Как составить уравнение с угловым коэффициентом для прямой

Продолжение темы уравнение прямой на плоскости основывается на изучении прямой линии из уроков алгебры. Данная статья дает обобщенную информацию по теме уравнения прямой с угловым коэффициентом. Рассмотрим определения, получим само уравнение, выявим связь с другими видами уравнений. Все будет рассмотрено на примерах решений задач.

Угол наклона прямой и угловой коэффициент прямой

Перед записью такого уравнения необходимо дать определение угла наклона прямой к оси Ох с их угловым коэффициентом. Допустим, что задана декартова система координат Ох на плоскости.

Определение 1

Угол наклона прямой к оси Ох, расположенный в декартовой системе координат Оху на плоскости, это угол, который отсчитывается от положительного направления Ох к прямой против часовой стрелки.

Угол наклона прямой и угловой коэффициент прямой

Когда прямая параллельна Ох или происходит совпадение в ней, угол наклона равен 0. Тогда угол наклона заданной прямой α определен на промежутке [0, π).

Определение 2

Угловой коэффициент прямой – это тангенс угла наклона заданной прямой.

Стандартное обозначение буквой k. Из определения получим, что k=tg α. Когда прямая параллельна Ох, говорят, что угловой коэффициент не существует, так как он обращается в бесконечность.

Угловой коэффициент положительный, когда график функции возрастает и наоборот. На рисунке показаны различные вариации расположения прямого угла относительно системы координат со значением коэффициента.

Угол наклона прямой и угловой коэффициент прямой

Для нахождения данного угла необходимо применить определение об угловом коэффициенте и произвести вычисление тангенса угла наклона в плоскости.

Пример 1

Посчитать угловой коэффициент прямой при угле наклона равном 120°.

Решение

Из условия имеем, что α=120°. По определению необходимо вычислить угловой коэффициент. Найдем его из формулы k=tg α=120=-3.

Ответ: k=-3.

Если известен угловой коэффициент, а необходимо найти угол наклона к оси абсцисс, тогда следует учитывать значение углового коэффициента. Если k>0, тогда угол прямой острый и находится по формуле α=arctg k. Если k<0, тогда угол тупой, что дает право определить его по формуле α=π-arctgk.

Пример 2

Определить угол наклона заданной прямой к Ох при угловом коэффициенте равном 3.

Решение

Из условия имеем, что угловой коэффициент положительный, а это значит, что угол наклона к Ох меньше 90 градусов. Вычисления производятся по формуле α=arctg k=arctg 3.

Ответ: α=arctg 3.

Пример 3

Найти угол наклона прямой к оси Ох, если угловой коэффициент = -13.

Решение

Если принять за обозначение углового коэффициента букву k, тогда α является углом наклона к заданной прямой по положительному направлению Ох. Отсюда k=-13<0, тогда необходимо применить формулу α=π-arctgkПри подстановке получим выражение:

α=π-arctg-13=π-arctg 13=π-π6=5π6.

Ответ: 5π6.

Уравнение с угловым коэффициентом

Уравнение вида y=k·x+b, где k является угловым коэффициентом, а b некоторым действительным числом, называют уравнением прямой с угловым коэффициентом. Уравнение характерно для любой прямой, непараллельной оси Оу.

Если подробно рассмотреть прямую на плоскости в фиксированной системе координат, которая задана уравнением с угловым коэффициентом, который имеет вид y=k·x+b.  В данном случае значит, что уравнению соответствуют координаты любой точки прямой. Если подставить координаты точки М, M1(x1, y1),  в уравнениеy=k·x+b, тогда в этом случае прямая будет проходить через эту точку, иначе точка не принадлежит прямой.

Пример 4

Задана прямая с угловым коэффициентом y=13x-1. Вычислить, принадлежат ли точки M1(3, 0) и M2(2, -2) заданной прямой.

Решение

Необходимо подставить координаты точки M1(3, 0)  в заданное уравнение, тогда получим 0=13·3-1⇔0=0. Равенство верно, значит точка принадлежит прямой.

