Как составить уравнение с одним неизвестным 5 класс

Урок 17 Бесплатно Уравнение

Часто приходится описывать реальную ситуацию, процесс, явление с помощью математического языка.

Математический язык- универсальный язык, с помощью него можно однозначно и кратко описать многие закономерности, процессы, задачи и т.д.

Связать реальную жизнь и математическое описание любой ситуации нам позволяет математическая модель.

Описывая реальность с помощью математического языка, люди создают математические модели, превращающие слова в формулы, неравенства, равенства, уравнения и т.п.

Математическая модель дает возможность решать огромное количество практических (природных, технических, научных, экономических, социальных и других) задач.

Математические модели делят на:

  • Словесные.
  • Графические (схемы, графики, чертежи, рисунки и т.д.).
  • Аналитические (алгебраические: числовые равенства, неравенства, уравнения, формулы и т.д.).

На данном уроке подробно рассмотрим одну из аналитических математических моделей- уравнение.

Выясним, что такое уравнение и что называют корнем уравнения.

Рассмотрим простейшие виды уравнений.

Разберем способы и приемы решения уравнений с одним неизвестным.

Рассмотрим алгоритм и примеры решения задач с помощью уравнений.

Уравнения

Часто при решении задач приходится составлять равенства.

Два выражения (числовые или буквенные), соединенные знаком равно «=», образуют равенство.

В математике различают два вида равенств: тождества и уравнения.

Тождества- это числовые равенства, а также равенства, которые выполняются при всех допустимых значениях переменных, входящих в него.

Уравнение- это равенство, содержащее неизвестные числа, обозначенные буквами, значение которых можно определить.

Неизвестное число, входящее в уравнение, называют неизвестным членом уравнения (или просто «неизвестным»).

Чаще всего в математике неизвестные величины обозначают маленькими буквами латинского алфавита x, y, z.

У меня есть дополнительная информация к этой части урока!

Долгое время в математических выкладках не использовали буквенные обозначения и записывали выражения и уравнения словами.

В 1591 году французский ученый философ Франсуа Виет ввел буквенные обозначения. Он предложил использовать гласные буквы латинского алфавита для названия величин, а согласные для неизвестных.

Позже другой французский ученый, философ Рене Декарт предложил иную систему обозначений, связанную с латинскими буквами (которую используют по сегодняшний день).

Для неизвестных было предложено использовать последние буквы латинского алфавита (х, у, z), а для известных величин первые буквы латинского алфавита (а, b, c)

Пример 1:

4 + х = 18 является уравнением с неизвестной х.

12у – 5 = 19 является уравнением с неизвестной у.

(2 + z) – (3 – 1) = 2 является уравнением с неизвестной z.

Все три записи являются равенствами, в каждом из них есть неизвестное число, обозначенное буквой.

Пример 2:

4х – 18 не является уравнением, так как не является равенством.

24 – 5 = 19 не является уравнением, так как не содержит неизвестную.

у + 2 > 12 не является уравнением, так как не является равенством.

Решить уравнение- это значит найти неизвестное число, при котором из уравнения получается верное равенство.

Уравнение считается решенным, если все его решения найдены или доказано, что уравнение решения не имеет.

Значение неизвестного, обращающее уравнение в верное равенство, называют корнем уравнения.

Следовательно, если в уравнение вместо неизвестной подставить ее численное значение и получится верное числовое равенство, то это значение неизвестной будет решением этого уравнения.

Дано уравнение 12 – х + 3 = 10.

1) Пусть х равно 6, получаем

12 – 6 + 3 = 10

9 ≠ 10 (девять не равно десяти)

При подстановке вместо неизвестного число 6, получаем неверное числовое равенство 9 10, т.е. число 6 не является корнем уравнения.

2) Пусть х равно 5, получаем

12 – 5 + 3 = 10

10 = 10

При подстановке вместо неизвестного число 5, получаем верное числовое равенство 10 = 10, т.е. число 5 является корнем уравнения.

Уравнение может иметь разное количество корней: существуют уравнения, имеющие один единственный корень, уравнения, имеющие два, три корня.

Встречаются уравнения, вообще не имеющие верного решения, и даже такие уравнения, решением которых являются бесконечное множество решений.

7 – х = 4 уравнение имеет один корень, х = 3, любое другое значение х будет давать неверное равенство.

х = х – 15 уравнение не имеет решения, так как любое значение неизвестного х будет данное равенство обращать в неверное, не существует таких чисел, которые были бы меньше самого себя.

0 y = 0 уравнение имеет бесконечное множество верных решений, так как при умножении любого числа на 0, получается 0.

Уравнение, содержащее одну неизвестную, называют уравнением с одной неизвестной.

Уравнения с большим количеством неизвестным называют соответственно уравнением с двумя, тремя и т.д. неизвестными.

Такие уравнения и их решение будете рассматривать в старших классах.

Например, 26 – 2х = 23 – х– это уравнение с одной неизвестной х.

53 – х = 19у– это уравнение с двумя неизвестными х и у.

Любое уравнение имеет левую и правую часть.

Выражение, стоящее слева от знака равно, называют левой частью уравнения, а выражение, которое стоит справа, правой частью уравнения.

Каждый компонент, из которых состоит уравнение, называют членами этого уравнения.

Обычно все члены уравнения, содержащие неизвестное, следует группировать в левой части уравнения, а известные – в правой.

Чаще всего уравнение записывают в левой части страницы, справа делают письменные вычисления (вычислительные операции).

При решении уравнения каждое новое равенство записывается с новой строки (т.е. решение оформляется в виде столбика равенств).

Таким образом, знак равенства при решении уравнения используют только один раз в каждой строке.

Пройти тест и получить оценку можно после входа или регистрации

Общие сведения об уравнениях

Уравнения — одна из сложных тем для усвоения, но при этом они являются достаточно мощным инструментом для решения большинства задач.

С помощью уравнений описываются различные процессы, протекающие в природе. Уравнения широко применяются в других науках: в экономике, физике, биологии и химии.

В данном уроке мы попробуем понять суть простейших уравнений, научимся выражать неизвестные и решим несколько уравнений. По мере усвоения новых материалов, уравнения будут усложняться, поэтому понять основы очень важно.

Что такое уравнение?

Уравнение — это равенство, содержащее в себе переменную, значение которой требуется найти. Это значение должно быть таким, чтобы при его подстановке в исходное уравнение получалось верное числовое равенство.

Например выражение 3 + 2 = 5 является равенством. При вычислении левой части получается верное числовое равенство 5 = 5 .

А вот равенство 3 + x = 5 является уравнением, поскольку содержит в себе переменную x , значение которой можно найти. Значение должно быть таким, чтобы при подстановке этого значения в исходное уравнение, получилось верное числовое равенство.

Другими словами, мы должны найти такое значение, при котором знак равенства оправдал бы свое местоположение — левая часть должна быть равна правой части.

Уравнение 3 + x = 5 является элементарным. Значение переменной x равно числу 2. При любом другом значении равенство соблюдáться не будет

Говорят, что число 2 является корнем или решением уравнения 3 + x = 5

Корень или решение уравнения — это значение переменной, при котором уравнение обращается в верное числовое равенство.

Корней может быть несколько или не быть совсем. Решить уравнение означает найти его корни или доказать, что корней нет.

Переменную, входящую в уравнение, иначе называют неизвестным. Вы вправе называть как вам удобнее. Это синонимы.

Примечание. Словосочетание «решить уравнение» говорит самó за себя. Решить уравнение означает «уравнять» равенство — сделать его сбалансированным, чтобы левая часть равнялась правой части.

Выразить одно через другое

Изучение уравнений по традиции начинается с того, чтобы научиться выражать одно число, входящее в равенство, через ряд других. Давайте не будем нарушать эту традицию и поступим также.

Рассмотрим следующее выражение:

Данное выражение является суммой чисел 8 и 2. Значение данного выражения равно 10

Получили равенство. Теперь можно выразить любое число из этого равенства через другие числа, входящие в это же равенство. К примеру, выразим число 2.

Чтобы выразить число 2, нужно задать вопрос: «что нужно сделать с числами 10 и 8, чтобы получить число 2». Понятно, что для получения числа 2, нужно из числа 10 вычесть число 8.

Так и делаем. Записываем число 2 и через знак равенства говорим, что для получения этого числа 2 мы из числа 10 вычли число 8:

Мы выразили число 2 из равенства 8 + 2 = 10 . Как видно из примера, ничего сложного в этом нет.

При решении уравнений, в частности при выражении одного числа через другие, знак равенства удобно заменять на слово «есть». Делать это нужно мысленно, а не в самом выражении.

Так, выражая число 2 из равенства 8 + 2 = 10 мы получили равенство 2 = 10 − 8 . Данное равенство можно прочесть так:

2 есть 10 − 8

То есть знак = заменен на слово «есть». Более того, равенство 2 = 10 − 8 можно перевести с математического языка на полноценный человеческий язык. Тогда его можно будет прочитать следующим образом:

Число 2 есть разность числа 10 и числа 8

Число 2 есть разница между числом 10 и числом 8.

Но мы ограничимся лишь заменой знака равенства на слово «есть», и то будем делать это не всегда. Элементарные выражения можно понимать и без перевода математического языка на язык человеческий.

Вернём получившееся равенство 2 = 10 − 8 в первоначальное состояние:

Выразим в этот раз число 8. Что нужно сделать с остальными числами, чтобы получить число 8? Верно, нужно из числа 10 вычесть число 2

Вернем получившееся равенство 8 = 10 − 2 в первоначальное состояние:

В этот раз выразим число 10. Но оказывается, что десятку выражать не нужно, поскольку она уже выражена. Достаточно поменять местами левую и правую часть, тогда получится то, что нам нужно:

Пример 2. Рассмотрим равенство 8 − 2 = 6

Выразим из этого равенства число 8. Чтобы выразить число 8 остальные два числа нужно сложить:

Вернем получившееся равенство 8 = 6 + 2 в первоначальное состояние:

Выразим из этого равенства число 2. Чтобы выразить число 2, нужно из 8 вычесть 6

Пример 3. Рассмотрим равенство 3 × 2 = 6

Выразим число 3. Чтобы выразить число 3, нужно 6 разделить 2

Вернем получившееся равенство в первоначальное состояние:

Выразим из этого равенства число 2. Чтобы выразить число 2, нужно 6 разделить 3

Пример 4. Рассмотрим равенство

Выразим из этого равенства число 15. Чтобы выразить число 15, нужно перемножить числа 3 и 5

Вернем получившееся равенство 15 = 3 × 5 в первоначальное состояние:

Выразим из этого равенства число 5. Чтобы выразить число 5, нужно 15 разделить 3

Правила нахождения неизвестных

Рассмотрим несколько правил нахождения неизвестных. Возможно, они вам знакомы, но не мешает повторить их ещё раз. В дальнейшем их можно будет забыть, поскольку мы научимся решать уравнения, не применяя эти правила.

Вернемся к первому примеру, который мы рассматривали в предыдущей теме, где в равенстве 8 + 2 = 10 требовалось выразить число 2.

В равенстве 8 + 2 = 10 числа 8 и 2 являются слагаемыми, а число 10 — суммой.

Чтобы выразить число 2, мы поступили следующим образом:

То есть из суммы 10 вычли слагаемое 8.

Теперь представим, что в равенстве 8 + 2 = 10 вместо числа 2 располагается переменная x

В этом случае равенство 8 + 2 = 10 превращается в уравнение 8 + x = 10 , а переменная x берет на себя роль так называемого неизвестного слагаемого

Наша задача найти это неизвестное слагаемое, то есть решить уравнение 8 + x = 10 . Для нахождения неизвестного слагаемого предусмотрено следующее правило:

Чтобы найти неизвестное слагаемое, нужно из суммы вычесть известное слагаемое.

Что мы в принципе и сделали, когда выражали двойку в равенстве 8 + 2 = 10 . Чтобы выразить слагаемое 2, мы из суммы 10 вычли другое слагаемое 8

А сейчас, чтобы найти неизвестное слагаемое x , мы должны из суммы 10 вычесть известное слагаемое 8:

Если вычислить правую часть получившегося равенства, то можно узнать чему равна переменная x

Мы решили уравнение. Значение переменной x равно 2 . Для проверки значение переменной x отправляют в исходное уравнение 8 + x = 10 и подставляют вместо x. Так желательно поступать с любым решённым уравнением, поскольку нельзя быть точно уверенным, что уравнение решено правильно:

В результате получается верное числовое равенство. Значит уравнение решено правильно.

Это же правило действовало бы в случае, если неизвестным слагаемым было бы первое число 8.

В этом уравнении x — это неизвестное слагаемое, 2 — известное слагаемое, 10 — сумма. Чтобы найти неизвестное слагаемое x , нужно из суммы 10 вычесть известное слагаемое 2

Вернемся ко второму примеру из предыдущей темы, где в равенстве 8 − 2 = 6 требовалось выразить число 8.

В равенстве 8 − 2 = 6 число 8 это уменьшаемое, число 2 — вычитаемое, число 6 — разность

Чтобы выразить число 8, мы поступили следующим образом:

То есть сложили разность 6 и вычитаемое 2.

Теперь представим, что в равенстве 8 − 2 = 6 вместо числа 8 располагается переменная x

В этом случае переменная x берет на себя роль так называемого неизвестного уменьшаемого

Для нахождения неизвестного уменьшаемого предусмотрено следующее правило:

Чтобы найти неизвестное уменьшаемое, нужно к разности прибавить вычитаемое.

Что мы и сделали, когда выражали число 8 в равенстве 8 − 2 = 6 . Чтобы выразить уменьшаемое 8, мы к разности 6 прибавили вычитаемое 2.

А сейчас, чтобы найти неизвестное уменьшаемое x , мы должны к разности 6 прибавить вычитаемое 2

Если вычислить правую часть, то можно узнать чему равна переменная x

Теперь представим, что в равенстве 8 − 2 = 6 вместо числа 2 располагается переменная x

В этом случае переменная x берет на себя роль неизвестного вычитаемого

Для нахождения неизвестного вычитаемого предусмотрено следующее правило:

Чтобы найти неизвестное вычитаемое, нужно из уменьшаемого вычесть разность.

Что мы и сделали, когда выражали число 2 в равенстве 8 − 2 = 6. Чтобы выразить число 2, мы из уменьшаемого 8 вычли разность 6.

