировать.

1Вектор, перпендикулярный плоскости,
называютнормалью к этой плоскости.

112

Соседние файлы в папке Математика

  • #
  • #
  • #
  • #
  • #
  • #
  • #

Одним из видов уравнений прямой в пространстве является каноническое уравнение. Мы рассмотрим это понятие во всех подробностях, поскольку знать его необходимо для решения многих практических задач.

В первом пункте мы сформулируем основные уравнения прямой, расположенной в трехмерном пространстве, и приведем несколько примеров. Далее покажем способы вычисления координат направляющего вектора при заданных канонических уравнениях и решение обратной задачи. В третьей части мы расскажем, как составляется уравнение прямой, проходящей через 2 заданные точки в трехмерном пространстве, а в последнем пункте укажем на связи канонических уравнений с другими. Все рассуждения будут проиллюстрированы примерами решения задач.

Что такое каноническое уравнение прямой в пространстве

О том, что вообще из себя представляют канонические уравнения прямой, мы уже говорили в статье, посвященной уравнениям прямой на плоскости. Случай с трехмерным пространством мы разберем по аналогии.

Допустим, у нас есть прямоугольная система координат Oxyz, в которой задана прямая. Как мы помним, задать прямую можно разными способами. Используем самый простой из них – зададим точку, через которую будет проходить прямая, и укажем направляющий вектор. Если обозначить прямую буквой a, а точку M, то можно записать, что M1(x1, y1, z1) лежит на прямой a и направляющим вектором этой прямой будет a→=(ax, ay, az). Чтобы множество точек M(x, y, z) определяло прямую a, векторы M1M→ и a→ должны быть коллинеарными,

Что такое каноническое уравнение прямой в пространстве

Если мы знаем координаты векторов M1M→ и a→, то можем записать в координатной форме необходимое и достаточное условие их коллинеарности. Из первоначальных условий нам уже известны координаты a→. Для того чтобы получить координаты M1M→, нам необходимо вычислить разность между M(x, y, z) и M1(x1, y1, z1). Запишем:

M1M→=x-x1, y-y1, z-z1

После этого нужное нам условие мы можем сформулировать так: M1M→=x-x1, y-y1, z-z1 и a→=(ax, ay, az): M1M→=λ·a→⇔x-x1=λ·axy-y1=λ·ayz-z1=λ·az

Здесь значением переменной λ может быть любое действительное число или ноль. Если λ=0, то M(x, y, z) и M1(x1, y1, z1)совпадут, что не противоречит нашим рассуждениям.

При значениях ax≠0, ay≠0, az≠0 мы можем разрешить относительно параметра λ все уравнения системы x-x1=λ·axy-y1=λ·ayz-z1=λ·az

Между правыми частями после этого можно будет поставить знак равенства:

x-x1=λ·axy-y1=λ·ayz-z1=λ·az⇔λ=x-x1axλ=y-y1ayλ=z-z1az⇔x-x1ax=y-y1ay=z-z1az

В итоге у нас получились уравнения x-x1ax=y-y1ay=z-z1az, с помощью которых можно определить искомую прямую в трехмерном пространстве. Это и есть нужные нам канонические уравнения.

Такая запись используется даже при нулевых значениях одного или двух параметров ax, ay, az, поскольку она в этих случаях она также будет верна. Все три параметра не могут быть равны 0, поскольку направляющий вектор a→=(ax, ay, az) нулевым не бывает.

Если один-два параметра a равны 0, то уравнение x-x1ax=y-y1ay=z-z1az носит условный характер. Его следует считать равным следующей записи:

x=x1+ax·λy=y1+ay·λz=z1+az·λ, λ∈R.

Частные случаи канонических уравнений мы разберем в третьем пункте статьи.

Из определения канонического уравнения прямой в пространстве можно сделать несколько важных выводов. Рассмотрим их.

1) если исходная прямая будет проходить через две точки  M1(x1, y1, z1) и M2(x2, y2, z2), то канонические уравнения примут следующий вид:

x-x1ax=y-y1ay=z-z1az или x-x2ax=y-y2ay=z-z2az.

2) поскольку a→=(ax, ay, az) является направляющим вектором исходной прямой, то таковыми будут являться и все векторы μ·a→=μ·ax, μ·ay, μ·az, μ∈R, μ≠0. Тогда прямая может быть определена с помощью уравнения x-x1ax=y-y1ay=z-z1az или x-x1μ·ax=y-y1μ·ay=z-z1μ·az.

Вот несколько примеров таких уравнений с заданными значениями:

Пример 1

x-32=y+1-12=zln 7

Тут x1=3, y1=-1, z1=0, ax=2, ay=-12, az=ln 7.

Пример 2

x-40=y+21=z+10

Тут M1(4, -2, -1), a→=(0, 1, 0).

Как составить каноническое уравнение прямой в пространстве

Мы выяснили, что канонические уравнения вида x-x1ax=y-y1ay=z-z1az будут соответствовать прямой, проходящей через точку M1(x1, y1, z1), а вектор a→=(ax, ay, az) будет для нее направляющим. Значит, если мы знаем уравнение прямой, то можем вычислить координаты ее направляющего вектора, а при условии заданных координат вектора и некоторой точки, расположенной на прямой, мы можем записать ее канонические уравнения.

Разберем пару конкретных задач.

Пример 3

У нас есть прямая, заданная в трехмерном пространстве с помощью уравнения x+14=y2=z-3-5. Запишите координаты всех направляющих векторов для нее.

Решение

Чтобы получить координаты направляющего вектора, нам надо просто взять значения знаменателей из уравнения. Мы получим, что одним из направляющих векторов будет a→=(4, 2, -5), а множество всех подобных векторов можно сформулировать как μ·a→=4·μ, 2·μ, -5·μ. Здесь параметр μ – любое действительное число (за исключением нуля).

Ответ: 4·μ, 2·μ, -5·μ, μ∈R,  μ≠0 

Пример 4

Запишите канонические уравнения, если прямая в пространстве проходит через M1(0, -3, 2) и имеет направляющий вектор с координатами -1, 0, 5.

Решение

У нас есть данные, что x1=0, y1=-3, z1=2, ax=-1, ay=0, az=5. Этого вполне достаточно, чтобы сразу перейти к записи канонических уравнений.