Если подставим координаты точки M2(2, -2), тогда получим неверное равенство вида -2=13·2-1⇔-2=-13. Можно сделать вывод, что точка М2 не принадлежит прямой.

Ответ: М1 принадлежит прямой, а М2 нет.

Известно, что прямая определена уравнением y=k·x+b, проходящим через M1(0, b), при подстановке получили равенство вида b=k·0+b⇔b=b. Отсюда можно сделать вывод, что уравнение прямой с угловым коэффициентом y=k·x+b на плоскости определяет прямую, которая проходит через точку 0, b. Она образует угол αс положительным направлением оси Ох, где k=tg α.

Рассмотрим на примере прямую, определенную при помощи углового коэффициента, заданного по виду y=3·x-1. Получим, что прямая пройдет через точку с координатой 0, -1 с наклоном в α=arctg3=π3 радиан по положительному направлению оси Ох. Отсюда видно, что коэффициент равен 3.

Уравнение с угловым коэффициентом

Уравнение прямой с угловым коэффициентом, проходящей через заданную точку

Необходимо решить задачу, где необходимо получить уравнение прямой с заданным угловым коэффициентом, проходящим через точку M1(x1, y1).

Равенство y1=k·x+b можно считать справедливым, так как прямая проходит через точку M1(x1, y1). Чтобы убрать число b, необходимо из левой и правой частей вычесть уравнение с угловым коэффициентом. Из этого следует, что y-y1=k·(x-x1).  Данное равенство называют уравнением прямой с заданным угловым коэффициентом k, проходящая через координаты точки M1(x1, y1).

Пример 5

Составьте уравнение прямой, проходящей через точку М1 с координатами (4,-1), с угловым коэффициентом равным -2.

Решение

По условию имеем, что x1=4, y1=-1, k=-2. Отсюда уравнение прямой запишется таким образом y-y1=k·(x-x1)⇔y-(-1)=-2·(x-4)⇔y=-2x+7.

Ответ: y=-2x+7.

Пример 6

Написать уравнение прямой с угловым коэффициентом, которое проходит через точку М1 с координатами (3,5), параллельную прямой y=2x-2.

Решение

По условию имеем, что параллельные прямые имеют совпадающие углы наклона, отсюда значит, что угловые коэффициенты являются равными. Чтобы найти угловой коэффициент из данного уравнения, необходимо вспомнить его основную формулу y=2x-2, отсюда следует, что k=2. Составляем уравнение с угловым коэффициентом и получаем:

y-y1=k·(x-x1)⇔y-5=2·(x-3)⇔y=2x-1

Ответ: y=2x-1.

Переход от уравнения прямой с угловым коэффициентом к другим видам уравнений прямой и обратно

Такое уравнение не всегда применимо для решения задач, так как имеет не совсем удобную запись. Для этого необходимо представлять в другом виде. Например, уравнение вида y=k·x+b не позволяет записать координаты направляющего вектора прямой или координаты нормального вектора. Для этого нужно научиться представлять уравнениями другого вида.

Можем получить каноническое уравнение прямой на плоскости, используя уравнение прямой с угловым коэффициентом. Получаем x-x1ax=y-y1ay. Необходимо слагаемое b перенести в левую часть и поделить на выражение полученного неравенства. Тогда получим уравнение вида y=k·x+b⇔y-b=k·x⇔k·xk=y-bk⇔x1=y-bk.

Уравнение прямой с угловым коэффициентом стало каноническим уравнением данной прямой.

Пример 7

Привести уравнение прямой с угловым коэффициентом y=-3x+12к каноническому виду.

Решение

Вычислим и представим в виде канонического уравнения прямой. Получим уравнение вида:

y=-3x+12⇔-3x=y-12⇔-3x-3=y-12-3⇔x1=y-12-3

Ответ: x1=y-12-3.

Общее уравнение прямой проще всего получить из y=k·x+b, но для этого необходимо произвести преобразования: y=k·x+b⇔k·x-y+b=0. Производится переход из общего уравнения прямой к уравнениям другого вида.