А сейчас, чтобы найти неизвестное вычитаемое x, нужно опять же из уменьшаемого 8 вычесть разность 6

Вычисляем правую часть и находим значение x

Вернемся к третьему примеру из предыдущей темы, где в равенстве 3 × 2 = 6 мы пробовали выразить число 3.

В равенстве 3 × 2 = 6 число 3 — это множимое, число 2 — множитель, число 6 — произведение

Чтобы выразить число 3 мы поступили следующим образом:

То есть разделили произведение 6 на множитель 2.

Теперь представим, что в равенстве 3 × 2 = 6 вместо числа 3 располагается переменная x

В этом случае переменная x берет на себя роль неизвестного множимого.

Для нахождения неизвестного множимого предусмотрено следующее правило:

Чтобы найти неизвестное множимое, нужно произведение разделить на множитель.

Что мы и сделали, когда выражали число 3 из равенства 3 × 2 = 6 . Произведение 6 мы разделили на множитель 2.

А сейчас для нахождения неизвестного множимого x , нужно произведение 6 разделить на множитель 2.

Вычисление правой части позволяет нам найти значение переменной x

Это же правило применимо в случае, если переменная x располагается вместо множителя, а не множимого. Представим, что в равенстве 3 × 2 = 6 вместо числа 2 располагается переменная x .

В этом случае переменная x берет на себя роль неизвестного множителя. Для нахождения неизвестного множителя предусмотрено такое же, что и для нахождения неизвестного множимого, а именно деление произведения на известный множитель:

Чтобы найти неизвестный множитель, нужно произведение разделить на множимое.

Что мы и сделали, когда выражали число 2 из равенства 3 × 2 = 6 . Тогда для получения числа 2 мы разделили произведение 6 на множимое 3.

А сейчас для нахождения неизвестного множителя x мы разделили произведение 6 на множимое 3.

Вычисление правой части равенства позволяет узнать чему равно x

Множимое и множитель вместе называют сомножителями. Поскольку правила нахождения множимого и множителя совпадают, мы можем сформулировать общее правило нахождения неизвестного сомножителя:

Чтобы найти неизвестный сомножитель, нужно произведение разделить на известный сомножитель.

Например, решим уравнение 9 × x = 18 . Переменная x является неизвестным сомножителем. Чтобы найти этот неизвестный сомножитель, нужно произведение 18 разделить на известный сомножитель 9

Отсюда .

Решим уравнение x × 3 = 27 . Переменная x является неизвестным сомножителем. Чтобы найти этот неизвестный сомножитель, нужно произведение 27 разделить на известный сомножитель 3

Отсюда .

Вернемся к четвертому примеру из предыдущей темы, где в равенстве требовалось выразить число 15. В этом равенстве число 15 — это делимое, число 5 — делитель, число 3 — частное.

Чтобы выразить число 15 мы поступили следующим образом:

То есть умножили частное 3 на делитель 5.

Теперь представим, что в равенстве вместо числа 15 располагается переменная x

В этом случае переменная x берет на себя роль неизвестного делимого.

Для нахождения неизвестного делимого предусмотрено следующее правило:

Чтобы найти неизвестное делимое, нужно частное умножить на делитель.

Что мы и сделали, когда выражали число 15 из равенства . Чтобы выразить число 15, мы умножили частное 3 на делитель 5.

А сейчас, чтобы найти неизвестное делимое x , нужно частное 3 умножить на делитель 5

Вычислим правую часть получившегося равенства. Так мы узнаем чему равна переменная x .

Теперь представим, что в равенстве вместо числа 5 располагается переменная x .

В этом случае переменная x берет на себя роль неизвестного делителя.

Для нахождения неизвестного делителя предусмотрено следующее правило:

Чтобы найти неизвестный делитель, нужно делимое разделить на частное.

Что мы и сделали, когда выражали число 5 из равенства . Чтобы выразить число 5, мы разделили делимое 15 на частное 3.

А сейчас, чтобы найти неизвестный делитель x , нужно делимое 15 разделить на частное 3

Вычислим правую часть получившегося равенства. Так мы узнаем чему равна переменная x .

Итак, для нахождения неизвестных мы изучили следующие правила:

  • Чтобы найти неизвестное слагаемое, нужно из суммы вычесть известное слагаемое;
  • Чтобы найти неизвестное уменьшаемое, нужно к разности прибавить вычитаемое;
  • Чтобы найти неизвестное вычитаемое, нужно из уменьшаемого вычесть разность;
  • Чтобы найти неизвестное множимое, нужно произведение разделить на множитель;
  • Чтобы найти неизвестный множитель, нужно произведение разделить на множимое;
  • Чтобы найти неизвестное делимое, нужно частное умножить на делитель;
  • Чтобы найти неизвестный делитель, нужно делимое разделить на частное.

Компоненты

Компонентами мы будем называть числа и переменные, входящие в равенство

Так, компонентами сложения являются слагаемые и сумма

Компонентами вычитания являются уменьшаемое, вычитаемое и разность

Компонентами умножения являются множимое, множитель и произведение

Компонентами деления являются делимое, делитель и частное

В зависимости от того, с какими компонентами мы будем иметь дело, будут применяться соответствующие правила нахождения неизвестных. Эти правила мы изучили в предыдущей теме. При решении уравнений желательно знать эти правило наизусть.

Пример 1. Найти корень уравнения 45 + x = 60

45 — слагаемое, x — неизвестное слагаемое, 60 — сумма. Имеем дело с компонентами сложения. Вспоминаем, что для нахождения неизвестного слагаемого, нужно из суммы вычесть известное слагаемое:

Вычислим правую часть, получим значение x равное 15

Значит корень уравнения 45 + x = 60 равен 15.

Чаще всего неизвестное слагаемое необходимо привести к виду при котором его можно было бы выразить.

Пример 2. Решить уравнение

Здесь в отличие от предыдущего примера, неизвестное слагаемое нельзя выразить сразу, поскольку оно содержит коэффициент 2. Наша задача привести это уравнение к виду при котором можно было бы выразить x

В данном примере мы имеем дело с компонентами сложения — слагаемыми и суммой. 2x — это первое слагаемое, 4 — второе слагаемое, 8 — сумма.

При этом слагаемое 2x содержит переменную x . После нахождения значения переменной x слагаемое 2x примет другой вид. Поэтому слагаемое 2x можно полностью принять за неизвестное слагаемое:

Теперь применяем правило нахождения неизвестного слагаемого. Вычитаем из суммы известное слагаемое:

Вычислим правую часть получившегося уравнения:

Мы получили новое уравнение . Теперь мы имеем дело с компонентами умножения: множимым, множителем и произведением. 2 — множимое, x — множитель, 4 — произведение

При этом переменная x является не просто множителем, а неизвестным множителем

Чтобы найти этот неизвестный множитель, нужно произведение разделить на множимое:

Вычислим правую часть, получим значение переменной x

Для проверки найденный корень отправим в исходное уравнение и подставим вместо x

Получили верное числовое равенство. Значит уравнение решено правильно.

Пример 3. Решить уравнение 3x + 9x + 16x = 56

Cразу выразить неизвестное x нельзя. Сначала нужно привести данное уравнение к виду при котором его можно было бы выразить.

Приведем подобные слагаемые в левой части данного уравнения:

Имеем дело с компонентами умножения. 28 — множимое, x — множитель, 56 — произведение. При этом x является неизвестным множителем. Чтобы найти неизвестный множитель, нужно произведение разделить на множимое:

Отсюда x равен 2

Равносильные уравнения

В предыдущем примере при решении уравнения 3x + 9x + 16x = 56 , мы привели подобные слагаемые в левой части уравнения. В результате получили новое уравнение 28x = 56 . Старое уравнение 3x + 9x + 16x = 56 и получившееся новое уравнение 28x = 56 называют равносильными уравнениями, поскольку их корни совпадают.

Уравнения называют равносильными, если их корни совпадают.

Проверим это. Для уравнения 3x + 9x + 16x = 56 мы нашли корень равный 2 . Подставим этот корень сначала в уравнение 3x + 9x + 16x = 56 , а затем в уравнение 28x = 56 , которое получилось в результате приведения подобных слагаемых в левой части предыдущего уравнения. Мы должны получить верные числовые равенства

Согласно порядку действий, в первую очередь выполняется умножение:

Подставим корень 2 во второе уравнение 28x = 56

Видим, что у обоих уравнений корни совпадают. Значит уравнения 3x + 9x + 16x = 56 и 28x = 56 действительно являются равносильными.

Для решения уравнения 3x + 9x + 16x = 56 мы воспользовались одним из тождественных преобразований — приведением подобных слагаемых. Правильное тождественное преобразование уравнения позволило нам получить равносильное уравнение 28x = 56 , которое проще решать.

Из тождественных преобразований на данный момент мы умеем только сокращать дроби, приводить подобные слагаемые, выносить общий множитель за скобки, а также раскрывать скобки. Существуют и другие преобразования, которые следует знать. Но для общего представления о тождественных преобразованиях уравнений, изученных нами тем вполне хватает.

Рассмотрим некоторые преобразования, которые позволяют получить равносильное уравнение

Если к обеим частям уравнения прибавить одно и то же число, то получится уравнение равносильное данному.

Если из обеих частей уравнения вычесть одно и то же число, то получится уравнение равносильное данному.

Другими словами, корень уравнения не изменится, если к обеим частям данного уравнения прибавить (или вычесть из обеих частей) одно и то же число.

Пример 1. Решить уравнение

Вычтем из обеих частей уравнения число 10

Приведем подобные слагаемые в обеих частях:

Получили уравнение 5x = 10 . Имеем дело с компонентами умножения. Чтобы найти неизвестный сомножитель x , нужно произведение 10 разделить на известный сомножитель 5.

Отсюда .

Вернемся к исходному уравнению и подставим вместо x найденное значение 2

Получили верное числовое равенство. Значит уравнение решено правильно.

Решая уравнение мы вычли из обеих частей уравнения число 10 . В результате получили равносильное уравнение . Корень этого уравнения, как и уравнения так же равен 2

Пример 2. Решить уравнение 4(x + 3) = 16

Раскроем скобки в левой части равенства:

Вычтем из обеих частей уравнения число 12

Приведем подобные слагаемые в обеих частях уравнения:

В левой части останется 4x , а в правой части число 4

Получили уравнение 4x = 4 . Имеем дело с компонентами умножения. Чтобы найти неизвестный сомножитель x , нужно произведение 4 разделить на известный сомножитель 4

Отсюда

Вернемся к исходному уравнению 4(x + 3) = 16 и подставим вместо x найденное значение 1

Получили верное числовое равенство. Значит уравнение решено правильно.

Решая уравнение 4(x + 3) = 16 мы вычли из обеих частей уравнения число 12 . В результате получили равносильное уравнение 4x = 4 . Корень этого уравнения, как и уравнения 4(x + 3) = 16 так же равен 1

Пример 3. Решить уравнение

Раскроем скобки в левой части равенства:

Прибавим к обеим частям уравнения число 8

Приведем подобные слагаемые в обеих частях уравнения:

В левой части останется 2x , а в правой части число 9

В получившемся уравнении 2x = 9 выразим неизвестное слагаемое x

Отсюда

Вернемся к исходному уравнению и подставим вместо x найденное значение 4,5

Получили верное числовое равенство. Значит уравнение решено правильно.

Решая уравнение мы прибавили к обеим частям уравнения число 8. В результате получили равносильное уравнение . Корень этого уравнения, как и уравнения так же равен 4,5

Следующее правило, которое позволяет получить равносильное уравнение, выглядит следующим образом

Если в уравнении перенести слагаемое из одной части в другую, изменив его знак, то получится уравнение равносильное данному.

То есть корень уравнения не изменится, если мы перенесем слагаемое из одной части уравнения в другую, изменив его знак. Это свойство является одним из важных и одним из часто используемых при решении уравнений.

Рассмотрим следующее уравнение:

Корень данного уравнения равен 2. Подставим вместо x этот корень и проверим получается ли верное числовое равенство

Получается верное равенство. Значит число 2 действительно является корнем уравнения .

Теперь попробуем поэкспериментировать со слагаемыми этого уравнения, перенося их из одной части в другую, изменяя знаки.

Например, слагаемое 3x располагается в левой части равенства. Перенесём его в правую часть, изменив знак на противоположный:

Получилось уравнение 12 = 9x − 3x . Приведем подобные слагаемые в правой части данного уравнения:

Имеем дело с компонентами умножения. Переменная x является неизвестным сомножителем. Найдём этот известный сомножитель:

Отсюда x = 2 . Как видим, корень уравнения не изменился. Значит уравнения 12 + 3x = 9x и 12 = 9x − 3x являются равносильными.

На самом деле данное преобразование является упрощенным методом предыдущего преобразования, где к обеим частям уравнения прибавлялось (или вычиталось) одно и то же число.

Мы сказали, что в уравнении 12 + 3x = 9x слагаемое 3x было перенесено в правую часть, изменив знак. В реальности же происходило следующее: из обеих частей уравнения вычли слагаемое 3x

Затем в левой части были приведены подобные слагаемые и получено уравнение 12 = 9x − 3x. Затем опять были приведены подобные слагаемые, но уже в правой части, и получено уравнение 12 = 6x.

Но так называемый «перенос» более удобен для подобных уравнений, поэтому он и получил такое широкое распространение. Решая уравнения, мы часто будем пользоваться именно этим преобразованием.

Равносильными также являются уравнения 12 + 3x = 9x и 3x − 9x = −12 . В этот раз в уравнении 12 + 3x = 9x слагаемое 12 было перенесено в правую часть, а слагаемое 9x в левую. Не следует забывать, что знаки этих слагаемых были изменены во время переноса

Следующее правило, которое позволяет получить равносильное уравнение, выглядит следующим образом:

Если обе части уравнения умножить или разделить на одно и то же число, не равное нулю, то получится уравнение равносильное данному.

Другими словами, корни уравнения не изменятся, если обе его части умножить или разделить на одно и то же число. Это действие часто применяется тогда, когда нужно решить уравнение содержащее дробные выражения.

Сначала рассмотрим примеры, в которых обе части уравнения будут умножаться на одно и то же число.

Пример 1. Решить уравнение

При решении уравнений, содержащих дробные выражения, сначала принято упростить это уравнение.