Сделаем это:

x-x1ax=y-y1ay=z-z1az⇔x-0-1=y-(-3)0=z-25⇔⇔x-1=y+30=z-25

Ответ: x-1=y+30=z-25

Эти задачи – самые простые, потому что в них есть все или почти все исходные данные для записи уравнения или координат вектора. На практике чаще можно встретить те, в которых сначала нужно находить нужные координаты, а потом записывать канонические уравнения. Примеры таких задач мы разбирали в статьях, посвященных нахождению уравнений прямой, проходящей через точку пространства параллельно заданной, а также прямой, проходящей через некоторую точку пространства перпендикулярно плоскости.

Канонические уравнения с одним или двумя a, равными нулю

Ранее мы уже говорили, что одно-два значения параметров ax, ay, az в уравнениях могут иметь нулевые значения. При этом запись x-x1ax=y-y1ay=z-z1az=λ приобретает формальный характер, поскольку мы получаем одну или две дроби с нулевыми знаменателями. Ее можно переписать в следующем виде (при λ∈R):

x=x1+ax·λy=y1+ay·λz=z1+az·λ

Рассмотрим эти случаи подробнее. Допустим, что ax=0, ay≠0, az≠0, ax≠0, ay=0, az≠0, либо ax≠0, ay≠0, az=0. В таком случае нужные уравнения мы можем записать так:

  1.  В первом случае: 
    x-x10=y-y1ay=z-z1az=λ⇔x-x1=0y=y1+ay·λz=z1+az·λ⇔x-x1=0y-y1ay=z-z1az=λ
  2.  Во втором случае:
    x-x1ax=y-y10=z-z1az=λ⇔x=x1+ax·λy-y1=0z=z1+az·λ⇔y-y1=0x-x1ax=z-z1az=λ

  3.  В третьем случае:
    x-x1ax=y-y1ay=z-z10=λ⇔x=x1+ax·λy=y1+ay·λz-z1=0⇔z-z1=0x-x1ax=y-y1ay=λ

Получается, что при таком значении параметров нужные прямые находятся в плоскостях x-x1=0, y-y1=0 или z-z1=0, которые располагаются параллельно координатным плоскостям (если x1=0, y1=0 либо z1=0). Примеры таких прямых показаны на иллюстрации.

Канонические уравнения с одним или двумя a, равными нулю

Следовательно, мы сможем записать канонические уравнения немного иначе.

  1. В первом случае: x-x10=y-y10=z-z1az=λ⇔x-x1=0y-y1=0z=z1+az·λ, λ∈R
  2. Во втором: x-x10=y-y1ay=z-z10=λ⇔x-x1=0y=y1+ay·λ, λ∈Rz-z1=0
  3. В третьем: x-x1ax=y-y10=z-z10=λ⇔x=x1+ax·λ, λ∈Ry=y1=0z-z1=0

Во всех трех случаях исходные прямые будут совпадать с координатными осями или окажутся параллельными им: x1=0y1=0, x1=0z1=0, y1=0z1=0. Их направляющие векторы имеют координаты  0, 0, az, 0, ay, 0, ax, 0, 0. Если обозначить направляющие векторы координатных прямых как i→, j→, k→, то направляющие векторы заданных прямых будут коллинеарными по отношению к ним. На рисунке показаны эти случаи:

Канонические уравнения с одним или двумя a, равными нулю

Покажем на примерах, как применяются эти правила.

Пример 5

Найдите канонические уравнения, с помощью которых можно определить в пространстве координатные прямые Oz, Ox, Oy.

Решение

Координатные векторы i→=(1, 0, 0), j→=0, 1, 0, k→=(0, 0, 1) будут для исходных прямых направляющими. Также мы знаем, что наши прямые будут обязательно проходить через точку O(0, 0, 0), поскольку она является началом координат. Теперь у нас есть все данные, чтобы записать нужные канонические уравнения.

Для прямой Ox: x1=y0=z0

Для прямой Oy: x0=y1=z0

Для прямой Oz: x0=y0=z1

Ответ: x1=y0=z0, x0=y1=z0, x0=y0=z1.

Пример 6

В пространстве задана прямая, которая проходит через точку M1(3, -1, 12). Также известно, что она расположена параллельно оси ординат. Запишите канонические уравнения этой прямой.

Решение

Учитывая условие параллельности, мы можем сказать, что вектор j→=0, 1, 0 будет для нужной прямой направляющим. Следовательно, искомые уравнения будут иметь вид:

x-30=y-(-1)1=z-120⇔x-30=y+11=z-120

Ответ: x-30=y+11=z-120

Как записать каноническое уравнение прямой, которая проходит через две заданные точки

Допустим, что у нас есть две несовпадающие точки M1(x1, y1, z1) и M2(x2, y2, z2), через которые проходит прямая. Как в таком случае мы можем сформулировать для нее каноническое уравнение?

Для начала примем вектор M1M2→ (или M2M1→) за направляющий вектор данной прямой. Поскольку у нас есть координаты нужных точек, сразу вычисляем координаты вектора:

M1M2→=x2-x1, y2-y1, z2-z1

Далее переходим непосредственно к записи канонического уравнения, ведь все нужные данные у нас уже есть. Исходная прямая будет определяться записями следующего вида:

x-x1x2-x1=y-y1y2-y1=z-z1z2-z1x-x2x2-x1=y-y2y2-y1=z-z2z2-z1

Получившиеся равенства – это и есть канонические уравнения прямой, проходящей через две заданные точки. Взгляните на иллюстрацию:

Как записать каноническое уравнение прямой, которая проходит через две заданные точки

Приведем пример решения задачи.

Пример 7

в пространстве есть две точки с координатами M1(-2, 4, 1) и M2(-3, 2, -5), через которые проходит прямая. Запишите канонические уравнения для нее.

Решение

Согласно условиям, x1=-2, y1=-4, z1=1, x2=-3, y2=2, z2=-5. Нам требуется подставить эти значения в каноническое уравнение:

x-(-2)-3-(-2)=y-(-4)2-(-4)=z-1-5-1⇔x+2-1=y+46=z-1-6

Если мы возьмем уравнения вида x-x2x2-x1=y-y2y2-y1=z-z2z2-z1, то у нас получится: x-(-3)-3-(-2)=y-22-(-4)=z-(-5)-5-1⇔x+3-1=y-26=z+5-6

Ответ: x+3-1=y-26=z+5-6 либо x+3-1=y-26=z+5-6.