Пример 8

Дано уравнение прямой видаy=17x-2. Выяснить, является ли вектор с координатами a→=(-1, 7) нормальным вектором прямой?

Решение

Для решения необходимо перейти к другому виду данного уравнения, для этого запишем:

y=17x-2⇔17x-y-2=0

Коэффициенты перед переменными являются координатами нормального вектора прямой. Запишем это так n→=17, -1, отсюда 17x-y-2=0. Понятно, что вектор a→=(-1, 7) коллинеарен вектору n→=17, -1, так как имеем справедливое соотношение a→=-7·n→. Отсюда следует, что исходный вектор a→=-1, 7 – нормальный вектор прямой 17x-y-2=0, значит, считается нормальным вектором для прямой y=17x-2.

Ответ: Является

Решим задачу обратную данной.

Необходимо перейти от общего вида уравнения Ax+By+C=0, где B≠0, к уравнению с угловым коэффициентом. для этого решаем уравнение относительно у. Получим Ax+By+C=0⇔-AB·x-CB.

Результат и является уравннием с угловым коэффициентом, который равняется -AB.

Пример 9

Задано уравнение прямой вида 23x-4y+1=0 . Получить уравнение данной прямой с угловым коэффициентом.

Решение

Исходя из условия, необходимо решить относительно у, тогда получим уравнение вида:

23x-4y+1=0⇔4y=23x+1⇔y=14·23x+1⇔y=16x+14.

Ответ: y=16x+14.

Аналогичным образом решается уравнение вида xa+yb=1, которое называют уравнение прямой в отрезках, или каноническое вида x-x1ax=y-y1ay. Нужно решить его относительно у, только тогда получим уравнение с угловым коэффициентом:

xa+yb=1⇔yb=1-xa⇔y=-ba·x+b.

Каноническое уравнение можно привести к виду с угловым коэффициентом. Для этого:

x-x1ax=y-y1ay⇔ay·(x-x1)=ax·(y-y1)⇔⇔ax·y=ay·x-ay·x1+ax·y1⇔y=ayax·x-ayax·x1+y1

Пример 10

Имеется прямая, заданная уравнением x2+y-3=1. Привести к виду уравнения с угловым коэффициентом.

Решение.

Исходя из условия, необходимо преобразовать, тогда получим уравнение вида _formula_. Обе части уравнения следует умножить на -3 для того, чтобы получить необходимо уравнение с угловым коэффициентом. Преобразуя, получим:

y-3=1-x2⇔-3·y-3=-3·1-x2⇔y=32x-3.

Ответ: y=32x-3.

Пример 11

Уравнение прямой вида x-22=y+15 привести к виду с угловым коэффициентом.

Решение

Необходимо выражение x-22=y+15 вычислить как пропорцию. Получим, что 5·(x-2)=2·(y+1). Теперь необходимо полностью его разрешить, для этого:

5·(x-2)=2·(y+1)⇔5x-10=2y+2⇔2y=5x-12⇔y=52x

Ответ: y=52x-6.

Для решения таких заданий следует приводит параметрические уравнения прямой вида x=x1+ax·λy=y1+ay·λ к каноническому уравнению прямой, только после этого можно переходить к уравнению с угловым коэффициентом.

Пример 12

Найти угловой коэффициент прямой, если она задана параметрическими уравнениями x=λy=-1+2·λ.

Решение

Необходимо выполнить переход от параметрического вида к угловому коэффициенту. Для этого найдем каноническое уравнение из заданного параметрического:

x=λy=-1+2·λ⇔λ=xλ=y+12⇔x1=y+12.

Теперь необходимо разрешить данное равенство относительно y, чтобы получить уравнение прямой с угловым коэффициентом. для этого запишем таким образом:

x1=y+12⇔2·x=1·(y+1)⇔y=2x-1

Отсюда следует, что угловой коэффициент прямой равен 2. Это записывается как k=2.

Ответ: k=2.

В декартовых координатах каждая прямая
определяется уравнением первой степени
и, обратно, каждое уравнение первой
степени определяет прямую.