В данном случае мы имеем дело именно с таким уравнением. В целях упрощения данного уравнения обе его части можно умножить на 8:

Мы помним, что для умножения дроби на число, нужно числитель данной дроби умножить на это число. У нас имеются две дроби и каждая из них умножается на число 8. Наша задача умножить числители дробей на это число 8

Теперь происходит самое интересное. В числителях и знаменателях обеих дробей содержится множитель 8, который можно сократить на 8. Это позволит нам избавиться от дробного выражения:

В результате останется простейшее уравнение

Ну и нетрудно догадаться, что корень этого уравнения равен 4

Вернемся к исходному уравнению и подставим вместо x найденное значение 4

Получается верное числовое равенство. Значит уравнение решено правильно.

При решении данного уравнения мы умножили обе его части на 8. В результате получили уравнение . Корень этого уравнения, как и уравнения равен 4. Значит эти уравнения равносильны.

Множитель на который умножаются обе части уравнения принято записывать перед частью уравнения, а не после неё. Так, решая уравнение , мы умножили обе части на множитель 8 и получили следующую запись:

От этого корень уравнения не изменился, но если бы мы сделали это находясь в школе, то нам сделали бы замечание, поскольку в алгебре множитель принято записывать перед тем выражением, с которым он перемножается. Поэтому умножение обеих частей уравнения на множитель 8 желательно переписать следующим образом:

Пример 2. Решить уравнение

Умнóжим обе части уравнения на 15

В левой части множители 15 можно сократить на 15, а в правой части множители 15 и 5 можно сократить на 5

Перепишем то, что у нас осталось:

Раскроем скобки в правой части уравнения:

Перенесем слагаемое x из левой части уравнения в правую часть, изменив знак. А слагаемое 15 из правой части уравнения перенесем в левую часть, опять же изменив знак:

Приведем подобные слагаемые в обеих частях, получим

Имеем дело с компонентами умножения. Переменная x является неизвестным сомножителем. Найдём этот известный сомножитель:

Отсюда

Вернемся к исходному уравнению и подставим вместо x найденное значение 5

Получается верное числовое равенство. Значит уравнение решено правильно. При решении данного уравнения мы умножили обе го части на 15 . Далее выполняя тождественные преобразования, мы получили уравнение 10 = 2x . Корень этого уравнения, как и уравнения равен 5 . Значит эти уравнения равносильны.

Пример 3. Решить уравнение

Умнóжим обе части уравнения на 3

В левой части можно сократить две тройки, а правая часть будет равна 18

Останется простейшее уравнение . Имеем дело с компонентами умножения. Переменная x является неизвестным сомножителем. Найдём этот известный сомножитель:

Отсюда

Вернемся к исходному уравнению и подставим вместо x найденное значение 9

Получается верное числовое равенство. Значит уравнение решено правильно.

Пример 4. Решить уравнение

Умнóжим обе части уравнения на 6

В левой части уравнения раскроем скобки. В правой части множитель 6 можно поднять в числитель:

Сократим в обеих частях уравнениях то, что можно сократить:

Перепишем то, что у нас осталось:

Раскроем скобки в обеих частях уравнения:

Воспользуемся переносом слагаемых. Слагаемые, содержащие неизвестное x , сгруппируем в левой части уравнения, а слагаемые свободные от неизвестных — в правой:

Приведем подобные слагаемые в обеих частях:

Теперь найдем значение переменной x . Для этого разделим произведение 28 на известный сомножитель 7

Вернемся к исходному уравнению и подставим вместо x найденное значение 4

Получилось верное числовое равенство. Значит уравнение решено правильно.

Пример 5. Решить уравнение

Раскроем скобки в обеих частях уравнения там, где это можно:

Умнóжим обе части уравнения на 15

Раскроем скобки в обеих частях уравнения:

Сократим в обеих частях уравнения, то что можно сократить:

Перепишем то, что у нас осталось:

Раскроем скобки там, где это можно:

Воспользуемся переносом слагаемых. Слагаемые, содержащие неизвестное, сгруппируем в левой части уравнения, а слагаемые, свободные от неизвестных — в правой. Не забываем, что во время переноса, слагаемые меняют свои знаки на противоположные:

Приведем подобные слагаемые в обеих частях уравнения:

Найдём значение x

В получившемся ответе можно выделить целую часть:

Вернемся к исходному уравнению и подставим вместо x найденное значение

Получается довольно громоздкое выражение. Воспользуемся переменными. Левую часть равенства занесем в переменную A , а правую часть равенства в переменную B

Наша задача состоит в том, чтобы убедиться равна ли левая часть правой. Другими словами, доказать равенство A = B

Найдем значение выражения, находящегося в переменной А.

Значение переменной А равно . Теперь найдем значение переменной B . То есть значение правой части нашего равенства. Если и оно равно , то уравнение будет решено верно

Видим, что значение переменной B , как и значение переменной A равно . Это значит, что левая часть равна правой части. Отсюда делаем вывод, что уравнение решено правильно.

Теперь попробуем не умножать обе части уравнения на одно и то же число, а делить.

Рассмотрим уравнение 30x + 14x + 14 = 70x − 40x + 42 . Решим его обычным методом: слагаемые, содержащие неизвестные, сгруппируем в левой части уравнения, а слагаемые, свободные от неизвестных — в правой. Далее выполняя известные тождественные преобразования, найдем значение x

Подставим найденное значение 2 вместо x в исходное уравнение:

Теперь попробуем разделить все слагаемые уравнения 30x + 14x + 14 = 70x − 40x + 42 на какое-нибудь число. Замечаем, что все слагаемые этого уравнения имеют общий множитель 2. На него и разделим каждое слагаемое:

Выполним сокращение в каждом слагаемом:

Перепишем то, что у нас осталось:

Решим это уравнение, пользуясь известными тождественными преобразованиями:

Получили корень 2 . Значит уравнения 15x + 7x + 7 = 35x − 20x + 21 и 30x + 14x + 14 = 70x − 40x + 42 равносильны.

Деление обеих частей уравнения на одно и то же число позволяет освобождать неизвестное от коэффициента. В предыдущем примере когда мы получили уравнение 7x = 14 , нам потребовалось разделить произведение 14 на известный сомножитель 7. Но если бы мы в левой части освободили неизвестное от коэффициента 7, корень нашелся бы сразу. Для этого достаточно было разделить обе части на 7

Этим методом мы тоже будем пользоваться часто.

Умножение на минус единицу

Если обе части уравнения умножить на минус единицу, то получится уравнение равносильное данному.

Это правило следует из того, что от умножения (или деления) обеих частей уравнения на одно и то же число, корень данного уравнения не меняется. А значит корень не поменяется если обе его части умножить на −1 .

Данное правило позволяет поменять знаки всех компонентов, входящих в уравнение. Для чего это нужно? Опять же, чтобы получить равносильное уравнение, которое проще решать.

Рассмотрим уравнение . Чему равен корень этого уравнения?

Прибавим к обеим частям уравнения число 5

Приведем подобные слагаемые:

А теперь вспомним про коэффициент буквенного выражения. Что же представляет собой левая часть уравнения . Это есть произведение минус единицы и переменной x

То есть минус, стоящий перед переменной x, относится не к самой переменной x , а к единице, которую мы не видим, поскольку коэффициент 1 принято не записывать. Это означает, что уравнение на самом деле выглядит следующим образом:

Имеем дело с компонентами умножения. Чтобы найти х , нужно произведение −5 разделить на известный сомножитель −1 .

или разделить обе части уравнения на −1 , что еще проще

Итак, корень уравнения равен 5 . Для проверки подставим его в исходное уравнение. Не забываем, что в исходном уравнении минус стоящий перед переменной x относится к невидимой единице

Получилось верное числовое равенство. Значит уравнение решено верно.

Теперь попробуем умножить обе части уравнения на минус единицу:

После раскрытия скобок в левой части образуется выражение , а правая часть будет равна 10

Корень этого уравнения, как и уравнения равен 5

Значит уравнения и равносильны.

Пример 2. Решить уравнение

В данном уравнении все компоненты являются отрицательными. С положительными компонентами работать удобнее, чем с отрицательными, поэтому поменяем знаки всех компонентов, входящих в уравнение . Для этого умнóжим обе части данного уравнения на −1 .

Понятно, что от умножения на −1 любое число поменяет свой знак на противоположный. Поэтому саму процедуру умножения на −1 и раскрытие скобок подробно не расписывают, а сразу записывают компоненты уравнения с противоположными знаками.

Так, умножение уравнения на −1 можно записать подробно следующим образом:

либо можно просто поменять знаки всех компонентов:

Получится то же самое, но разница будет в том, что мы сэкономим себе время.

Итак, умножив обе части уравнения на −1 , мы получили уравнение . Решим данное уравнение. Из обеих частей вычтем число 4 и разделим обе части на 3

Когда корень найден, переменную обычно записывают в левой части, а её значение в правой, что мы и сделали.

Пример 3. Решить уравнение

Умнóжим обе части уравнения на −1 . Тогда все компоненты поменяют свои знаки на противоположные:

Из обеих частей получившегося уравнения вычтем 2x и приведем подобные слагаемые:

Прибавим к обеим частям уравнения единицу и приведем подобные слагаемые:

Приравнивание к нулю

Недавно мы узнали, что если в уравнении перенести слагаемое из одной части в другую, изменив его знак, то получится уравнение равносильное данному.

А что будет если перенести из одной части в другую не одно слагаемое, а все слагаемые? Верно, в той части откуда забрали все слагаемые останется ноль. Иными словами, не останется ничего.

В качестве примера рассмотрим уравнение . Решим данное уравнение, как обычно — слагаемые, содержащие неизвестные сгруппируем в одной части, а числовые слагаемые, свободные от неизвестных оставим в другой. Далее выполняя известные тождественные преобразования, найдем значение переменной x

Теперь попробуем решить это же уравнение, приравняв все его компоненты к нулю. Для этого перенесем все слагаемые из правой части в левую, изменив знаки:

Приведем подобные слагаемые в левой части:

Прибавим к обеим частям 77 , и разделим обе части на 7

Альтернатива правилам нахождения неизвестных

Очевидно, что зная о тождественных преобразованиях уравнений, можно не заучивать наизусть правила нахождения неизвестных.

К примеру, для нахождения неизвестного в уравнении мы произведение 10 делили на известный сомножитель 2

Но если в уравнении обе части разделить на 2 корень найдется сразу. В левой части уравнения в числителе множитель 2 и в знаменателе множитель 2 сократятся на 2. А правая часть будет равна 5

Уравнения вида мы решали выражая неизвестное слагаемое:

Но можно воспользоваться тождественными преобразованиями, которые мы сегодня изучили. В уравнении слагаемое 4 можно перенести в правую часть, изменив знак:

Далее разделить обе части на 2

В левой части уравнения сократятся две двойки. Правая часть будет равна 2. Отсюда .

Либо можно было из обеих частей уравнения вычесть 4. Тогда получилось бы следующее:

В случае с уравнениями вида удобнее делить произведение на известный сомножитель. Сравним оба решения:

Первое решение намного короче и аккуратнее. Второе решение можно значительно укоротить, если выполнить деление в уме.

Тем не менее, необходимо знать оба метода, и только затем использовать тот, который больше нравится.

Когда корней несколько

Уравнение может иметь несколько корней. Например уравнение x(x + 9) = 0 имеет два корня: 0 и −9 .

В уравнении x(x + 9) = 0 нужно было найти такое значение x при котором левая часть была бы равна нулю. В левой части этого уравнения содержатся выражения x и (x + 9) , которые являются сомножителями. Из законов умножения мы знаем, что произведение равно нулю, если хотя бы один из сомножителей равен нулю (или первый сомножитель или второй).

То есть в уравнении x(x + 9) = 0 равенство будет достигаться, если x будет равен нулю или (x + 9) будет равно нулю.

Приравняв к нулю оба этих выражения, мы сможем найти корни уравнения x(x + 9) = 0 . Первый корень, как видно из примера, нашелся сразу. Для нахождения второго корня нужно решить элементарное уравнение x + 9 = 0 . Несложно догадаться, что корень этого уравнения равен −9 . Проверка показывает, что корень верный:

Пример 2. Решить уравнение

Данное уравнение имеет два корня: 1 и 2. Левая часть уравнения является произведение выражений (x − 1) и (x − 2) . А произведение равно нулю, если хотя бы один из сомножителей равен нулю (или сомножитель (x − 1) или сомножитель (x − 2) ).

Найдем такое x при котором выражения (x − 1) или (x − 2) обращаются в нули:

Подставляем по-очереди найденные значения в исходное уравнение и убеждаемся, что при этих значениях левая часть равняется нулю:

Когда корней бесконечно много

Уравнение может иметь бесконечно много корней. То есть подставив в такое уравнение любое число, мы получим верное числовое равенство.

Пример 1. Решить уравнение

Корнем данного уравнения является любое число. Если раскрыть скобки в левой части уравнения и привести подобные слагаемые, то получится равенство 14 = 14 . Это равенство будет получаться при любом x

Пример 2. Решить уравнение

Корнем данного уравнения является любое число. Если раскрыть скобки в левой части уравнения, то получится равенство 10x + 12 = 10x + 12. Это равенство будет получаться при любом x

Когда корней нет

Случается и так, что уравнение вовсе не имеет решений, то есть не имеет корней. Например уравнение не имеет корней, поскольку при любом значении x , левая часть уравнения не будет равна правой части. Например, пусть . Тогда уравнение примет следующий вид

Пусть

Пример 2. Решить уравнение

Раскроем скобки в левой части равенства:

Приведем подобные слагаемые:

Видим, что левая часть не равна правой части. И так будет при любом значении y . Например, пусть y = 3 .

Буквенные уравнения

Уравнение может содержать не только числа с переменными, но и буквы.

Например, формула нахождения скорости является буквенным уравнением:

Данное уравнение описывает скорость движения тела при равноускоренном движении.

Полезным навыком является умение выразить любой компонент, входящий в буквенное уравнение. Например, чтобы из уравнения определить расстояние, нужно выразить переменную s .

Умнóжим обе части уравнения на t

В правой части переменные t сократим на t и перепишем то, что у нас осталось:

В получившемся уравнении левую и правую часть поменяем местами:

У нас получилась формула нахождения расстояния, которую мы изучали ранее.