Преобразование канонических уравнений прямой в пространстве в другие виды уравнений

Иногда пользоваться каноническими уравнениями вида x-x1ax=y-y1ay=z-z1az не очень удобно. Для решения некоторых задач лучше использовать запись x=x1+ax·λy=y1+ay·λz=z1+az·λ. В некоторых случаях более предпочтительно определить нужную прямую с помощью уравнений двух пересекающихся плоскостей A1x+B1y+C1z+D1=0A2x+B2y+C2z+D2=0. Поэтому в данном пункте мы разберем, как можно перейти от канонических уравнений к другим видам, если это требуется нам по условиям задачи.

Понять правила перехода к параметрическим уравнениям несложно. Сначала приравняем каждую часть уравнения к параметру λ и разрешим эти уравнения относительно других переменных. В итоге получим:

x-x1ax=y-y1ay=z-z1az⇔x-x1ax=y-y1ay=z-z1az⇔⇔x-x1ax=λy-y1ay=λz-z1az=λ⇔x=x1+ax·λy=y1+ay·λz=z1+az·λ

Значение параметра λ может быть любым действительным числом, ведь и x, y, z могут принимать любые действительные значения.

Пример 8

В прямоугольной системе координат в трехмерном пространстве задана прямая, которая определена уравнением x-23=y-2=z+70. Запишите каноническое уравнение в параметрическом виде.

Решение

Сначала приравниваем каждую часть дроби к λ.

x-23=y-2=z+70⇔x-23=λy-2=λz+70=λ

Теперь разрешаем первую часть относительно x, вторую – относительно y, третью – относительно z. У нас получится:

x-23=λy-2=λz+70=λ⇔x=2+3·λy=-2·λz=-7+0·λ⇔x=2+3·λy=-2·λz=-7

Ответ: x=2+3·λy=-2·λz=-7

Следующим нашим шагом будет преобразование канонических уравнений в уравнение двух пересекающихся плоскостей (для одной и той же прямой).

Равенство x-x1ax=y-y1ay=z-z1az нужно для начала представить в виде системы уравнений:

x-x1ax=y-y1ayx-x1ax=z-z1axy-y1ay=z-z1az

Поскольку pq=rs мы понимаем как p·s=q·r, то можно записать:

x-x1ax=y-y1ayx-x1ax=z-z1azy-y1ay=z-z1az⇔ay·(x-x1)=ax·(y-y1)az·(x-x1)=ax·(z-z1)az·(y-y1)=ay·(z-z1)⇔⇔ay·x-ax·y+ax·y1-ay·x1=0az·x-ax·z+ax·z1-az·x1=0az·y-ay·z+ay·z1-az·y1=0

В итоге у нас вышло, что:

x-x1ax=y-y1ay=z-z1az⇔ay·x-ax·y+ax·y1-ay·x1=0az·x-ax·z+ax·z1-az·x1=0az·y-ay·z+ay·z1-az·y1=0

Выше мы отмечали, что все три параметра a не могут одновременно быть нулевыми. Значит, ранг основной матрицы системы будет равен 2, поскольку ay-ax0az0-ax0az-ay=0 и один из определителей второго порядка не равен 0:

ay-axaz0=ax·az, ay0az-ax=ax·ay,  -ax00-ax=ax2ay-ax0az=ay·az, ay00-ay=-ay2, -ax0az-ay=ax·ayaz00az=az2, az-ax0-ay=-ay·az, 0-axaz-ay=ax·az

Это дает нам возможность исключить одно уравнение из наших расчетов. Таким образом, канонические уравнения прямой можно преобразовать в систему из двух линейных уравнений, которые будут содержать 3 неизвестных. Они и будут нужными нам уравнениями двух пересекающихся плоскостей.

Рассуждение выглядит довольно сложным, однако на практике все делается довольно быстро. Продемонстрируем это на примере.

Пример 9

Прямая задана каноническим уравнением x-12=y0=z+20. Напишите для нее уравнение пересекающихся плоскостей.

Решение

Начнем с попарного приравнивания дробей.

x-12=y0=z+20⇔x-12=y0x-12=z+20y0=z+20⇔⇔0·(x-1)=2y0·(x-1)=2·(z+2)0·y=0·(z+2)⇔y=0z+2=00=0

Теперь исключаем из расчетов последнее уравнение, потому что оно будет верным при любых x, y и z. В таком случае x-12=y0=z+20⇔y=0z+2=0.

Это и есть уравнения двух пересекающихся плоскостей, которые при пересечении образуют прямую, заданную с помощью уравнения x-12=y0=z+20

Ответ: y=0z+2=0

Пример 10

Прямая задана уравнениями x+12=y-21=z-5-3, найдите уравнение двух плоскостей, пересекающихся по данной прямой.

Решение

Приравниваем дроби попарно.

x+12=y-21=z-5-3⇔x+12=y-21x+12=z-5-3y-21=z-5-3⇔⇔1·(x+1)=2·(y-2)-3·(x+1)=2·(z-5)-3·(y-2)=1·(z-5)⇔x-2y+5=03x+2z-7=03y+7-11=0

Получаем, что определитель основной матрицы полученной системы будет равен 0:

1-20302031=1·0·1+(-2)·2·0+0·3·3-0·0·0-1·2·3-(-2)·3·1=0

Минор второго порядка нулевым при этом не будет: 1-230=1·0-(-2)·3=6. Тогда мы можем принять его в качестве базисного минора.

В итоге мы можем вычислить ранг основной матрицы системы x-2y+5=03x+2z-7=03y+z-11=0. Это будет 2. Третье уравнение исключаем из расчета и получаем:

x-2y+5=03x+2z-7=03y+z-11=0⇔x-2y+5=03x+2z-7=0

Ответ: x-2y+5=03x+2z-7=0

4. Аналитическая геометрия в трехмерном пространстве

4.4 Прямая в трехмерном пространстве

 

Фиксировать прямую в трехмерном пространстве можно, задавая точку $M_0$, через которую проходит прямая, и направляющий вектор прямой $textbf {a}$. Пусть точке $M_0$ соответствует вектор $ textbf {r}_0$, текущей точке прямой $M$ соответствует вектор $textbf {r}$, тогда вектора $textbf {r}-textbf {r}_0$ и $textbf {a}=(a_1,, a_2, ,a_3)^T$ отличаются только множителем,
begin{equation}
textbf {r}-textbf {r}_0=textbf {a}t. (36)
label{pryam_3}
end{equation}
Это уравнение называется векторным уравнением прямой, см. рис. ref{pryam33}. Когда параметр $t$ пробегает значения от $-infty$ до $infty$, точка $M$ пробегает прямую.