Уравнение
вида

 (1)

называется
общим уравнением прямой.

Угол ,
определяемый, как показано на рис.,
называется углом наклона прямой к оси
Ох. Тангенс угла наклона прямой к оси
Ох называется угловым коэффициентом
прямой; его обычно обозначают буквой
k:

Уравнение  называется
уравнением прямой с угловым коэффициентом;
k – угловой коэффициент, b – величина
отрезка, который отсекает прямая на оси
Оу, считая от начала координат.

Если
прямая задана общим уравнением

,

то
ее угловой коэффициент определяется
по формуле

.

Уравнение  является
уравнением прямой, которая проходит
через точку  ()
и имеет угловой коэффициент k.

Если
прямая проходит через точки (), (),
то ее угловой коэффициент определяется
по формуле

.

Уравнение

является
уравнением прямой, проходящей через
две точки (AutoShape 49)
и AutoShape 50().

Если
известны угловые коэффициенты  и  двух
прямых, то один из углов  между
этими прямыми определяется по формуле

.

Признаком
параллельности двух прямых является
равенство их угловых коэффициентов:.

Признаком
перпендикулярности двух прямых является
соотношение
,
или .

Иначе говоря, угловые коэффициенты
перпендикулярных прямых обратны по
абсолютной величине и противоположны
по знаку.

4.Общее уравнение прямой

Уравнение

Ах+Ву+С=0

(где А, В, Смогут иметь любые
значения, лишь бы коэффициентыА,
В
не были нулями оба сразу)
представляетпрямую
линию
. Всякую прямую можно
представить уравнением этого вида.
Поэтому его называютобщим уравнением
прямой
.

Если А=0, то есть уравнение не
содержитх, то оно представляет
прямую,параллельную
оси ОХ
.

Если В=0, то есть уравнение не
содержиту, то оно представляет
прямую,параллельную
оси ОY
.

Когла Вне равно нулю, то общее
уравнение прямой можноразрешить
относительно ординаты 
у,
тогда оно преобразуется к виду

y=ax+b

(где a=-A/Bb=-C/B).

Аналогично, при Аотличным от
нуля общее уравнение прямой можно
разрешить относительнох.

Если С=0, то есть общее уравнение
прямой не содержит свободного члена,
то оно представляет прямую, проходящую
через начало координат

5. Уравнение прямой, проходящей через данную точку с данным угловым коэффициентом

Уравнение прямой, проходящей
через данную точку A(x1y1)
в данном направлении, определяемом
угловым коэффициентом k,

y – y1 = k(x – x1).     (1)

Это уравнение определяет
пучок прямых, проходящих через
точку A(x1y1),
которая называется центром пучка.

6. уравнение прямой,
проходящей через две данные точки.

. Уравнение
прямой, проходящей через две точки: A(x1y1)
и B(x2y2),
записывается так:

     (2)

Угловой коэффициент прямой, проходящей
через две данные точки, определяется
по формуле

     (3)

7.
Уравнение прямой в отрезках

Если в общем уравнении
прямой  ,
то разделив (1) на  ,
получаем уравнение прямой в отрезках

,

где  ,  .
Прямая пересекает ось   в
точке  ,
ось   в
точке  .

8.
Формула: Угол между прямыми на плоскости

Уголα между
двумя прямыми, заданными
уравнениями: y=k1x+b1 (первая
прямая) и y=k2x+b2 (вторая
прямая), может быть вычислен по формуле
(угол отсчитывается от 1й прямой
ко 2й против
часовой стрелки
):

tg(α)=(k2-k1)/(1+k1k2)

9. Взаимное
расположение двух прямых на плоскости.

  Пусть сейчас
оба уравнения прямых
записаны в общем виде.

Теорема. Пусть

    и 

– общие уравнения двух
прямых на координатной плоскости
Оху. Тогда

1) если ,
то прямые  и  совпадают;

2) если ,
то прямые   и 

    параллельные;

3) если ,
то прямые пересекаются.