Попробуем из уравнения определить время. Для этого нужно выразить переменную t .

Умнóжим обе части уравнения на t

В правой части переменные t сократим на t и перепишем то, что у нас осталось:

В получившемся уравнении v × t = s обе части разделим на v

В левой части переменные v сократим на v и перепишем то, что у нас осталось:

У нас получилась формула определения времени, которую мы изучали ранее.

Предположим, что скорость поезда равна 50 км/ч

А расстояние равно 100 км

Тогда буквенное уравнение примет следующий вид

Из этого уравнения можно найти время. Для этого нужно суметь выразить переменную t . Можно воспользоваться правилом нахождения неизвестного делителя, разделив делимое на частное и таким образом определить значение переменной t

либо можно воспользоваться тождественными преобразованиями. Сначала умножить обе части уравнения на t

Затем разделить обе части на 50

Пример 2. Дано буквенное уравнение . Выразите из данного уравнения x

Вычтем из обеих частей уравнения a

Разделим обе части уравнения на b

Теперь, если нам попадется уравнение вида a + bx = c , то у нас будет готовое решение. Достаточно будет подставить в него нужные значения. Те значения, которые будут подставляться вместо букв a, b, c принято называть параметрами. А уравнения вида a + bx = c называют уравнением с параметрами. В зависимости от параметров, корень будет меняться.

Решим уравнение 2 + 4x = 10 . Оно похоже на буквенное уравнение a + bx = c . Вместо того, чтобы выполнять тождественные преобразования, мы можем воспользоваться готовым решением. Сравним оба решения:

Видим, что второе решение намного проще и короче.

Для готового решения необходимо сделать небольшое замечание. Параметр b не должен быть равным нулю (b ≠ 0) , поскольку деление на ноль на допускается.

Пример 3. Дано буквенное уравнение . Выразите из данного уравнения x

Раскроем скобки в обеих частях уравнения

Воспользуемся переносом слагаемых. Параметры, содержащие переменную x , сгруппируем в левой части уравнения, а параметры свободные от этой переменной — в правой.

В левой части вынесем за скобки множитель x

Разделим обе части на выражение a − b

В левой части числитель и знаменатель можно сократить на a − b . Так окончательно выразится переменная x

Теперь, если нам попадется уравнение вида a(x − c) = b(x + d) , то у нас будет готовое решение. Достаточно будет подставить в него нужные значения.

Допустим нам дано уравнение 4(x − 3) = 2(x + 4) . Оно похоже на уравнение a(x − c) = b(x + d) . Решим его двумя способами: при помощи тождественных преобразований и при помощи готового решения:

Для удобства вытащим из уравнения 4(x − 3) = 2(x + 4) значения параметров a, b, c, d . Это позволит нам не ошибиться при подстановке:

Как и в прошлом примере знаменатель здесь не должен быть равным нулю (a − b ≠ 0) . Если нам встретится уравнение вида a(x − c) = b(x + d) в котором параметры a и b будут одинаковыми, мы сможем не решая его сказать, что у данного уравнения корней нет, поскольку разность одинаковых чисел равна нулю.

Например, уравнение 2(x − 3) = 2(x + 4) является уравнением вида a(x − c) = b(x + d) . В уравнении 2(x − 3) = 2(x + 4) параметры a и b одинаковые. Если мы начнём его решать, то придем к тому, что левая часть не будет равна правой части:

Пример 4. Дано буквенное уравнение . Выразите из данного уравнения x

Приведем левую часть уравнения к общему знаменателю:

Умнóжим обе части на a

В левой части x вынесем за скобки

Разделим обе части на выражение (1 − a)

Линейные уравнения с одним неизвестным

Рассмотренные в данном уроке уравнения называют линейными уравнениями первой степени с одним неизвестным.

Если уравнение дано в первой степени, не содержит деления на неизвестное, а также не содержит корней из неизвестного, то его можно назвать линейным. Мы еще не изучали степени и корни, поэтому чтобы не усложнять себе жизнь, слово «линейный» будем понимать как «простой».

Большинство уравнений, решенных в данном уроке, в конечном итоге сводились к простейшему уравнению, в котором нужно было произведение разделить на известный сомножитель. Таковым к примеру является уравнение 2 (x + 3) = 16 . Давайте решим его.

Раскроем скобки в левой части уравнения, получим 2 x + 6 = 16. Перенесем слагаемое 6 в правую часть, изменив знак. Тогда получим 2 x = 16 − 6. Вычислим правую часть, получим 2x = 10. Чтобы найти x , разделим произведение 10 на известный сомножитель 2. Отсюда x = 5.

Уравнение 2 (x + 3) = 16 является линейным. Оно свелось к уравнению 2x = 10 , для нахождения корня которого потребовалось разделить произведение на известный сомножитель. Такое простейшее уравнение называют линейным уравнением первой степени с одним неизвестным в каноническом виде. Слово «канонический» является синонимом слов «простейший» или «нормальный».

Линейное уравнение первой степени с одним неизвестным в каноническом виде называют уравнение вида ax = b.

Полученное нами уравнение 2x = 10 является линейным уравнением первой степени с одним неизвестным в каноническом виде. У этого уравнения первая степень, одно неизвестное, оно не содержит деления на неизвестное и не содержит корней из неизвестного, и представлено оно в каноническом виде, то есть в простейшем виде при котором легко можно определить значение x . Вместо параметров a и b в нашем уравнении содержатся числа 2 и 10. Но подобное уравнение может содержать и другие числа: положительные, отрицательные или равные нулю.

Если в линейном уравнении a = 0 и b = 0 , то уравнение имеет бесконечно много корней. Действительно, если a равно нулю и b равно нулю, то линейное уравнение ax = b примет вид 0x = 0 . При любом значении x левая часть будет равна правой части.

Если в линейном уравнении a = 0 и b ≠ 0 , то уравнение корней не имеет. Действительно, если a равно нулю и b равно какому-нибудь числу, не равному нулю, скажем числу 5, то уравнение ax = b примет вид 0x = 5 . Левая часть будет равна нулю, а правая часть пяти. А ноль не равен пяти.

Если в линейном уравнении a ≠ 0 , и b равно любому числу, то уравнение имеет один корень. Он определяется делением параметра b на параметр a

Действительно, если a равно какому-нибудь числу, не равному нулю, скажем числу 3 , и b равно какому-нибудь числу, скажем числу 6 , то уравнение примет вид .
Отсюда .

Существует и другая форма записи линейного уравнения первой степени с одним неизвестным. Выглядит она следующим образом: ax − b = 0 . Это то же самое уравнение, что и ax = b , но параметр b перенесен в левую часть с противоположным знаком. Такие уравнение мы тоже решали в данном уроке. Например, уравнение 7x − 77 = 0 . Уравнение вида ax − b = 0 называют линейным уравнением первой степени с одним неизвестным в общем виде.

В будущем после изучения рациональных выражений, мы рассмотрим такие понятия, как посторонние корни и потеря корней. А пока рассмотренного в данном уроке будет достаточным.

Памятка : “Решение уравнений”, 5 класс

Обращаем Ваше внимание, что в соответствии с Федеральным законом N 273-ФЗ «Об образовании в Российской Федерации» в организациях, осуществляющих образовательную деятельность, организовывается обучение и воспитание обучающихся с ОВЗ как совместно с другими обучающимися, так и в отдельных классах или группах.

(Х – 87) – 27 = 36; Х-87 в уравнении является уменьшаемым. Чтобы найти неизвестное уменьшаемое , нужно к разности прибавить вычитаемое

Х – 87 = 63; х в уравнении является уменьшаемым. Чтобы найти неизвестное уменьшаемое , нужно к разности прибавить вычитаемое

Проверка: (150 – 87) – 27 = 36;

87- ( 41 + У ) = 22; 41 + У в уравнении является вычитаемым . Чтобы найти неизвестное вычитаемое, нужно из уменьшаемого вычесть разность

41 + У = 65; У в уравнении является слагаемым. Чтобы найти неизвестное слагаемое , нужно из суммы вычесть известное слагаемое

Проверка: 87- ( 41 + 24 ) = 22;

(у – 35) + 12 = 32; у – 35 в уравнении является слагаемым. Чтобы найти неизвестное слагаемое , нужно из суммы вычесть известное слагаемое

у – 35 = 20; у в уравнении является уменьшаемым. Чтобы найти неизвестное уменьшаемое , нужно к разности прибавить вычитаемое

(237 + х) – 583 = 149;

468 – ( 259 – х) = 382;

(237 + х) – 583 = 149;

237 + х = 149 + 583;

(237 + х) – 583 = 149;

237 + х – 583 = 149;

х – (583 – 237) = 149;

468 – ( 259 – х) = 382;

259 – х = 468 – 382;

468 – ( 259 – х) = 382; 468 – 259 + х = 382;

Решение уравнений, приведение подобных слагаемых

Пример 1: 8х-х=49 ; сначала запишем знаки умножения,

8*х-1*х=49 ; затем воспользуемся распределительным свойством (вынесем общую переменную за скобки)

Х*7=49 ; х является неизвестным множителем . Чтобы найти неизвестный множитель , нужно произведение разделить на известный множитель

Пример 2: 2х+5х+350=700 ; воспользуемся распределительным свойством (вынесем общую переменную за скобки)

Х*(2+5)+350=700 ; приведем подобные слагаемые (т.е. сложим числа в скобках)

является неизвестным слагаемым . Чтобы найти неизвестное слагаемое нужно из суммы вычесть известное слагаемое

7х=350; х является неизвестным множителем . Чтобы найти неизвестный множитель , нужно произведение разделить на известный множитель

2*50 + 5*50 + 350 = 700;

100 + 250 + 350 = 700;

Пример: 270: х + 2 = 47;

( 270 : х – является слагаемым.

Чтобы найти неизвестное слагаемое нужно из суммы вычесть известное слагаемое

( х является делителем . Чтобы найти неизвестный делитель , нужно делимое разделить на частное)

Пример: а : 5 – 12 = 23;

Чтобы найти неизвестное уменьшаемое , нужно к разности прибавить вычитаемое )

( а является делимым. Чтобы найти неизвестное делимое , нужно частное умножить на делитель .

Курс повышения квалификации

Дистанционное обучение как современный формат преподавания

  • Сейчас обучается 945 человек из 80 регионов

Курс профессиональной переподготовки

Математика: теория и методика преподавания в образовательной организации

  • Сейчас обучается 687 человек из 75 регионов

Курс повышения квалификации

Методика обучения математике в основной и средней школе в условиях реализации ФГОС ОО

  • Сейчас обучается 315 человек из 69 регионов

Ищем педагогов в команду «Инфоурок»

Дистанционные курсы для педагогов

«Взбодрись! Нейрогимнастика для успешной учёбы и комфортной жизни»

Свидетельство и скидка на обучение каждому участнику

Найдите материал к любому уроку, указав свой предмет (категорию), класс, учебник и тему:

5 592 403 материала в базе

Материал подходит для УМК

«Математика», Виленкин Н.Я., Жохов В.И. и др.

Самые массовые международные дистанционные

Школьные Инфоконкурсы 2022

33 конкурса для учеников 1–11 классов и дошкольников от проекта «Инфоурок»

«Психологические методы развития навыков эффективного общения и чтения на английском языке у младших школьников»

Свидетельство и скидка на обучение каждому участнику

Другие материалы

  • 09.12.2019
  • 256
  • 2
  • 08.12.2019
  • 254
  • 0
  • 19.11.2019
  • 200
  • 2
  • 18.11.2019
  • 903
  • 7
  • 18.11.2019
  • 312
  • 0
  • 17.11.2019
  • 321
  • 0
  • 17.11.2019
  • 300
  • 10
  • 17.11.2019
  • 219
  • 4

Вам будут интересны эти курсы:

Оставьте свой комментарий

Авторизуйтесь, чтобы задавать вопросы.

Добавить в избранное

  • 15.12.2019 56109
  • DOCX 17.4 кбайт
  • 6501 скачивание
  • Рейтинг: 5 из 5
  • Оцените материал:

Настоящий материал опубликован пользователем Кретинина Светлана Сергеевна. Инфоурок является информационным посредником и предоставляет пользователям возможность размещать на сайте методические материалы. Всю ответственность за опубликованные материалы, содержащиеся в них сведения, а также за соблюдение авторских прав несут пользователи, загрузившие материал на сайт

Если Вы считаете, что материал нарушает авторские права либо по каким-то другим причинам должен быть удален с сайта, Вы можете оставить жалобу на материал.

Автор материала

  • На сайте: 4 года и 5 месяцев
  • Подписчики: 0
  • Всего просмотров: 60797
  • Всего материалов: 9

Московский институт профессиональной
переподготовки и повышения
квалификации педагогов

Дистанционные курсы
для педагогов

663 курса от 690 рублей

Выбрать курс со скидкой

Выдаём документы
установленного образца!

Учителя о ЕГЭ: секреты успешной подготовки

Время чтения: 11 минут

В Швеции запретят использовать мобильные телефоны на уроках

Время чтения: 1 минута

В Белгородской области отменяют занятия в школах и детсадах на границе с Украиной

Время чтения: 0 минут

В приграничных пунктах Брянской области на день приостановили занятия в школах

Время чтения: 0 минут

РДШ организовало сбор гуманитарной помощи для детей из ДНР

Время чтения: 1 минута

Курские власти перевели на дистант школьников в районах на границе с Украиной

Время чтения: 1 минута

Каждый второй ребенок в школе подвергался психической агрессии

Время чтения: 3 минуты

Подарочные сертификаты

Ответственность за разрешение любых спорных моментов, касающихся самих материалов и их содержания, берут на себя пользователи, разместившие материал на сайте. Однако администрация сайта готова оказать всяческую поддержку в решении любых вопросов, связанных с работой и содержанием сайта. Если Вы заметили, что на данном сайте незаконно используются материалы, сообщите об этом администрации сайта через форму обратной связи.

Все материалы, размещенные на сайте, созданы авторами сайта либо размещены пользователями сайта и представлены на сайте исключительно для ознакомления. Авторские права на материалы принадлежат их законным авторам. Частичное или полное копирование материалов сайта без письменного разрешения администрации сайта запрещено! Мнение администрации может не совпадать с точкой зрения авторов.