 

Рис 15: Прямая в трехмерном пространстве задается фиксированной точкой $M_0$ и направляющим вектором $textbf {a}$.

 

Записывая это уравнение в координатах, получаем:
[
x-x_0=a_1t, quad y-y_0=a_2t, quad z-z_0=a_3t.
]
Этот набор уравнений называется параметрическим описанием прямой в трехмерном пространстве. Исключая $t$ из этих уравнений, находим:
begin{equation}
frac{x-x_0}{a_1}=frac{y-y_0}{a_2}=frac{z-z_0}{a_3}. (37)
label{pryam31}
end{equation}
Эти уравнения называются координатными уравнениями прямой. Заметим, что по знаменателям в этом соотношении можно восстановить вектор $textbf {a}=(a_1,, a_2, ,a_3)^T$.

Выпишем уравнение прямой, проходящей через две заданные точки, $M_0=(x_0,, y_0, ,z_0)$, $M_1=(x_1,, y_1, ,z_1)$. Подставляя вторую точку в уравнение (37) и затем разделив (37) на результат подстановки, получим искомое уравнение:
begin{equation}
frac{x-x_0}{x_1-x_0}=frac{y-y_0}{y_1-y_0}=frac{z-z_0}{z_1-z_0}. (38)
label{pryam32}
end{equation}

Далее, в трехмерном пространстве прямую можно представить как результат пересечения двух плоскостей, т.е. как результат совместного решения уравнений
begin{equation}
A_1x+B_1y+C_1z+D_1=0, quad A_2x+B_2y+C_2z+D_2=0. (39)
label{pryam34}
end{equation}
Заметим, что уравнения прямой (37), (38) можно трактовать как уравнения вида (39).

 

Пример.

Контрольный вопрос.

Решение типовых задач.

Задачи.

 

Уравнения прямых в пространстве

Уравнение прямой как линии пересечения двух плоскостей

Пусть в координатном пространстве Oxyz (в прямоугольной системе координат) две плоскости заданы общими уравнениями

begin{aligned}rho_{1}colon & ,A_{1}cdot x+B_{1}cdot y+C_{1}cdot z+D_{1}=0;\[2pt] rho_{2}colon & ,A_{2}cdot x+B_{2}cdot y+C_{2}cdot z+D_{2}=0,end{aligned}

в которых коэффициенты при неизвестных непропорциональны, т.е. operatorname{rang}!begin{pmatrix}A_{1}&B_{1}&C_{1}\A_{2}&B_{2}&C_{2}end{pmatrix}=2. Это условие означает, что плоскости rho_{1} и rho_{2}пересекаются (см. условие (4.25)), поскольку их нормали vec{n}_{1}=A_{1}vec{i}+B_{1}vec{j}+C_{1}vec{k} и vec{n}_{2}=A_{2}vec{i}+B_{2}vec{j}+C_{2}vec{k} неколлинеарны (рис.4.25). Тогда линия пересечения плоскостей описывается системой уравнений

begin{cases} A_{1}cdot x+D_{1}cdot y+C_{1}cdot z+D_{1}=0,\ A_{2}cdot x+D_{2}cdot y+C_{2}cdot z+D_{2}=0. end{cases}

(4.31)

Система (4.31) называется общим уравнением прямой в пространстве.

Общее уравнение прямой в пространстве как пересечение двух плоскостей


Пример 4.13. В координатном пространстве Oxyz (в прямоугольной системе координат) заданы вершины A(1;2;3), B(3;0;2), C(7;4;6) треугольника (рис.4.26). Требуется составить уравнение прямой, содержащей высоту AH треугольника.

Решение. Прямая AH является линией пересечения двух плоскостей: плоскости rho_{1}, треугольника ABC и плоскости rho_{2}, проходящей через точку A перпендикулярно вектору overrightarrow{BC} (рис.4.26). По формуле (4.21) составим уравнение плоскости rho_{1}, проходящей через три точки A,,B,,C:

begin{vmatrix}x-1&y-2&z-3\3-1&0-2&2-3\7-1&4-2&6-3end{vmatrix}= begin{vmatrix} x-1&y-2&z-3\ 2&-2&-1\ 6&2&3 end{vmatrix}=0 quad Leftrightarrow quad x+3y-4z+5=0.

По формуле (4.14) составим уравнение плоскости rho_{2}, проходящей через точку A перпендикулярно вектору overrightarrow{BC}=(7-3)vec{i}+(4-0)vec{j}+(6-2)vec{k}=4vec{i}+4vec{j}+4vec{k}:

4cdot(x-1)+4cdot(y-2)+4cdot(z-3)=0 quad Leftrightarrow quad x+y+z-6=0.

Следовательно, общее уравнение (4.31) прямой AH имеет вид begin{cases}x+3y-4z+5=0,\x+y+z-6=0.end{cases}


Параметрическое уравнение прямой в пространстве

Напомним, что направляющий вектором прямой называется ненулевой вектор, коллинеарный этой прямой, т.е. принадлежащий или параллельный ей.

Пусть в координатном пространстве Oxyz заданы точка M_{0}(x_{0}, y_{0}, z_{0}) и ненулевой вектор vec{p}= avec{i}+ bvec{j}+ cvec{k} (рис.4.27). Требуется составить уравнение прямой, коллинеарной вектору vec{p} и проходящей через точку M_{0}(x_{0},y_{0},z_{0}).

Выберем на прямой произвольную точку M_{0}(x,y,z). Обозначим vec{r}=overrightarrow{OM}, vec{r}_{0}=overrightarrow{OM_{0}} — радиус-векторы точек M(x,y,z) и M_{0}(x_{0},y_{0},z_{0}) (рис.4.28).