   Доказательство.
Условие  равносильно
коллинеарности нормальных векторов данных
прямых:

.
Поэтому, если ,
то  и прямыепересекаются.

   Если же ,
то  иуравнение прямой  принимает
вид:

 или ,
т.е. прямые совпадают.
Заметим, что коэффициент пропорциональности ,
иначе все коэффициенты общего уравнения были
бы равны нулю, что невозможно.

   Если же прямые не
совпадают и не пересекаются, то остается
случай ,
т.е. прямые параллельны.

Теорема доказана.

Соседние файлы в предмете [НЕСОРТИРОВАННОЕ]

  • #
  • #
  • #
  • #
  • #
  • #
  • #
  • #
  • #
  • #
  • #

Прямая имеет несколько видов задающих ее уравнений. Рассмотрим некоторые из них и разберем примеры.

Здесь будет калькулятор

Уравнение прямой с угловым коэффициентом

Уравнение прямой с угловым коэффициентом

y=kx+by=kx+b,

где kk — угловой коэффициент, а bb — свободный коэффициент.

Уравнения данного вида составляются следующим образом по формуле:

y−y0=k(x−x0)y-y_0=k(x-x_0),

где (x0;y0)(x_0; y_0) — координаты любой точки, лежащей на данной прямой.

Задача 1

Составить уравнение прямой, если координаты точки, принадлежащей данной прямой, таковы: x0=1,y0=2x_0=1, y_0=2. Угловой коэффициент принять равным 11.

Решение

Подставляем значения в формулу:

y−y0=k(x−x0)y-y_0=k(x-x_0)

y−2=1⋅(x−1)y-2=1cdot(x-1)

Приводим подобные слагаемые:

y=x+1y=x+1

Ответ

y=x+1y=x+1

Общее уравнение прямой

Для приведения прямой к такому виду из предыдущего вида достаточно просто перенести все слагаемые в одну часть. Возьмем уравнение прямой из предыдущей задачи y=x+1y=x+1. Тогда общее уравнение этой прямой запишется в виде:

y−x−1=0y-x-1=0

Уравнение прямой по двум точкам

Если в задаче даны координаты двух точек и необходимо составить уравнение прямой, то это делается при помощи такой формулы:

Уравнение прямой по двум точкам

x−x2x1−x2=y−y2y1−y2frac{x-x_2}{x_1-x_2}=frac{y-y_2}{y_1-y_2},

где (x1;y1),(x2;y2)(x_1; y_1), (x_2; y_2) — координаты двух точек, через которые проходит данная прямая.

Задача 2

Найти уравнение прямой, если координаты точек имеют значения: (2;3)(2;3) и (4;−1)(4;-1).

Решение

x1=2x_1=2
y1=3y_1=3
x2=4x_2=4
y2=−1y_2=-1

x−x2x1−x2=y−y2y1−y2frac{x-x_2}{x_1-x_2}=frac{y-y_2}{y_1-y_2}

x−42−4=y−(−1)3−(−1)frac{x-4}{2-4}=frac{y-(-1)}{3-(-1)}

x−4−2=y+14frac{x-4}{-2}=frac{y+1}{4}

x−4=−y−12x-4=frac{-y-1}{2}

y+1=2⋅(4−x)y+1=2cdot(4-x)

y=8−2x−1y=8-2x-1

y=−2x+7y=-2x+7

Ответ

y=−2x+7y=-2x+7

Уравнение прямой при помощи точки и вектора нормали

Уравнение прямой по точке и нормали

(x−x0)⋅n1+(y−y0)⋅n2=0(x-x_0)cdot n_1+(y-y_0)cdot n_2=0,

где (x0;y0)(x_0; y_0) — координаты точки, лежащей на данной прямой, а (n1;n2)(n_1; n_2) — координаты вектора нормали к этой прямой.

Задача 3

Составить уравнение прямой, если координаты нормального вектора — (1;−5)(1;-5), а точка, через которую проходит данная прямая имеет координаты (7;8)(7;8).