[spoiler title=”источники:”]

http://infourok.ru/pamyatka-reshenie-uravneniy-klass-4004064.html

[/spoiler]

Запомните!
!

Уравнение — это равенство, содержащее букву, значение которой надо найти.

В уравнениях неизвестное обычно обозначается строчной латинской буквой. Чаще всего используют буквы
«x» [икс] и «y» [игрек].

  • Корень уравнения — это значение буквы, при котором из уравнения получается верное числовое равенство.
  • Решить уравнение — значит найти все его корни или убедиться, что корней нет.

Запомните!
!

Решив уравнение, всегда после ответа записываем проверку.

Информация для родителей

Уважаемые родители, обращаем ваше внимание на то, что в начальной школе и в 5 классе дети НЕ знают тему
«Отрицательные числа».

Поэтому они должны решать уравнения, используя только
свойства сложения, вычитания, умножения и деления. Методы решения уравнений для 5 класса приведены ниже.

Не пытайтесь объяснить решение уравнений через перенос чисел и букв
из одной части уравнения в другую с изменением знака.

Освежить знания по понятиям, связанным со сложением, вычитанием, умножением и делением вы можете в уроке
«Законы арифметики».

Решение уравнений на сложение и вычитание

Как найти неизвестное
слагаемое

x + 9 = 15

Как найти неизвестное
уменьшаемое

x − 14 = 2

Как найти неизвестное
вычитаемое

5 − x = 3

Чтобы найти неизвестное слагаемое, надо от суммы отнять известное слагаемое.

Чтобы найти неизвестное уменьшаемое, надо к разности прибавить вычитаемое.

Чтобы найти неизвестное вычитаемое, надо от уменьшаемого отнять разность.

x + 9 = 15
x = 15 − 9
x = 6


Проверка

6 + 9 = 15
15 = 15

x − 14 = 2
x = 14 + 2
x = 16


Проверка

16 − 2 = 14
14 = 14

5 − x = 3
x = 5 − 3
x = 2


Проверка

5 − 2 = 3
3 = 3

Решение уравнений на умножение и деление

Как найти неизвестный
множитель

y · 4 = 12

Как найти неизвестное
делимое

y : 7 = 2

Как найти неизвестный
делитель

8 : y = 4

Чтобы найти неизвестный множитель, надо произведение разделить на известный множитель.

Чтобы найти неизвестное делимое, надо частное умножить на делитель.

Чтобы найти неизвестный делитель, надо делимое разделить на частное.

y · 4 = 12
y = 12 : 4
y = 3


Проверка

3 · 4 = 12
12 = 12

y : 7 = 2
y = 2 · 7
y = 14


Проверка

14 : 7 = 2
2 = 2

8 : y = 4
y = 8 : 4
y = 2


Проверка

8 : 2 = 4
4 = 4


Ваши комментарии

Важно!
Галка

Чтобы оставить комментарий, вам нужно войти на наш сайт при помощи

«ВКонтакте».

Пришелец пожимает плечами

Оставить комментарий:

13 марта 2019 в 20:30

Mint Addict
(^-^)
Профиль
Благодарили: 0

Сообщений: 1

(^-^)
Mint Addict
Профиль
Благодарили: 0

Сообщений: 1

Составьте уравнение корни которого на 3 больше корней уравнения х² — 5х + 3 = 0

0
Спасибоthanks
Ответить

14 марта 2019 в 0:25
Ответ для Mint Addict

Евгений Фёдоров
(^-^)
Профиль
Благодарили: 0

Сообщений: 60

(^-^)
Евгений Фёдоров
Профиль
Благодарили: 0

Сообщений: 60


Эх, митрофанушка! 
(x − 3)2 −  5(x − 3) + 3 = 0.

0
Спасибоthanks
Ответить

25 марта 2017 в 19:12

Варя Соломахина
(^-^)
Профиль
Благодарили: 0

Сообщений: 2

(^-^)
Варя Соломахина
Профиль
Благодарили: 0

Сообщений: 2

Тема называется «Уравнения». Мне не понятно решение этих примеров, тесть уравнений. Помогите мне пожалуйста. Как их решать???laughing
Например такой пример:
x+(x+5)=37
                 Решение

0
Спасибоthanks
Ответить

26 марта 2017 в 8:22
Ответ для Варя Соломахина

Руслан Лопатин
(^-^)
Профиль
Благодарили: 0

Сообщений: 1

(^-^)
Руслан Лопатин
Профиль
Благодарили: 0

Сообщений: 1


х + х + 5=37
2х +5=37
2х=32
х=16

0
Спасибоthanks
Ответить

7 сентября 2016 в 21:53

Иван Баранов
(^-^)
Профиль
Благодарили: 0

Сообщений: 3

(^-^)
Иван Баранов
Профиль
Благодарили: 0

Сообщений: 3

решите уравнение ((х+2) · 81-3174): 21=34 используя теоремы о равносильности уравнений и правила тождественных преобразований

0
Спасибоthanks
Ответить

19 сентября 2016 в 15:11
Ответ для Иван Баранов

Евгений Колосов
(^-^)
Профиль
Благодарили: 12

Сообщений: 197

(^-^)
Евгений Колосов
Профиль
Благодарили: 12

Сообщений: 197


(x+2) · 81 ? 3174=714
(x+2) · 81 = 3000
x+2= 
x= 
x= 
x=35 

1
Спасибоthanks
Ответить

17 августа 2016 в 16:46

Александр Шаболтас
(^-^)
Профиль
Благодарили: 0

Сообщений: 1

(^-^)
Александр Шаболтас
Профиль
Благодарили: 0

Сообщений: 1

Здравствуйте, у меня возникают проблемы с решением подобных уравнений frown: (-3

 ) · (-2) =4 х  ?  

  или 

 х=3. помогите пожалуйста 

0
Спасибоthanks
Ответить

3 сентября 2016 в 19:46
Ответ для Александр Шаболтас

Юлия Анарметова
(^-^)
Профиль
Благодарили: 0

Сообщений: 11

(^-^)
Юлия Анарметова
Профиль
Благодарили: 0

Сообщений: 11


1 уравнение; умножим 1 часть чисел получим (  ·  =7) 7=4х- 
7+ =4х
7 =4х
х=  :4
х= =1.875
2 уравнение; х=3: 
                      х= =10,5

0
Спасибоthanks
Ответить

15 августа 2016 в 22:24

Рустам Иманалиев
(^-^)
Профиль
Благодарили: 0

Сообщений: 1

(^-^)
Рустам Иманалиев
Профиль
Благодарили: 0

Сообщений: 1

Здравствуйте.Помогите пожалуйста решить такой пример.212*х=672.Учебник под общей редакцией Л. Катанина. Рабочая книга по математике для 4-го года обучения в начальной школе.Задание № 6. Счастливо!

0
Спасибоthanks
Ответить

19 сентября 2016 в 14:23
Ответ для Рустам Иманалиев

Евгений Колосов
(^-^)
Профиль
Благодарили: 12

Сообщений: 197

(^-^)
Евгений Колосов
Профиль
Благодарили: 12

Сообщений: 197


x=672: 212 = 3=3

0
Спасибоthanks
Ответить

3 августа 2016 в 23:32

Анастасия Ищенко
(^-^)
Профиль
Благодарили: 0

Сообщений: 1

(^-^)
Анастасия Ищенко
Профиль
Благодарили: 0

Сообщений: 1

290093519 равно произвединию на 13

0
Спасибоthanks
Ответить

19 сентября 2016 в 14:20
Ответ для Анастасия Ищенко

Евгений Колосов
(^-^)
Профиль
Благодарили: 12

Сообщений: 197

(^-^)
Евгений Колосов
Профиль
Благодарили: 12

Сообщений: 197


290093519 = x · 13
x=290093519: 13
x=22314886
Уж не знаю, так ли понял задачу =) 

0
Спасибоthanks
Ответить

28 марта 2016 в 21:37

Маша Берник
(^-^)
Профиль
Благодарили: 0

Сообщений: 1

(^-^)
Маша Берник
Профиль
Благодарили: 0

Сообщений: 1

4x-x=8.7

0
Спасибоthanks
Ответить

29 марта 2016 в 8:44
Ответ для Маша Берник

Евгений Колосов
(^-^)
Профиль
Благодарили: 12

Сообщений: 197

(^-^)
Евгений Колосов
Профиль
Благодарили: 12

Сообщений: 197


4x-x=8.7
3x=8,7
3x=87/10 |:3
x=87/30=29/10=2,9
проверка:
4*2,9-2,9=11,6-2,9=8,7
8,7=8,7

0
Спасибоthanks
Ответить

25 февраля 2016 в 19:40

Екатерина Богданова
(^-^)
Профиль
Благодарили: 0

Сообщений: 1

(^-^)
Екатерина Богданова
Профиль
Благодарили: 0

Сообщений: 1

решить уравнения
1)??4х+2=-4
2)?4х+1=-4
решить неравенство
3)?х-1>2

0
Спасибоthanks
Ответить

26 февраля 2016 в 8:51
Ответ для Екатерина Богданова

Юрий Резник
(^-^)
Профиль
Благодарили: 0

Сообщений: 6

(^-^)
Юрий Резник
Профиль
Благодарили: 0

Сообщений: 6


Корень в 1) и 2) относится только к «4х», а в 3) к «х»? Или корень извлекается из всего выражения? 

0
Спасибоthanks
Ответить

15 февраля 2016 в 16:41

Малика Ас?арова
(^-^)
Профиль
Благодарили: 0

Сообщений: 1

(^-^)
Малика Ас?арова
Профиль
Благодарили: 0

Сообщений: 1

2(?-1)-3(?+2)<6(1+?)

0
Спасибоthanks
Ответить

20 февраля 2016 в 16:45
Ответ для Малика Ас?арова

Евгений Колосов
(^-^)
Профиль
Благодарили: 12

Сообщений: 197

(^-^)
Евгений Колосов
Профиль
Благодарили: 12

Сообщений: 197


2x-2-3x-6<6+6x
-x-8<6+6x
7x>14
x>2

0
Спасибоthanks
Ответить

14 февраля 2016 в 14:28

Герман Волк
(^-^)
Профиль
Благодарили: 0

Сообщений: 2

(^-^)
Герман Волк
Профиль
Благодарили: 0

Сообщений: 2

(x:11) · 5 =110

0
Спасибоthanks
Ответить

20 февраля 2016 в 16:35
Ответ для Герман Волк

Евгений Колосов
(^-^)
Профиль
Благодарили: 12

Сообщений: 197

(^-^)
Евгений Колосов
Профиль
Благодарили: 12

Сообщений: 197


5x:55=110 | *55
275x=6050
x= 22

0
Спасибоthanks
Ответить

20 февраля 2016 в 20:24
Ответ для Герман Волк

Герман Волк
(^-^)
Профиль
Благодарили: 0

Сообщений: 2

(^-^)
Герман Волк
Профиль
Благодарили: 0

Сообщений: 2


Большое спасибо!embarassed

0
Спасибоthanks
Ответить

22 февраля 2016 в 2:06
Ответ для Герман Волк

Юрий Резник
(^-^)
Профиль
Благодарили: 0

Сообщений: 6

(^-^)
Юрий Резник
Профиль
Благодарили: 0

Сообщений: 6


А вот и нет! surprised
Имеем:
 · 5 = 110

Выражаем x:
x · 

 = 110
x = 110 ·  
x = 242

Проверим равенство исходного выражения:
(242: 11) · 5 = 110
(22) · 5 = 110
110 = 110

0
Спасибоthanks
Ответить

22 февраля 2016 в 8:49
Ответ для Герман Волк

Евгений Колосов
(^-^)
Профиль
Благодарили: 12

Сообщений: 197

(^-^)
Евгений Колосов
Профиль
Благодарили: 12

Сообщений: 197


И ведь не поспоришь, буду внимательнее!

0
Спасибоthanks
Ответить

18 января 2016 в 18:51

Эмиль Абасов
(^-^)
Профиль
Благодарили: 0

Сообщений: 1

(^-^)
Эмиль Абасов
Профиль
Благодарили: 0

Сообщений: 1

Пожалуйста, помогите с решением уравнений: Замените * одночленом так, чтобы получившееся равенство, было тождеством
(2,5a+3b)2 =6,25a2+*+9b2
Упростите выражение:
а)(2x+6y)2 — 24xy
б)b2+49-(b+7)2
Представьте в виде многочлена выражение:
а)(x-6)2-x(x+8)
б)y(y-1)-(y-5)2Буду очень признателен за помощь в решении!!! Спасибо!

0
Спасибоthanks
Ответить

19 сентября 2016 в 11:23
Ответ для Эмиль Абасов

Евгений Колосов
(^-^)
Профиль
Благодарили: 12

Сообщений: 197

(^-^)
Евгений Колосов
Профиль
Благодарили: 12

Сообщений: 197


1) воспользуемся формулой квадрат суммы и раскроем скобки:
6,25a2+15ab+9b2 — видим, что вместо * должно быть 15ab.
2) Раскрываем скобки при помощи тех же правил и приводим подобные:
а) 4x2+24xy+36y2 ?24xy=4x2 +36y2
б)b2+49 ? b2 ? 14b ? 49= ? 14b
3)Раскрываем скобки при помощи формулы квадрат разности и приводим подобные:
а)x2 ? 12x + 36 ? x2 ? 8x = 36 ? 20x
б)y2 ? y ? y2 +10y ?25=9y ?25

0
Спасибоthanks
Ответить

6 октября 2015 в 18:41

Юля Тулба
(^-^)
Профиль
Благодарили: 0

Сообщений: 1

(^-^)
Юля Тулба
Профиль
Благодарили: 0

Сообщений: 1

9x+28=2755

0
Спасибоthanks
Ответить

4 октября 2015 в 21:29

Анна Иложева
(^-^)
Профиль
Благодарили: 0

Сообщений: 1

(^-^)
Анна Иложева
Профиль
Благодарили: 0

Сообщений: 1

«сколько литров 23 градусной воды нужно смешать с 40 градусной водой чтобы получить 50 литров 37 градусной воды» 

0
Спасибоthanks
Ответить

9 июня 2016 в 14:24
Ответ для Анна Иложева

Евгений Фёдоров
(^-^)
Профиль
Благодарили: 0

Сообщений: 60

(^-^)
Евгений Фёдоров
Профиль
Благодарили: 0

Сообщений: 60


23x + 40(50 ? x) = 50·37

0
Спасибоthanks
Ответить

21 сентября 2015 в 16:46

Камилла Назмутдинова
(^-^)
Профиль
Благодарили: 0

Сообщений: 1

(^-^)
Камилла Назмутдинова
Профиль
Благодарили: 0

Сообщений: 1

собрали три карзины клубники в каждой по 10 кг  и четыре карзины вишни  по? кг сколько мджет быть кг в четырёх разных карзинах помагите пожалуйстаcry у меня контрольная через четыри дня!