Параметрическое уравнение прямой в пространстве и направляющий вектор прямой

Точка M принадлежит заданной прямой тогда и только тогда, когда векторы overrightarrow{M_{0}M} и vec{p} коллинеарны. Запишем условие коллинеарности: overrightarrow{M_{0}M}=tvec{p}, где t — некоторое действительное число (параметр). Учитывая, что overrightarrow{M_{0}M}=vec{r}-vec{r}_{0}, получим векторное параметрическое уравнение прямой в пространстве:

vec{r}=vec{r}_{0}+tcdotvec{p}, quad tinmathbb{R},,

(4.32)

где vec{p} — направляющий вектор прямой, а vec{r}_{0} — радиус-вектор заданной точки M_{0}(x_{0},y_{0},z_{0}) принадлежащей прямой.

Координатная форма записи уравнения (4.32) называется параметрическим уравнением прямой в пространстве

begin{cases}x=x_{0}+acdot t,\y=y_{0}+bcdot t,\z=z_{0}+ccdot t,end{cases}tinmathbb{R},,

(4.33)

где a,b,c — координаты направляющего вектора vec{p} прямой. Параметр t в уравнениях (4.32),(4.33) имеет следующий геометрический смысл: величина t пропорциональна расстоянию от заданной точки M_{0}(x_{0}, y_{0}, z_{0}) до точки M(x,y,z)equiv M(x_{0}+at,y_{0}+bt,z_{0}+ct). Физический смысл параметра t в параметрических уравнениях (4.32),(4.33) — это время при равномерном и Прямолинейном движении точки M(x,y,z) по прямой. При t=0 точка M(x,y,z) совпадает с заданной точкой M_{0}. При возрастании параметра t движение происходит в направлении направляющего вектора.


Каноническое уравнение прямой в пространстве

Выразим параметр t из каждого уравнения системы (4.33): t=frac{x-x_{0}}{a},, t=frac{y-y_{0}}{b},, t=frac{z-z_{0}}{c}, а затем исключим этот параметр:

frac{x-x_{0}}{a}=frac{y-y_{0}}{b}=frac{z-z_{0}}{c}, quad a^2+b^2+c^2ne0.

(4.34)

Уравнение (4.34) называется каноническим уравнением прямой в пространстве. В этом уравнении коэффициенты a,b,c не равны нулю одновременно, так как это координаты направляющего вектора прямой.


Замечания 4.6.

1. Если один или два из трех знаменателей дробей в (4.34) равны нулю, то считается, что соответствующий числитель дроби равен нулю. Например:

а) каноническое уравнение frac{x-x_{0}}{0}=frac{y-y_{0}}{0}=frac{z-z_{0}}{c} — это уравнение begin{cases}x=x_{0},\y=y_{0}end{cases} прямой, параллельной оси аппликат (рис.4.29,а);

б) каноническое уравнение frac{x-x_{0}}{a}=frac{y-y_{0}}{b}=frac{z-z_{0}}{0} — это уравнение begin{cases}z=z_{0},\dfrac{x-x_{0}}{a}=dfrac{y-y_{0}}{b}end{cases} прямой, параллельной координатной плоскости Oxy (рис.4.29,б).

Прямые в пространстве, параллельные координатным плоскостям

2. Направляющий вектор vec{p} прямой определяется неоднозначно. Например, любой ненулевой вектор lambdacdotvec{p}, где lambdainmathbb{R}, также является направляющим вектором для той же прямой.

Переход от общего уравнение к каноническому

3. Для перехода от общего уравнения прямой (4.31) к каноническому (4.34) нужно выполнить следующие действия:

1) найти любое решение (x_{0},y_{0},z_{0}) системы begin{cases} A_{1}cdot x+B_{1}cdot y+C_{1}cdot z+D_{1}=0,\ A_{2}cdot x+B_{2}cdot y+C_{2}cdot z+D_{2}=0, end{cases} определяя тем самым координаты точки M_{0}(x_{0},y_{0},z_{0}), принадлежащей прямой;

2) найти направляющий вектор vec{p} прямой как векторное произведение нормалей vec{n}_{1}=A_{1}vec{i}+B_{1}vec{j}+C_{1}vec{k}, vec{n}_{2}= A_{2}vec{i}+ B_{2}vec{j}+ C_{2}vec{k}, заданных плоскостей:

vec{p}= begin{bmatrix}vec{n}_{1},vec{n}_{2}end{bmatrix}= acdotvec{i}+ bcdotvec{j}+ ccdotvec{k}= begin{vmatrix} vec{i}&vec{j}&vec{k}\ A_{1}&B_{1}&C_{1}\ A_{2}&B_{2}&C_{2} end{vmatrix}.

3) записать каноническое уравнение (4.34) с учетом пунктов 1 и 2.

4. Чтобы перейти от канонического уравнения к общему, достаточно двойное равенство (4.34) записать в виде системы

left{!begin{aligned}frac{x-x_{0}}{a}&=frac{y-y_{0}}{b},,\frac{y-y_{0}}{b}&=frac{z-z_{0}}{c},,end{aligned}right. и привести подобные члены.

5. Чтобы перейти от канонического уравнения к параметрическому, следует приравнять каждую дробь в уравнении (4.34) параметру t и записать полученные равенства в виде системы (4.33):

frac{x-x_{0}}{a}=frac{y-y_{0}}{b}=frac{z-z_{0}}{c}=t quad Leftrightarrow quad begin{cases}x=x_{0}+acdot t,\y=y_{0}+bcdot t,\z=z_{0}+ccdot t,end{cases} tinmathbb{R},.

6. Если в каноническом уравнении (4.34) прямой фиксировать координаты x_{0},y_{0},z_{0} точки M_{0}, а коэффициентам a,b,c придавать произвольные значения (не равные нулю одновременно), то получим уравнение связки прямых с центром в точке M_{0}(x_{0},y_{0},z_{0}), т.е. совокупность всех прямых, проходящих через точку M_{0}.

7. Параметрическое (4.33) и каноническое (4.34) уравнения прямой, полученные в прямоугольной системе координат, имеют тот же вид в любой другой аффинной системе координат. Геометрический смысл коэффициентов в уравнениях остается прежним.


Пример 4.14. В координатном пространстве Oxyz (в прямоугольной системе координат) заданы вершины A(1;2;3), B(3;0;2), C(7;4;6) треугольника (рис. 4.30). Требуется:

В координатном пространстве Oxyz (в прямоугольной системе координат) заданы вершины A(1,2,3), B(3,0,2), C(7,4,6) треугольника

а) составить каноническое уравнение прямой, содержащей высоту AH треугольника;

б) составить общее уравнение прямой, содержащей биссектрису AL треугольника.