Решение

x0=7x_0=7
y0=8y_0=8
n1=1n_1=1
n2=−5n_2=-5

(x−x0)⋅n1+(y−y0)⋅n2=0(x-x_0)cdot n_1+(y-y_0)cdot n_2=0,

(x−7)⋅1+(y−8)⋅(−5)=0(x-7)cdot 1+(y-8)cdot (-5)=0,

x−7+40−5y=0x-7+40-5y=0

x−5y=−40+7x-5y=-40+7

x−5y=−33x-5y=-33

5y=x+335y=x+33

y=x5+335y=frac{x}{5}+frac{33}{5}

Проверка

Чтобы проверить правильность решения, достаточно подставить координаты точки в данное уравнение и, если оно будет верным, то задача решена верно.

8=75+3358=frac{7}{5}+frac{33}{5}

8=88=8 — верно, ответ правильный.

Ответ

y=x5+335y=frac{x}{5}+frac{33}{5}

Прямая в пространстве

Уравнение прямой, заданной в пространстве имеет такой вид:

Уравнение прямой в пространстве

x−x0ν1=y−y0ν2=z−z0ν3frac{x-x_0}{nu_1}=frac{y-y_0}{nu_2}=frac{z-z_0}{nu_3},

где (x0;y0;z0)(x_0;y_0;z_0) — координаты точки, через которую проходит прямая, а (ν1,ν2,ν3)(nu_1,nu_2,nu_3) — координаты напрявляющего вектора данной прямой.

Задача 4

Написать уравнение прямой по заданной точке (1;5;−23)(1;5;-23) и вектору направления (3;11;7)(3;11;7).

Решение

x0=1x_0=1
y0=5y_0=5
z0=−23z_0=-23
ν1=3nu_1=3
ν2=11nu_2=11
ν3=7nu_3=7

x−x0ν1=y−y0ν2=z−z0ν3frac{x-x_0}{nu_1}=frac{y-y_0}{nu_2}=frac{z-z_0}{nu_3}

x−13=y−511=z−(−23)7frac{x-1}{3}=frac{y-5}{11}=frac{z-(-23)}{7}

Проверка

Проверим, удовлетворяет ли это уравнение прямой точке (x0;y0;z0)(x_0;y_0;z_0). Для этого подставим в него координаты этой точки:

1−13=5−511=−23−(−23)7frac{1-1}{3}=frac{5-5}{11}=frac{-23-(-23)}{7} — верно, значит ответ правильный.

Такой вид уравнения прямой называется каноническим.

Ответ

x−13=y−511=z−(−23)7frac{x-1}{3}=frac{y-5}{11}=frac{z-(-23)}{7}

Тест по теме “Составление уравнения прямой”

Содержание

Уравнение прямой

Прямая – ГМТ, равноудаленных от двух точек.

(I) Общее уравнение прямой на плоскости

Уравнение прямой имеет вид $Ax + By + C = 0$, где $A$, $B$ и $C$ – некоторые числа, причем $A$ и $B$ не равны 0 одновременно.

При $A=0$ прямая параллельна оси oX, при $B=0$ — параллельна оси oY.

При $C=0$ прямая проходит через начало координат.

Вектор с координатами $(A;B)$ называется нормальным вектором, он перпендикулярен прямой.

Также уравнение можно переписать в виде
$$A(x-x_0) + B(y-y_0) = 0$$

(II) Уравнение прямой с угловым коэффициентом

Уравнением вида $y = kx + b$ можно задать не любую прямую – а именно, нельзя задать прямую, перпендикулярную оси абсцисс.

Здесь

  • k – угловой коэффициент прямой (наклон)

  • b – ордината пересечения прямой с осью Y

  • y – показывает насколько высоко

  • x – показывает насколько далеко

(III) Уравнение прямой в отрезках на осях

Если прямая пересекает оси OX и OY в точках с координатами (a, 0) и (0, b), то она может быть найдена используя формулу уравнения прямой в отрезках
$$frac x a + frac{y}{b} = 1$$

В этом виде невозможно представить прямую, проходящую через начало координат.