0
Спасибоthanks
Ответить

12 сентября 2016 в 11:23
Ответ для Камилла Назмутдинова

Евгений Колосов
(^-^)
Профиль
Благодарили: 12

Сообщений: 197

(^-^)
Евгений Колосов
Профиль
Благодарили: 12

Сообщений: 197


Предполагаю, что под знаком “?” кроется цифра «7».
Что сказано по условию? 3 корзины по 10 и 4 по 7. Какие варианты могут быть?
1) все корзины по 7 кг.
2) 1 корзина на 10 кг, 3 оставшиеся по 7 кг.
3) 2 корзины по 10кг, 2 корзины по 7 кг.
4) 3 корзины по 10кг, 1 корзина на 7кг.
Для получения количества кг в разных корзинах посчитаем:
1) 4 · 7 =28
2) 1 · 10 + 3 · 7 = 31
3) 2 · 10 + 2 · 7 = 34
4) 3 · 10 + 1 · 7 = 37

Убедительная просьба внимательно и полностью переписывать задачу. Невозможно ответить правильно на неправильную задачу.

0
Спасибоthanks
Ответить

6 сентября 2015 в 7:54

Андрей Шеин
(^-^)
Профиль
Благодарили: 0

Сообщений: 1

(^-^)
Андрей Шеин
Профиль
Благодарили: 0

Сообщений: 1

Математика 4кл 1ч система школа <2100>автор Демидова, Козлова, Тонких. Стр 8 упр 5 как составить схему в виде отрезка и решение на эту задачу                         Если для разгадывания 3ребусов требуется 5минут, то сколько минут потребуется для разгадывания 9таких ребусов?(Будем считать, что каждый ребус разгадывается за одно и тоже время.) Составь и реши 3задачи, обратные даной.

0
Спасибоthanks
Ответить

2 сентября 2016 в 16:02
Ответ для Андрей Шеин

Евгений Колосов
(^-^)
Профиль
Благодарили: 12

Сообщений: 197

(^-^)
Евгений Колосов
Профиль
Благодарили: 12

Сообщений: 197


Вычислим, сколько времени требуется на решение одного ребуса, для этого 5: 3=1 = . Для нахождения времени, затраченного на решение 9 таких ребусов, умножим количество ребусов на время для решения одного ребуса:
9 ·  = 15.
Примером задачи обратной данной может послужить например: Чтобы решить один ребус требуются 1 минута. Сколько потребуется, чтобы решить 5 ребусов?

0
Спасибоthanks
Ответить

5 сентября 2015 в 19:47

Диана Александрова
(^-^)
Профиль
Благодарили: 0

Сообщений: 1

(^-^)
Диана Александрова
Профиль
Благодарили: 0

Сообщений: 1

Теплоход шёл 3,2ч по течению реки и 2,5ч против течения. Какой путь прошёл теплоход за всё это время, если его собственная скорость 28,8 км/ч, а скорость течения 2,2км/ч. 
книга «Дидактические материалы по математике для 5 класса» А С.Чесноков, К.И.Нешков

0
Спасибоthanks
Ответить

2 сентября 2016 в 14:56
Ответ для Диана Александрова

Евгений Колосов
(^-^)
Профиль
Благодарили: 12

Сообщений: 197

(^-^)
Евгений Колосов
Профиль
Благодарили: 12

Сообщений: 197


Для определения пути, необходимо скорость умножить на время движения. Если теплоход идёт по течению, то к его скорости прибавляется скорость течения (течение несёт теплоход ускоряя его движение), а если против, то из его собственной скорости вычитается скорость реки. Для простоты и понимания обозначим
t1-время движения по течению, t2-время движения против течения, V1-скорость теплохода, V2-скорость реки, S1-путь по течению, S2-путь против течения, S — полный путь.
S = S1+S2=t1· (V1 + V2) + t2 · (V1 ? V2
S = 3,2 · (28,8 +2,2) + 2,5 · (28,8 ? 2,2) = 3,2 · 31 + 2,5 · 26,6 =99,2 + 66,5 = 165,7

Ответ: 165,7 км — общий путь катера. 

Стоит отметить, что если речь идёт о пройденном расстоянии, то расчет производится по этой формуле. Если же мы говорим о расстоянии относительно начально точки, то следует вычислить разность между путём пройденым по течению и против. Т.к. путь против реки проходил назад, т.е. к первоначальной точки отплытия.

0
Спасибоthanks
Ответить

5 сентября 2015 в 12:52

Даниил Довгань
(^-^)
Профиль
Благодарили: 0

Сообщений: 1

(^-^)
Даниил Довгань
Профиль
Благодарили: 0

Сообщений: 1

5x?=25x

0
Спасибоthanks
Ответить

16 сентября 2015 в 19:51
Ответ для Даниил Довгань

Никита Семеренко
(^-^)
Профиль
Благодарили: 0

Сообщений: 2

(^-^)
Никита Семеренко
Профиль
Благодарили: 0

Сообщений: 2


X=5

0
Спасибоthanks
Ответить

16 августа 2015 в 11:36

Ольга Мартынова
(^-^)
Профиль
Благодарили: 0

Сообщений: 1

(^-^)
Ольга Мартынова
Профиль
Благодарили: 0

Сообщений: 1

Помогите решить задачу. «Летние упражнения на каждый день. Я иду во 2 класс» автор — Ефимова И.В. Изд-во «Ранок». Задача на стр. 77. Реши задачу, воспользовавшись схемой. Игорь и Оля собирали грибы. Вместе они нашли на 4 гриба больше, чем нашел Игорь, и на 6 грибов больше, чем нашла Оля. Сколько грибов нашел каждый?

0
Спасибоthanks
Ответить

2 августа 2016 в 16:21
Ответ для Ольга Мартынова

Alex Feel
(^-^)
Профиль
Благодарили: 0

Сообщений: 1

(^-^)
Alex Feel
Профиль
Благодарили: 0

Сообщений: 1


И+О=И+4
О=4

И+О=6+О
И=6

О-Оля
И- Игорь

0
Спасибоthanks
Ответить

9 июля 2015 в 21:01

Дмитрий Рыжков
(^-^)
Профиль
Благодарили: 0

Сообщений: 2

(^-^)
Дмитрий Рыжков
Профиль
Благодарили: 0

Сообщений: 2

как обычно такой бред у вас что нето что школьник а взрослый непоймет-вот в теме(как найти уменьшаемое) смотрите у вас написано x ? 14 = 2 ;  x = 14 + 2   ; x = 16  ; проверка:16 ? 2 = 14 ;14 = 14 и почему же в нахождении слагаемого и вычитаемого мы из слагаемого отнимаем второе слагаемое а тут почему-то отнимаем  ответ сам, что это???

0
Спасибоthanks
Ответить

12 июля 2015 в 12:05
Ответ для Дмитрий Рыжков

Александр Середа-Четверг
(^-^)
Профиль
Благодарили: 0

Сообщений: 1

(^-^)
Александр Середа-Четверг
Профиль
Благодарили: 0

Сообщений: 1


Все правильно!

0
Спасибоthanks
Ответить

12 июля 2015 в 13:43
Ответ для Дмитрий Рыжков

Борис Гуров
(^-^)
Профиль
Благодарили: 1

Сообщений: 28

(^-^)
Борис Гуров
Профиль
Благодарили: 1

Сообщений: 28


Здравствуйте, Дмитрий.

 Пожалуйста, разъясните еще раз, в чем Вы видите ошибку в уроке?

0
Спасибоthanks
Ответить

12 июля 2015 в 13:49
Ответ для Дмитрий Рыжков

Борис Гуров
(^-^)
Профиль
Благодарили: 1

Сообщений: 28

(^-^)
Борис Гуров
Профиль
Благодарили: 1

Сообщений: 28


Александр, спасибо, что принимаете участие в поиске ошибок и неточностей на нашем сайте.

На нашем сайте стоит задача: сделать максимально понятный и полезный ресурс для молодежи. Поэтому все диалоги по замечаниям к нашему интернет ресурсу внимательно изучаются.

 Единственная просьба — это соблюдать нормы общения, а также уважать собеседника.

 Сообщения на форуме читают также дети, поэтому вдвойне важно послужить примером уважительного и грамотного общения. 

0
Спасибоthanks
Ответить

14 мая 2015 в 16:13

Дарья Белова
(^-^)
Профиль
Благодарили: 0

Сообщений: 1

(^-^)
Дарья Белова
Профиль
Благодарили: 0

Сообщений: 1

0
Спасибоthanks
Ответить

14 мая 2015 в 21:54
Ответ для Дарья Белова

Ярик Кравченко
(^-^)
Профиль
Благодарили: 0

Сообщений: 3

(^-^)
Ярик Кравченко
Профиль
Благодарили: 0

Сообщений: 3


3.472

0
Спасибоthanks
Ответить

11 мая 2015 в 19:04

Алла Лучанинова
(^-^)
Профиль
Благодарили: 0

Сообщений: 2

(^-^)
Алла Лучанинова
Профиль
Благодарили: 0

Сообщений: 2

Помогите решить уравнение   

 =

 

0
Спасибоthanks
Ответить

17 апреля 2016 в 16:02
Ответ для Алла Лучанинова

Евгений Колосов
(^-^)
Профиль
Благодарили: 12

Сообщений: 197

(^-^)
Евгений Колосов
Профиль
Благодарили: 12

Сообщений: 197


(7-y) · 9=6 · 5
63-9y=30
-9y=-33
y=3=3 
Проверка:

(7-3

) · 9 = 6 · 5
3  · 9 = 30
  · 9 = 30
 =30
30=30
Ответ: y=3 

0
Спасибоthanks
Ответить

7 мая 2015 в 17:49

Мелани Ларикова
(^-^)
Профиль
Благодарили: 0

Сообщений: 2

(^-^)
Мелани Ларикова
Профиль
Благодарили: 0

Сообщений: 2

помогите решить уравнение (пож) очень срочно! :
3,7y-2,5y+1,4y=3.38

0
Спасибоthanks
Ответить

11 мая 2015 в 16:43
Ответ для Мелани Ларикова

Алина Музычук
(^-^)
Профиль
Благодарили: 0

Сообщений: 1

(^-^)
Алина Музычук
Профиль
Благодарили: 0

Сообщений: 1


2.6 · 3y=3.38
3y=3.38 :2.6
3y=1.3
y=1.3 :3
y= 

0
Спасибоthanks
Ответить

7 мая 2015 в 16:31

Мелани Ларикова
(^-^)
Профиль
Благодарили: 0

Сообщений: 2

(^-^)
Мелани Ларикова
Профиль
Благодарили: 0

Сообщений: 2

3,7y-2,5y+1,4y=3,38

0
Спасибоthanks
Ответить

9 мая 2015 в 8:31
Ответ для Мелани Ларикова

Аруна Аубакирова
(^-^)
Профиль
Благодарили: 0

Сообщений: 1

(^-^)
Аруна Аубакирова
Профиль
Благодарили: 0

Сообщений: 1


3,7y-2,5y+1,4y=3,38
1,2y+1,4y=3,38
2,6y = 3,38 
y = 3,38: 2,6 
y = 1,3 
Ответ:1,3

0
Спасибоthanks
Ответить

12 мая 2015 в 20:11
Ответ для Мелани Ларикова

Lena Derevianko
(^-^)
Профиль
Благодарили: 0

Сообщений: 1

(^-^)
Lena Derevianko
Профиль
Благодарили: 0

Сообщений: 1


kisskiss

0
Спасибоthanks
Ответить

6 мая 2015 в 16:56

Егор Бебенин
(^-^)
Профиль
Благодарили: 0

Сообщений: 1

(^-^)
Егор Бебенин
Профиль
Благодарили: 0

Сообщений: 1

2x23x-3=x2-3x + ( ? 2 + x2)

0
Спасибоthanks
Ответить

16 апреля 2016 в 8:55
Ответ для Егор Бебенин

Евгений Колосов
(^-^)
Профиль
Благодарили: 12

Сообщений: 197

(^-^)
Евгений Колосов
Профиль
Благодарили: 12

Сообщений: 197


Не ясно, для чего скобки в уравнении, но если нет ошибки, то решение такое:
2x2+3x-3=x2-3x-2+x2
2x2+3x-3-2x2+3x+2=0
6x=1
x= 

0
Спасибоthanks
Ответить

5 мая 2015 в 19:45

Дарья Каспарьян
(^-^)
Профиль
Благодарили: 0

Сообщений: 1

(^-^)
Дарья Каспарьян
Профиль
Благодарили: 0

Сообщений: 1

ПОЖАЛУЙСТО РЕШИТИ УРАВНЕНИЕ
51,912:x+0,320=1,351 
ЧЕМУ РАВЕН x РЕШИТЕ УМАЛЯЮ МНЕ НА ЗАВТРО ННУЖНО ПРИШЛА СО ШКОЛЫ УСТАЛА КТО РЕШИТ БЛАГОДАРНА ОЧЕНЬ ПЛИЗ РЕШИТЕ!!!!!!cry

0
Спасибоthanks
Ответить

15 апреля 2016 в 15:57
Ответ для Дарья Каспарьян

Евгений Колосов
(^-^)
Профиль
Благодарили: 12

Сообщений: 197

(^-^)
Евгений Колосов
Профиль
Благодарили: 12

Сообщений: 197


Понимаю, что поздно уже, но всё же:
51,912: Х + 0,32 = 1,351
51,912: Х=1,351-0,32
51,912: Х=1,031
Х?0
51,912=1,031Х
Х=51,912:1,031
Х=50.3511154219
Проверка:51.912/50.3511154219 + 0.32 = 1,351
1,351=1,351
Ответ: Х=50.3511154219

0
Спасибоthanks
Ответить

22 апреля 2015 в 15:00

Элана Золотова
(^-^)
Профиль
Благодарили: 0

Сообщений: 1

(^-^)
Элана Золотова
Профиль
Благодарили: 0

Сообщений: 1

x · 8 ? 4: 6 · 7 + 16=60       помогите решить уравнение

0
Спасибоthanks
Ответить

14 апреля 2016 в 13:51
Ответ для Элана Золотова

Евгений Колосов
(^-^)
Профиль
Благодарили: 12

Сообщений: 197

(^-^)
Евгений Колосов
Профиль
Благодарили: 12

Сообщений: 197


8 · x ? 4: 6 · 7 + 16=60
8 · x=60 ?16 +4 :6 · 7
8 · x=44+ 
8 · x=44 + 
8 · x=44 8 · x=
x= 
x= 
x=
x=6 
Проверка:
8 ·  ?  +16=  ? + 16= +16=44+16=60
60=60
Ответ: х=6 

0
Спасибоthanks
Ответить

21 апреля 2015 в 15:00

Анюта Корниенко
(^-^)
Профиль
Благодарили: 0

Сообщений: 3

(^-^)
Анюта Корниенко
Профиль
Благодарили: 0

Сообщений: 3

х+256=958 и х+427=15698 помогите ( решение уровнений расписать надо )

0
Спасибоthanks
Ответить

21 апреля 2015 в 15:08
Ответ для Анюта Корниенко

Анюта Корниенко
(^-^)
Профиль
Благодарили: 0

Сообщений: 3

(^-^)
Анюта Корниенко
Профиль
Благодарили: 0

Сообщений: 3


срочно

0
Спасибоthanks
Ответить

21 апреля 2015 в 15:24
Ответ для Анюта Корниенко

Алина Гимадеева
(^-^)
Профиль
Благодарили: 0

Сообщений: 2

(^-^)
Алина Гимадеева
Профиль
Благодарили: 0

Сообщений: 2


х + 256 =958
х= 958 -256 
х= 702
702 + 256=958

х+427 = 15698
х= 15698-427
х= 15271
15271+427=15698
вот smile

0
Спасибоthanks
Ответить


Задачи по математике для учеников 5 класса на составление уравнений.