Решение. а) Общее уравнение прямой AH получено в примере 4.13: begin{cases}x+3cdot y-4cdot z+5=0,\x+y+z-6=0.end{cases} Перейдем от общего уравнения к каноническому.

1) Найдем любое решение (x_{0},y_{0},z_{0}) системы, например, x_{0}=1, y_{0}=2, z_{0}=3 (это координаты точки A(1;2;3)).

2) Найдем направляющий вектор vec{p} прямой как векторное произведение нормалей vec{n}_{1}=vec{i}+3vec{j}-4vec{k}, vec{n}_{2}=vec{i}+vec{j}+vec{k} заданных плоскостей

vec{p}= begin{bmatrix}vec{n}_{1},vec{n}_{2}end{bmatrix}= begin{vmatrix} vec{i}&vec{j}&vec{k}\ 1&3&-4\ 1&1&1 end{vmatrix}= 7cdotvec{i}-5cdotvec{j}-2cdotvec{k},.

3) Запишем каноническое уравнение (4.34): frac{x-1}{7}=frac{y-2}{-5}=frac{z-3}{-2}.

б) Сначала составим каноническое уравнение прямой AL. Для этого нужно найти направляющий вектор vec{l} этой прямой. Учитывая, что диагональ ромба является биссектрисой, vec{l}=vec{b}+vec{c}, где vec{b} и vec{c} — единичные векторы, одинаково направленные с векторами overrightarrow{AB} и overrightarrow{AC} соответственно. Находим

begin{gathered}overrightarrow{AB}= 2cdotvec{i}-2cdotvec{j}-1cdotvec{k}, quad begin{vmatrix}overrightarrow{AB}end{vmatrix}=3, quad vec{b}= frac{overrightarrow{AB}}{begin{vmatrix} overrightarrow{AB}end{vmatrix}}= frac{2}{3}cdot vec{i}-frac{2}{3} cdotvec{j}-frac{1}{3}cdot vec{k},;\[3pt] overrightarrow{AC}= 6cdot vec{i}+ 2cdotvec{j}+3cdotvec{k}, quad begin{vmatrix} overrightarrow{AC} end{vmatrix}=7, quad vec{c}= frac{overrightarrow{AC}}{begin{vmatrix} overrightarrow{AC}end{vmatrix}}= frac{6}{7}cdotvec{i}+ frac{2}{7}cdotvec{j}+ frac{3}{7}cdotvec{k},;\[3pt] vec{l}=vec{a}+vec{c}= left(frac{2}{3}cdotvec{i}-frac{2}{3}cdotvec{j}-frac{1}{3}cdotvec{k}right)+ left(frac{6}{7}cdotvec{i}+frac{2}{7}cdotvec{j}+frac{3}{7}cdotvec{k}right)= frac{32}{21}cdotvec{i}-frac{8}{21}cdotvec{j}+frac{2}{21}cdotvec{k},. end{gathered}

Составляем каноническое уравнение прямой ALcolon,frac{x-1}{32/21}=frac{y-2}{-8/21}=frac{z-3}{2/21}.

Записывая двойное равенство в виде системы, получаем общее уравнение прямой AL:

left{!begin{aligned}frac{x-1}{32/21}&=frac{y-2}{-8/21},\ frac{y-2}{-8/21}&=frac{z-3}{2/21},end{aligned}right.  quad Leftrightarrow quad begin{cases}x+4cdot y-9=0,\ y+4cdot z-14=0.end{cases}


Расстояние от точки до прямой, заданной каноническим уравнением

Расстояние от точки до прямой в пространстве

Найдем расстояние d от точки M_{1}(x_{1},y_{1},z_{1}) до прямой l, заданной каноническим уравнением (рис.4.31)):

lcolon, frac{x-x_{0}}{a}= frac{y-y_{0}}{b}= frac{z-z_{0}}{c},.

Искомое расстояние равно высоте параллелограмма, построенного на векторах

vec{p}=avec{i}+bvec{j}+cvec{k} и vec{m}=overrightarrow{M_{0}M_{1}}=(x_{1}-x_{0})vec{i}+(y_{1}-y_{0})vec{j}+(z_{1}-z_{0})vec{k}, то есть.

d=frac{begin{vmatrix}begin{bmatrix}vec{m},vec{p}end{bmatrix}end{vmatrix}}{begin{vmatrix}vec{p}end{vmatrix}}= frac{sqrt{begin{vmatrix}x_{1}-x_{0}&y_{1}-y_{0}\a&bend{vmatrix}^2+ begin{vmatrix}y_{1}-y_{0}&z_{1}-z_{0}\b&cend{vmatrix}^2+ begin{vmatrix}x_{1}-x_{0}&z_{1}-z_{0}\a&cend{vmatrix}^2}}{sqrt{a^2+b^2+c^2}},.

(4.35)


Уравнение прямой, проходящей через две заданные точки

Уравнение прямой в пространстве, проходящей через две заданные точки

Пусть в координатном пространстве Oxyz заданы две точки M_{0}(x_{0},y_{0},z_{0}) и M_{1}(x_{1},y_{1},z_{1}). Требуется составить уравнение прямой, проходящей через заданные точки.

Как показано в разд., точка M(x,y,z) принадлежит прямой M_{0}M_{1} тогда и только тогда, когда ее радиус-вектор overrightarrow{OM} удовлетворяет условию (рис.4.32): overrightarrow{OM}= (1-t)cdot overrightarrow{OM_{0}}+ tcdotoverrightarrow{OM_{1}}, где t — некоторое действительное число (параметр). Это уравнение, а также его координатную форму

begin{pmatrix}x\y\zend{pmatrix}= (1-t)cdot!begin{pmatrix}x_{0}\y_{0}\z_{0}end{pmatrix}+tcdot!begin{pmatrix}x_{1}\y_{1}\z_{1}end{pmatrix}! quad Leftrightarrow quad !begin{cases} x=(1-t)cdot x_{0}+tcdot x_{1},\ y=(1-t)cdot y_{0}+tcdot y_{1},\ z=(1-t)cdot z_{0}+tcdot z_{1}.end{cases} tinmathbb{R}

(4.36)

будем называть аффинным уравнением прямой, проходящей через две точки M_{0}(x_{0},y_{0},z_{0}) и M_{1}(x_{1},y_{1},z_{1}).

Выражая параметр t из каждого уравнения системы (4.36), получаем: frac{x-x_{0}}{x_{1}-x_{0}}=frac{y-y_{0}}{y_{1}-y_{0}}=frac{z-z_{0}}{z_{1}-z_{0}}=t. Исключая параметр t, приходим к уравнению прямой, проходящей через две точки M_{0}(x_{0},y_{0},z_{0}) и M_{1}(x_{1},y_{1},z_{1}):

frac{x-x_{0}}{x_{1}-x_{0}}=frac{y-y_{0}}{y_{1}-y_{0}}=frac{z-z_{0}}{z_{1}-z_{0}},.

(4.37)

Уравнение (4.37) можно получить из канонического уравнения (4.34), выбирая в качестве направляющего вектора vec{p}=avec{i}+bvec{j}+cvec{k} вектор overrightarrow{M_{0}M_{1}}=(x_{1}-x_{0})vec{i}+(y_{1}-y_{0})vec{j}+(z_{1}-z_{0})vec{k}, т.е. подставляя a=x_{1}-x_{0}, b=y_{1}-y_{0}, c=z_{1}-z_{0}.


Треугольник в пространстве по координатам вершин, его высота и медиана

Пример 4.15. В координатном пространстве Oxyz (в прямоугольной системе координат) заданы вершины A(1;2;3), B(3;0;2), C(7;4;6) треугольника (рис.4.33). Требуется:

а) составить уравнение прямой BC;

б) составить уравнение прямой, содержащей медиану AM треугольника;

в) найти высоту h=|AH| треугольника, опущенную на сторону BC.

Решение. а) Записываем уравнение (4.37) прямой, проходящей через точки B(3;0;2), C(7;4;6):

frac{x-3}{7-3}=frac{y-0}{4-0}=frac{z-2}{6-2}~ Leftrightarrow~ frac{x-3}{1}=frac{y}{1}=frac{z-2}{1},.

б) Находим координаты середины M стороны BCcolon M(5;2;4). Составляем уравнение (4.37) прямой AM:

frac{x-1}{5-1}=frac{y-2}{2-2}=frac{z-3}{4-3}~ Leftrightarrow~ frac{x-1}{4}=frac{y-2}{0}=frac{z-3}{1},.

в) Искомую высоту h находим по формуле (4.35), полагая vec{m}=overrightarrow{BA}=-2vec{i}+2vec{j}+vec{k} и vec{p}=vec{i}+vec{j}+vec{k}:

h=|AH|=frac{begin{vmatrix}begin{bmatrix}vec{m},vec{p}end{bmatrix}end{vmatrix}}{begin{vmatrix}vec{p}end{vmatrix}}= frac{sqrt{begin{vmatrix}-2&2\1&1end{vmatrix}^2+begin{vmatrix}2&1\1&1end{vmatrix}^2+begin{vmatrix}-2&1\1&1end{vmatrix}^2}}{sqrt{1^2+1^2+1^2}}=frac{sqrt{16+1+9}}{sqrt{3}}= sqrt{frac{26}{3}},.

Математический форум (помощь с решением задач, обсуждение вопросов по математике).

Кнопка "Поделиться"

Если заметили ошибку, опечатку или есть предложения, напишите в комментариях.

Прямая в пространстве – это линия, которая проходит от одной точки к другой, а также за пределы этих точек в бесконечность. Есть несколько видов уравнения прямой в пространстве: каноническое, параметрическое, угол между двумя прямыми в пространстве и т. д. Про это расскажем в данной статье и для наглядности предоставим несколько примеров.

Параметрическое и каноническое уравнение прямой в пространстве

Параметрическое и каноническое уравнение прямой рассматривается практически так, как и для прямой на плоскости. Значит, нужно составить уравнение прямой L, которая проходит через данную точку M_{1} (x_{1}, y_{1}, z_{1}) параллельно направляющему вектору overline{S} = (l, m, p).

Пусть, M(x, y, z) in{L} – произвольная точка прямой, тогда векторы overline{M_{1}M} = (x - x_{1}, y - y_{1}, z - z_{1}) и overline{S} коллинеарные, а это значит, что координаты их пропорциональны, поэтому получаем:

{x - x_{1}over{l}} = {y - y_{1}over{m}} = {z - z_{1}over{p}}

(1)

это и есть канонические уравнения прямой.

Приравнивая каждую из дробей (1) к параметру t, запишем параметрические уравнения прямой:

left{ begin{aligned} x = lt + x_{0}\ y = mt + y_{0}\ z = pt + z_{0} end{aligned}

(2)

Уравнение прямой в пространстве, которая проходит через две заданные точки

Уравнение прямой в пространстве – тема очень лёгкая, так как здесь самое важное – знать нужную формулу. Тогда легко можно решить любую задачу.

Итак, через две точки M_{1}(x_{1}, y_{1}z_{1} и M_{2}(x_{2}, y_{2}, z_{2}) можно не только геометрично провести линию, но и сложить её уравнения.

За направляющий вектор возьмём overline{S} =  overline{M_{1}M} = (x_{2} - x_{1}, y_{2} - y_{1}, z_{2} - z_{1}), тогда по формуле (1) у нас получается:

{x - x_{1}over{x_{2} - x_{1}}} = {y - y_{1}over{y_{2} - y_{1}}} = {z - z_{1}over{z_{2} - z_{1}}}

(3)

 уравнение прямой в пространстве, которые проходят через две заданные точки.

Нужна помощь в написании работы?

Мы – биржа профессиональных авторов (преподавателей и доцентов вузов). Наша система гарантирует сдачу работы к сроку без плагиата. Правки вносим бесплатно.

Заказать работу

Общее уравнение прямой – переход к каноническому уравнению

Объяснение про общее уравнение прямой начнём с прямой, которая задана двумя плоскостями, что пересекаются по этой прямой.

Пусть известны их уравнения:

left{begin{aligned}A_{1}x + B_{1}y + C_{1}z + D_{1} = 0\A_{2}x + B_{2}y + C{2}z + D_{2} = 0 end{aligned}

(4)

Тогда система (4) называется общим уравнением прямой.