математика 5 класс задачи на составление уравнений

Задача № 1

Для приготовления салата берут 4 части помидор, 3 части огурцов и 1 часть зелени. Всего получилось 480 грамм салата. Сколько грамм помидор было взято?

Задача № 2 

У Веры было в 5 раз больше слив, чем у Даши. При этом у Даши было на 16 слив меньше. Сколько слив было у Даши? У Веры?

Задача № 3

У Дениса было в 3 раз больше монет, чем у Васи. А у Димы в 2 раза больше монет, чем у Дениса. Всего же монет было 50. Сколько монет было у Васи? У Дениса?

Задача № 4

Для приготовления варенья взяли 4 части сахара и 7 частей фруктов. Всего получилось 660 грамм варенья. Сколько грамм сахара было взято?

Задача № 5

У Насти было в 3 раза больше груш, чем у Иры. При этом, у Иры было на 14 груш меньше, чем у Насти. Сколько груш было у Иры? У Насти?

Задача № 6

Для приготовления теста взяли 5 частей муки, 2 части молока и 1 часть масла. Общий вес теста составил 960 грамм. Сколько грамм молока было взято?

Задача № 7

У Ивана было в 6 раз меньше мандарин, чем у Пети. При этом у Пети было на 15 мандарин больше. Сколько мандарин было у Ивана? У Пети?

Задача № 8

Мальчик проехал на автобусе 3 части пути от дома, а пешком прошел 2 части пути. Всего же он преодолел 15 км. Сколько км мальчик прошел?

Задача № 9

У Вики было в 4 раза меньше апельсин, чем у Оли. При этом у Оли было на 12 апельсин больше, чем у Вики. Сколько апельсин было у Вики? У Оли?

Задача № 10

Света задумала число, умножила его на 4 и к произведению прибавила 8. В результате она получила 60. Какое число задумала Света?

Типы задач на составление уравнений

Задача № 11

Собрали несколько килограммов свежей вишни. После того, как из 7 кг сварили варенье, а затем собрали ещё 5 кг, то свежей вишни стало 10 кг. Сколько вишни собрали изначально?

Задача № 12

В одной корзине в 6 раз меньше яблок, чем в другой. Сколько яблок в каждой корзине, если в двух корзинах 98 яблок?

Задача № 13

В трёх автобусах 188 пассажиров, причём в первом автобусе на 9 пассажиров больше, чем во втором, и на 8 меньше, чем в третьем. Сколько пассажиров в каждом автобусе?

Задача № 14

В двух залах кинотеатра 460 мест. Сколько мест в большом зале, если известно, что в нём в 3 раза больше мест, чем в малом зале?

Задача № 15

В школе 900 учащихся. Сколько учащихся в начальных, средних и старших классах, если в начальных классах их в 3 раза больше, чем в старших, и в 2 раза меньше, чем в средних?

Задача № 16

Площадь кухни в 3 раза меньше площади комнаты, поэтому для ремонта пола кухни потребовалось на 24 м2 линолеума меньше, чем для комнаты. Какова площадь кухни?

Задача № 17

Одна сторона прямоугольника в 4 раза меньше другой. Чему равны длина и ширина прямоугольника, если его периметр равен 70 см?

Задача № 18

На пруду плавали белые и серые утки, причём серых было в 3 раза больше, чем белых. После того, как на пруд прилетели 5 лебедей, то птиц всего оказалось 29. Сколько серых уток плавало на пруду?

Задача № 19

 В 5 «Б» классе из 27 учащихся «3» получили за контрольную по математике в 6 раз меньше человек, чем «4» и в 2 раза меньше, чем «5». Сколько учащихся получили «3», «4» и «5» за контрольную работу?

    
Задача № 20   

                                                                                                   
Деду 56 лет, внуку — 14. Через сколько лет дедушка будет вдвое старше внука?

решение задач на составление уравнений 5 класс

Задача № 21

Упаковка чая на 50 копеек дороже пакета кофе. Вася купил 7 упаковок чая и 6 пакетов кофе, потратив 68 рублей 50 копеек. Сколько стоит пакет кофе?

Задача № 22

9 одинаковых тетрадок стоят 11 рублей с копейками, а 13 таких же тетрадок — 15 рублей с копейками. Сколько стоит одна тетрадка?

Задача № 23

Представьте число 45 в виде суммы четырёх чисел так, что после прибавления 2 к первому числу, вычитания 2 из второго, умножения на 2 третьего и деления на 2 четвёртого эти числа станут равными.


Задача № 24

В трёх ящиках лежат орехи. В первом на 6 орехов меньше, чем в двух других вместе, а во втором на 10 орехов меньше, чем в первом и третьем. Сколько орехов в третьем ящике?

Задача № 25

Вифсла, Тофсла и Хемуль играли в снежки. Первый снежок бросил Тофсла. Затем в ответ на каждый попавший в него снежок Вифсла бросал 6 снежков, Хемуль — 5, а Тофсла — 4. Через некоторое время игра закончилась. Найдите, в кого сколько снежков попало, если мимо цели пролетели 13 снежков. (В себя самого снежками не кидаются.)

Задача № 26

Ваня 28 ноября сказал: «Сегодня разность между числом прожитых мною полных месяцев и числом полных лет впервые стала равна 144». Когда у Вани День рождения?

Задача № 27

Лена загадала некоторое число. Если это число уменьшить на 12, то получится 5. Какое число загадала Лена?

Задача № 28

Некоторое число увеличили в 7 раз, после чего получили 119. Что это за число?

Задача № 29

Найдите числа, следующие друг за другом, если их сумма равна 159.

Задача № 30

Одно число больше другого на 38. Чему равны эти числа, если их сумма равна 184.

Пример решения задачи с помощью уравнений

Задача № 31

За три дня турист преодолел 105 км. Сколько километров турист преодолел в первый день, если в каждый последующий день он преодолевал на 3 км больше, чем в предыдущий?

Задача № 32

Сколько лет маме, если она старше дочери на 24 года, а дочь моложе матери в 7 раз?

Задача № 33

На рисунке изображены треугольники и четырехугольники. Сколько тех и других изображено на рисунке, если у всех фигур вместе 69 углов, а всего фигур – 18?

Задача № 34

Швейная мастерская закупила 2 сорта ткани всего 49 метров. Стоимость одного 110 рублей за 1 метр, стоимость другого 100 рублей за 1 метр. Сколько метров каждого сорта было куплено, если всего потратили 5150 рублей?

Задача № 35

Мама покупала в магазине овощи и фрукты. За овощи она заплатила на 90 рублей меньше чем за фрукты, а за фрукты заплатили в 2 раза больше, чем за овощи. Сколько мама заплатила за овощи и за фрукты по отдельности?

Задача № 36

Стоимость фломастеров и тетрадей вместе составляет 276 рублей, стоимость фломастеров составляет 0,6 стоимости книги, а тетради на 60 рублей дороже книги. Сколько стоят тетради?

Задача № 37

Саша задумал 3 натуральных числа. Первое из чисел наибольшее двузначное число, второе в 4 раза больше третьего. Что за числа задумал Саша, если сумма этих чисел равна 934?

Задача № 38

На трех книжных полках стояли книги. На первой полке книг стояло в 2 раза меньше, чем на второй, а на третьей на 4 меньше чем на первой. Сколько книг стояло на каждой из полок, если всего в шкафу было 88 книг?

Задача № 39

Бассейн вмещает 300 м3 воды и наполняется двумя трубами. Через первую трубу вода вливается со скоростью 20 м3/ч, а через вторую трубу – со скоростью 30 м3/ч. За сколько времени наполнится бассейн при одновременном включении двух труб?

Задача № 40

 Морковь дороже картофеля на 25т., за 3 кг картофеля и 4 кг моркови заплатили 520 тенге. Сколько стоит морковь, картофель?

5 класс составлением уравнения

Задача № 41

Два поезда вышли одновременно навстречу друг другу из двух городов, расстояние между которыми 600 км. Скорость первого поезда 70 км/ч, а скорость второго 80 км/ч. Какое расстояние было между поездами через 3 ч после выхода?

Задача № 42

Пассажирский и товарный поезд вышли в одном направлении одновременно с двух станций, расстояние между которыми 512 км. Скорость пассажирского поезда была в 2 раза быстрее скорости товарного и через 8ч после выхода пассажирский поезд догнал товарный. С какими скоростями они шли?

Задача № 43

 В клетке находятся фазаны и кролики. Известно, что у них 35 голов и 94 ноги. Узнайте число фазанов и число кроликов.

Задача № 44

Туристы прошли пешком х км. И проехали на автомобиле 3 х км. Весь путь равен 124 км.

Задача № 45

Ученик задумал число. Умножил его на 2, к произведению прибавил 19 и получил сумму, равную 37. Какое число задумал ученик?

Отец старше сына на 20 чет, а сын моложе отца в 5 раз. Сколько лет отцу и сколько лет сыну?

Задача № 46

В одном бидоне молока в 

3

 раза больше, чем в другом. Когда из одного бидона перелили в другой 

5

 литров, молока в бидонах стало поровну. Сколько литров молока было в каждом бидоне первоначально?

Задача № 47

Ксения задумала натуральное число, к этому числу она прибавила 

, после чего из суммы вычла задуманное число.

Задача № 48

Дмитрий задумал натуральное число, прибавил к нему 

, вычел из него 

, вычел задуманное число и получил 

. Какое число задумал Дмитрий?


Задача № 49

На правой чашке уравновешенных весов лежат дыня и гиря массой 

 кг, а на левой чашке – гиря массой 

 кг. Какова масса дыни?

составить уравнение 5 класса


Задача № 50

В корзине было неизвестное количество яблок. Сначала  из нее взяли 12 яблок, а потом положили туда 5 яблок. В результате в корзине стало 24 яблока. Сколько яблок было в корзине первоначально?

Задача № 51

В корзине было 15 груш. Сначала из нее взяли 7 груш, а потом положили в нее неизвестное количество груш. В результате в корзине стало 34 груши. Сколько груш положили в корзину?


Задача № 52

В коробке было 65 конфет. Вначале из нее взяли неизвестное количество конфет, а потом доложили 7 конфет. В результате в  коробке стало  34 конфеты. Сколько конфет было взято?

Задача № 53

Турист прошел часть пути за 45 минут, затем отдыхал неизвестное количество времени, и оставшуюся часть  пути  прошел за 34 минуты. В результате весь путь турист преодолел за 2 часа 18 минут. Сколько минут отдыхал турист?

Задача № 54

Температура воздуха была 23 градуса. В первый день она опустилась на неизвестное количество градусов, а во второй день поднялась на 5 градусов. В результате температура воздуха стала 19 градусов. На сколько градусов опустилась температура в первый день?

Задача № 55

В корзине было неизвестное количество яблок. Вскоре из нее достали 7 яблок и отдали мальчику, а потом доложили в корзину еще 14 яблок, после чего в ней стало 18 яблок. Сколько яблок было в корзине первоначально?

Задача № 56

Для приготовления мороженого взяли 3 части молока, 2 части сахара и 1 часть масла. Всего мороженое весило 120 грамм. Сколько грамм сахара взяли?

Задача № 57

В корзине было неизвестное количество яблок. Вначале из нее взяли 16 яблок, а затем положили в нее 5 яблок. В результате в корзине стало 7 яблок. Сколько яблок было в корзине первоначально?

Задача № 58

На полке стояло несколько книг. После того, как с неё сняли 8 книг, а затем положили 17, на ней стало 22 книги. Сколько книг было на полке первоначально?


Задача № 59

На трёх складах 72 тонны пшеницы. На первом в 3 раза больше, чем на втором, а на третьем в 4 раза больше, чем на втором. Сколько зерна на каждом складе?

Задача № 60

Лиза нашла грибов в 2 раза больше, чем Ваня. А Таня в 4 раза больше, чем Ваня. Сколько грибов нашёл каждый из ребят, если вместе они нашли 140 грибов?


Задача № 61

Для приготовления супа берут 7 части воды, 3 части овощей и 2 части мяса.  Всего получается 3600 грамм супа. Сколько грамм овощей потребуется?

Задача № 62

В коробке было 25 конфет. Вначале в нее положили 12 конфет, а затем взяли неизвестное количество конфет. В результате в коробке осталось 11 конфет. Сколько было взято конфет?