Чтобы перейти к каноническим уравнениям вида (1), необходимо найти вектор overline{S} и точку M_{0} этой прямой.

Точку M_{0} находим, как один из решений системы (4). Например, положив в (4) z = 0 находим x_{0}, y_{0}, тогда и точку M_{0} (x_{0}, y_{0}, 0). Направляющий вектор overline{S}, который параллелен к каждой из плоскостей P_{1} и P_{2} и перпендикулярен к их нормальным векторам overline{n_{1}} = (A_{1}, B_{1}, C_{1}) и overline{n_{2}} = (A_{2}, B_{2}, C_{2}), то есть overline{S}perp{overline{n_{1}}}, overline{S}perp{overline{n_{2}}}. (см. рис. 1). Поэтому вектор overline{S} можно найти при помощи векторного произведения overline{n_{1}} и overline{n_{2}}

overline{S} = overline{n}_{1} x overline{n}_{2} = begin{vmatrix} overline{i}&overline{j}&overline{k}\ A_{1}&B_{1}&C_{1}\ A_{2}&B_{2}&C_{2} end{vmatrix}

Найдены координаты M_{0} и overline{S} подставим в каноническое уравнение (1).

Например, от общих уравнений прямой:

left{begin{aligned} 2x + 7y - z - 4 = 0\ 4x - 9y - 2z - 8 = 0 end{aligned}

Перейдём к каноническим, положив в системе y = 0 (при нём относительно больше коэффициенты). найдём x = 2, z = 0, M_{0} (2, 0, 0). Нормальные векторы overline{n_{1}} = (2, 7, -1) и overline{n_{2}} = (4, -9, -2). Тогда направляющий вектор

Уравнение прямой

Рис. 1

 overline{S} = overline{n}_{1} x overline{n}_{2} = begin{vmatrix} overline{i}&overline{j}&overline{k}\ 2&7&-1\ 4&-9&-2 end{vmatrix} = -23overline{i} - 0overline{j} - 46overline{k},

и канонические уравнения станут:

{x - 2over{-23}} = {y - 0over{0}} = {z - 0over{-46}}arrowvert * (-23)to{x - 1over{1}} = {yover{0}} = {zover{2}}.

Угол между двумя прямыми в пространстве. Условия параллельности и перпендикулярности прямых

Угол между двумя прямыми (varphi):

{x - x_{1}over{l_{1}}} = {y - y_{1}over{m_{1}}} = {z - z_{1}over{p_{1}}} и {x - x_{2}over{l_{2}}} = {y - y_{2}over{m_{2}}} = {z - z_{2}over{p_{2}}}

равен углу между их направляющими векторами overline{S_{1}} = (l_{1}, m_{1}, p_{1}) и overline{S_{2}} = (l_{2}, m_{2}, p_{2}), поэтому

{cosvarphi = cos(overline{S}_{1}}, overline{S}_{2}}) = {l_{1}l_{2} + m_{1}m_{2} + p_{1}p_{2}}over{sqrt{l_{1}^2 + m_{1}^2 + p_{1}^2}} * {sqrt{l_{2}^2 + m_{2}^2 + p_{2}^2}}

(5)

Условия параллельности и перпендикулярности прямых соответственно запишутся:

{l_{1}over{l_{2}}} = {m_{1}over{m_{2}}} = {p_{1}over{p_{2}}} и l_{1}l_{2} + m_{1}m_{2} + p_{1}p_{2} = 0.

(6)

Примеры решения задач

Давайте рассмотрим первый пример, где можно двумя способами построить прямую:

Задача

При точке M (1, 5, 2) и направляющем векторе overline{S} = (3, 0, 4) необходимо:

  1. составить каноническое уравнение прямой;
  2. построить эту прямую.

Решение

1) По формуле (1) запишем каноническое уравнение прямой l:

{x - 1over{3}} = {y - 5over{0}} = {z - 2over{4}} = (t).

2) Рассмотрим два способа построения прямой l.

Первый способ

В системе координат XYZ строим вектор overline{S} = (3, 0, 4) и точку M (1, 5, 2) и проводим через точку M прямую параллельную вектору overline{S}.

Второй способ

По формуле (2) запишем каноническое уравнение прямой в параметрическом виде:

left{begin{aligned} x = 3t + 1\ y = 0 * t + 5\ z = 4t + 2 end{aligned} right

Уравнение прямой

На рисунке видно, что при произвольных значениях t из системы находим координаты соответствующих точек, которые принадлежат прямой l. Так при t = 1 находим координаты M_{1}(4, 5, 6).  Через две точки M и M_{1} проводим прямую l.

Очевидно, что найти острый угол между прямыми совершенно не сложно при знании темы и определённых формул. Давайте разберём такой пример:

Задача

Найти острый угол между прямыми:

{x - 4over{6}} = {y + 2over{-2}} = {zover{3}}, {x + {2}over{-2}} = {y - {5}over{-1}} = {z + 1over{-2}}

(7)

Решение

По формуле (7) получаем:

costheta = {6 * (-2) + (-2)(-1) + 3 * (-2)}over{sqrt{6^2 + (-2)^2 + 3^2} * sqrt{(-2)^2 + (-1)^2 + (-2)^2} = {-12 +2 -6over{7 * 3}} = -{16over21}.

Так как costheta = -{16over{21}} < 0, тогда угол theta тупой, theta = arccos (-{16over{21}}, а острый угол varphi = 180^0 - theta.

Ответ

varphi = arccos{16over{21}}.

Рассмотрим последний пример, где нужно составить уравнение. Здесь, как и в каждой задаче, важно знать и понимать, какой формулой нужно воспользоваться.

Задача

Составить уравнение прямой l,  которая проходит через точку M(2, -4, 3) и параллельна прямой x = -5t + 4, y = 2t, z = 8t - 5.

Решение

От параметрического уравнения  переходим к каноническому {x - 4over{(-5)}} = {yover{2}} = {z + 5over{8}}tooverline{S} = (-5, 2, 8) При условии параллельности прямых overline{S}||overline{S_{1}} то есть направляющим вектором новой прямой может служить известный вектор overline{S} = (-5, 2, 8) и по формуле (1) у нас получается:

{x - 2over{-5}} = {y - 4over{2}} = {z - 3over{8}}.

Ответ

{x - 2over{-5}} = {y - 4over{2}} = {z - 3over{8}}.

Добавить комментарий