Задача № 63

У Маши было a пирожков, у Коли b пирожков, а у Пети c пирожков. Они сложили их и поделили на 3 равные части. Сколько пирожков досталось каждому? Напишите выражение и найдите его значение при а=12, b=16, d=8.

Задача № 64

Решите задачу с помощью уравнения:

а)Мальчик задумал число и умножил его на 8. Если из данного произведения отнять 26, то получится 46. Какое число загадал мальчик?
б)75 кг мандарин разложили в несколько коробок, а потом из каждой коробки взяли 3 кг. В каждой коробке осталось 12 кг мандарин. Сколько было коробок?

Задача № 65

Решите задачу с помощью уравнения:

а)Девочка задумала число и разделила его на 12. Если к данному частному прибавить 13, то получится 33. Какое число загадала девочка?
б)49 кг яблок разложили в несколько коробок, а потом в каждую коробку положили 2 кг. В каждой коробке стало 9 кг яблок. Сколько было коробок?

Текстовые задачи на составление уравнений

Уравнения

(Х – 87) – 27 = 36;     Х-87   в уравнении  является  
уменьшаемым.  Чтобы найти неизвестное  уменьшаемое,
нужно  к   разности  прибавить  вычитаемое

Х – 87 = 36 + 27;

Х – 87 = 63;       х   в  уравнении является   уменьшаемым.
Чтобы найти неизвестное  уменьшаемое,  нужно  к   разности 
прибавить  вычитаемое

Х= 87 + 63;

Х=150,

Проверка:     (150 – 87) – 27 = 36;

                 63-27 = 36;

                 36 = 36.

Ответ: Х=150.

87- ( 41 + У ) = 22;  41 + У   в  уравнении  является вычитаемым
. Чтобы найти  неизвестное  вычитаемое, нужно  из  уменьшаемого
вычесть  разность

41 + У = 87 – 22;

41 + У = 65;        У    в  уравнении  является слагаемым.
Чтобы найти неизвестное слагаемое, нужно из суммы вычесть
известное слагаемое

У = 65 – 41;

У = 24,

Проверка:     87- ( 41 + 24 ) = 22;

           87 – 65 =
22;                                                                

          22 = 22,

Ответ: У = 24     

(у – 35) + 12 = 32;     у – 35     в уравнении
является слагаемым. Чтобы найти неизвестное слагаемое, нужно из суммы
вычесть известное слагаемое

 у – 35 = 32 – 22;

 у
– 35 = 20;   
у   в  уравнении является   уменьшаемым. Чтобы
найти неизвестное  уменьшаемое,  нужно  к   разности 
прибавить  вычитаемое
  

 у
= 20 + 35;

у=55.

Ответ:
у = 55.

56 – (Х +12) = 24;

55 – (х – 15) = 30;

1 способ

56
– (Х +12) = 24;

Х
+ 12 = 56 -24;

Х
+ 12=32;

Х
= 32 – 12;

Х
= 20.

Ответ:
х = 20

2
способ

56 – (Х +12) = 24;

56 – Х – 12 = 24;

56- 12  – Х = 24;

44 – Х = 24;

Х = 44 – 24;

Х = 20.

Ответ: х = 20

1 способ

55
– (х – 15) = 30;

х
– 15 = 55 – 30;

х
– 15 = 25;

х
= 25 + 15;

х
= 40.

Ответ:
х = 40.

2
способ

55
– (х – 15) = 30;

55
– х + 15 = 30;

55
+ 15 – х = 30;

70
– х = 30;

х
= 70 – 30;

х
=40.

Ответ:
х = 40.

(237 + х) – 583 = 149;

468 – ( 259 – х) = 382;

1 способ

 (237
+ х) – 583 = 149;

237
+ х = 149 + 583;

237
+ х = 732;

х
= 732 – 237;

х
= 495.

Ответ:
х = 495

2
способ

(237
+ х) – 583 = 149;

237
+ х – 583 = 149;

х
– (583 – 237) = 149;

х
– 346 = 149;

х
= 149 + 346;

х
= 495.

Ответ:
х = 495

1 способ

468
– ( 259 – х) = 382;

259
– х = 468 – 382;

259
– х =  86;

х
= 259 – 86;

х
= 173.

Ответ:
х = 173.

2
способ

468
– ( 259 – х) = 382; 468 – 259 + х = 382;

209
+ х = 382;

х
= 382 – 209:

х
= 173.

Ответ:
х = 173.

Решение
уравнений,   приведение подобных слагаемых

 Пример   1:                  8х-х=49;   
сначала  запишем знаки умножения,

8*х-1*х=49; затем воспользуемся  распределительным  свойством  
(вынесем общую переменную за скобки)

Х*(8-1)=49;

Х*7=49;  х является неизвестным множителем.
Чтобы найти неизвестный множитель, нужно произведение 
разделить
на известный множитель

Х=49:7;

Х=7.

Проверка:

8*7-7=49;

56-7=49;

49=49.

Ответ: х=7.

Пример   2:                    2х+5х+350=700; воспользуемся  распределительным
 свойством  
(вынесем общую переменную за скобки)

Х*(2+5)+350=700; приведем подобные слагаемые  (т.е. сложим числа
в скобках)

7х+350=700

 
 является  неизвестным  слагаемым.  Чтобы  найти неизвестное
 слагаемое
  нужно из  суммы  вычесть   известное 
  слагаемое

7х=700-350;

7х=350; х является неизвестным множителем.
Чтобы найти неизвестный  множитель, нужно произведение 
разделить
 на известный   множитель

Х=350:7;                                               

Х=50.

Проверка:

2*50
+ 5*50 + 350 = 700;

100
+ 250 + 350 = 700;

700=700.

Ответ: х = 50

Пример:  270: х + 2 = 47;

(270 : х  
– является слагаемым.

Чтобы 
найти неизвестное слагаемое  нужно из суммы
вычесть
известное слагаемое

270 : х = 47 –
2; 

270 : х = 45;

( х является делителем.
Чтобы найти неизвестный делитель, нужно делимое
разделить на частное)

Х = 270 : 45:

Х= 6.

Ответ: Х= 6.

Пример:      а : 5 – 12 = 23;

( а : 5  является уменьшаемым.

 Чтобы найти неизвестное
уменьшаемое
, нужно к  разности  прибавить  вычитаемое
)

а : 5 =23 + 12;

а : 5 = 35; 

(а является делимым.
Чтобы найти неизвестное делимое, нужно частное  умножить
 на  делитель
.

а = 35 * 5;

а = 175.

Ответ: а = 175.


Задачи решаемые по действиям могут быть решены с помошью уравнений.

1. Как найти неизвестное слагаемое?

Чтобы найти неизвестное слагаемое нужно от суммы вычесть известное слагаемое.

Если n + x = k, то x = k – n

2. Как найти неизвестное уменьшаемое?

Чтобы найти неизвестное уменьшаемое нужно к разности прибавить вычитаемое.

Если x – n = k, то x = k + n

3. Как найти неизвестное вычитаемое?

Чтобы найти неизвестное вычитаемое нужно от уменьшаемого вычесть разность.

Если m – x = k , то x = m – k

4. Как найти неизвестное делимое?

Чтобы найти неизвестное делимое нужно частное умножить на делитель.

Если x/n = k , то x = k × n

5. Как найти неизвестный сомножитель?

Чтобы найти неизвестный сомножитель нужно произведение разделить на известный сомножитель.

Если n x x = k , то x = k/n

6. Как найти неизвестный делитель?

Чтобы найти неизвестный делитель надо делимое разделить на частное.

Если m/x = k, то x = m/k

7. Как узнать на сколько одно число больше или меньше другого?

Чтобы узнать на сколько единиц одно число больше или меньше другого надо из большего числа вычесть меньшее.

8. Как узнать, во сколько раз одно число больше или меньше другого?

Чтобы узнать во сколько раз одно число больше или меньше другого надо большее число разделить на меньшее.

Необходимость находить неизвестные компоненты действий приводят к простейшим уравнениям.

Можно сформулировать 6 правил нахождения неизвестных компонент.

1. Чтобы найти неизвестное слагаемое нужно от суммы вычесть известное слагаемое.

2. Чтобы найти неизвестное вычитаемое надо от уменьшаемого отнять разность

3. Чтобы найти неизвестное уменьшаемое надо к разности прибавить вычитаемое.

4. Чтобы найти неизвестный сомножитель, надо произведение разделить на известный сомножитель

5. Чтобы найти неизвестное делитель, надо делимое разделить на частное.

6. Чтобы найти неизвестное делимое, надо частное умножить на делитель.

Например

Простейшие уравнения, (N). 5 класс.
Простейшие уравнения, (N). 5 класс.

Найти неизвестный сомножитель

56 * х = 504 х * 43 = 559 х * 15 = 555

47 * х = 611 х* 51 = 612 27 * х = 999

Найти х

х : 52 = 35 5643 : х = 99 5226 : х = 402

х : 37 = 111 29319 : х = 87 х : 7005 = 30

ЗАДАЧИ НА НАХОЖДЕНИЕ ВЫЧИТАЕМОГО И СЛАГАЕМОГО (175-218)

1. На полке было 10 книг. Когда несколько книг забрали, то на полке осталось 3 книги. Сколько книг забрали?

Простейшие уравнения, (N). 5 класс.

Р е ш е н и е :

1)Если на полке было 10 книг и после того как, несколько книг забрали, осталось 3 книги, то с полки забрали

10 – 3 = 7 книг.

Можно решить задачу с помощью уравнения

Составляем уравнение, было 10 книг, несколько книг х забрали и осталось 3, этим условиям отвечает уравнение:

10 – x = 3

Чтобы найти неизвестное вычитаемое надо от уменьшаемого отнять разность

10 – 3 = 7

О т в е т: с полки забрали 7 книг

2. (185) На полке было 5 книг. Когда на ещё несколько книг поставили на полку их стало 8. Сколько книг поставили на полку?

1)Если на полке было 5 книг и когда ещё несколько книг поставили на полку их стало 8, то 8 – 5 = 3 книги поставили на полку.

Если на полке было 5 книг и туда поставили ещё неизвестно сколько книг х и книг стало 8, то этим условиям отвечает уравнение

5 + х =8

Чтобы найти неизвестное слагаемое, надо от суммы отнять известое слагаемое.

8 – 5 =3.

О т в е т: на полку поставили 3 книги

3. (202) В классе 25 учеников. Несколько детей заболело и в школу пришло 20 учеников. Сколько детей заболело?

1)Если в классе 25 учеников и в школу пришло только 20 учеников, то детей заболело 25 – 20 = 5 учеников?

Если в классе 25 учеников и несколько детей заболело х и в школу пришло только 20 учеников, то эим условиям соответствует уравнение

25 – х = 20

Чтобы найти неизвестное вычитаемое, надо от уменьшаемого отнять разность

25-20 = 5

О т в е т: заболело 5 учеников

4. (203) В автобусе ехало 20 человек. Когда несколько человек вышло, осталось 15. Сколько человек вышло?

1)Если в автобусе ехало 20 человек и после того как несколько человек вышло, осталось 15, то 20 – 15 = 5 человек вышло.

Если в автобусе ехало 20 человек и когда несколько человек вышло х и осталось 15, то имеем уравнение

20 – х = 15

х = 20 – 15 = 5

О т в е т: вышло 5 человек

Другие задачи решаются точно также.

ЗАДАЧИ НА НАХОЖДЕНИЕ УМЕНЬШАЕМОГО (219-255)

1. Когда с полки сняли 3 книги, то на полке осталось 7 книг. Сколько книг было на полке?

1)Если с полки сняли 3 книги и на полке осталось 7 книг, то на полке было

3 + 7 = 10 книг

О т в е т: на полке было 10 книг

2. (230) В вазе было несколько груш. Когда 2 груши съели, их осталось 8. Сколько груш было в вазе?

1)Если две груши съели и их после этого осталось 8, то в вазе было 8 + 2 = 10 груш.

О т в е т: в вазе было 10 книг.

3. (242) Когда из трамвая вышло 6 человек, в трамвае осталось 32 человека. Сколько человек было в трамвае?

1)Если в трамвае осталось осталось 32 человека , а вышло 6, то всего в трамвае первоначально было 32 + 6 = 42 человека.

О т в е т: в трамвае было 42 человека.

Составные задачи на нахождение вычитаемого и слагаемого.

За д а ч а 486.

Р е ш е н и е.

1)Если у собаки бы 5 белых щенков и 4 коричневых, то всего у неё было

5 + 4 = 9 щенков.

2)Если у собаки было 9 щенков и у неё осталось 6 щенков, то продали 9 – 6 = 3 щенка.

О т в е т : продали 3 щенка

З а д а ч а 487

Р е ш е н и е.

1) Если в ларьке было 9 ящиков с фруктами и до обеда продали 3 ящика, то в ларьке к обеду осталось 9 – 3 = 6 ящиков с фруктами.

2)Если после обеда было 6 ящиков с фруктами, а (и) к вечеру осталось 2 ящика, то после обеда продали 6 – 2 = 4 ящика.

О т в е т: после обеда продали 4 ящика с фруктами.

1. Задачи на увеличение числа на несколько единиц

2. ЗАДАЧИ НА НАХОЖДЕНИЕ ВЫЧИТАЕМОГО И СЛАГАЕМОГО.

3. ЗАДАЧИ НА НАХОЖДЕНИЕ УМЕНЬШАЕМОГО.

4. ЗАДАЧИ НА РАЗНОСТНОЕ СРАВНЕНИЕ.

5. СОСТАВНЫЕ (сложные) ЗАДАЧИ НА НАХОЖДЕНИЕ СУММЫ. 1 (или 2) класс

6. СОСТАВНЫЕ ЗАДАЧИ НА НАХОЖДЕНИЕ СЛАГАЕМОГО И ВЫЧИТАЕМОГО.

7. СОСТАВНЫЕ ЗАДАЧИ НА НАХОЖДЕНИЕ ТРЕТЬЕГО СЛАГАЕМОГО.

8. СОСТАВНЫЕ ЗАДАЧИ НА НАХОЖДЕНИЕ УМЕНЬШАЕМОГО.

9. ЗАДАЧИ НА НАХОЖДЕНИЕ НЕИЗВЕСТНОГО СЛАГАЕМОГО (№113-160)

Добавить комментарий