(IV) Уравнение прямой, проходящей через две точки

Пусть даны две несовпадающие точки A(x1;y1) и B(x2;y2). Уравнение прямой, проходящей через точки A(x1;y1) и B(x2;y2) имеет вид:

$$frac{x – x_1}{x_2 – x_1} =frac{y – y_1}{y_2 – y_1}$$

(V) Каноническое уравнение прямой

Если известны координаты точки $P(x_0, y_0)$ лежащей на прямой и направляющего вектора $ vec v = (a; b)$, то уравнение прямой можно записать в каноническом виде, используя следующую формулу:

$$ frac{x – x_0}{a} = frac{y – y_0}{b}$$

(VI) Параметрическое уравнение прямой

Параметрические уравнения прямой могут быть записаны следующим образом
$$ x = a t + x_0, y = b t + y_0$$
где $(x_0, y_0)$ – координаты точки лежащей на прямой, $(a, b)$ – координаты направляющего вектора прямой.

(VII) Уравнение прямой в полярных координатах

Уравнение прямой с углом наклона $alpha$ в полярных координатах $r$ и $phi$:
$$r cos(phi-alpha)=p$$

Калькулятор

Переход к другой форме записи

От общего уравнения к уравнению с угловым коэффициентом

Выразить переменную y:
$Ax + By + C = 0$

$By = -Ax-C$

$y = -frac A B x- frac C B$

От уравнения с угловым коэффициентом к общему уравнению

Перенести все члены в левую часть уравнения

Угловой коэффициент прямой

Угловой коэффициент прямой $k$ = численно равен тангенсу угла между прямой и положительным направлением оси абсцисс.

Тангенс угла может рассчитываться как отношение противолежащего катета к прилежащему.

Slope – угловой коэффициент – наклон, склон холма, показатель насколько крутой холм или гора.

Чтобы найти наклон между двумя точками на плоскости используется формула:

$$frac{y_2-y_1}{x_2-x_1} = frac{text{изменение по Y}}{text{изменение по X}}$$

Иногда горизонтальное изменение называют «пробег», а вертикальное изменение – «подъем» или «снижение, спад».

Наклон биссектрисы первого координатного угла равен 1, так как скорость изменения по оси X и по оси Y одинаковы.

Например, найдем наклон между точками (2, 1) и (-9, 7)

$$frac{7-1}{-9-2} = -frac{6}{11}$$

Найдем наклон между точками (-1, -3) и (1, 1)

$$frac{1-(-3)}{1-(-1)} = frac{4}{2} = 2$$

Чем больше модуль числа, чем круче склон. Положительное число означает, что наклон идет вверх при движении слева направо (прямая возрастает). Отрицательное число означает, что наклон идет вниз при движении слева направо (прямая убывает).

Угол между двумя прямыми

Пусть две неперпендикулярные прямые представляются уравнениями
$$y= a_1 x+ b_1 \
y= a_2 x+ b_2$$
Тогда угол между двумя прямыми найдется по формуле
$$tg(θ)=frac{a_2-a_1}{1+ a_1 cdot a_2}$$

Условие параллельности двух прямых

Две прямые параллельны (или совпадают), если равны их угловые коэффициенты.

Теорема. Прямые $y = k_1 x + b_1$ и $y = k_2 x + b_2$ параллельны тогда и только тогда, когда $k_1 = k_2$ и $b_1 ne b_2$.

Задача

Проверить, выполняется ли условие параллельности прямых
$2x-3y+1=0$ и $4x-6y-5=0$.

Задача

Составить уравнение прямой линии, проходящей через точку $(1;2)$ параллельно прямой $2x-3y+1=0$.

Условие перпендикулярности двух прямых

Условие перпендикулярности прямых заключается в том, что произведение их угловых коэффициентов равно –1:
$$k_1 cdot k_2=-1$$

Задача

При каком значении $k$ уравнение $y=kx+1$ определяет прямую, перпендикулярную к прямой $y=2x-1$?

Задача

Составить уравнение прямой линии, проходящей через точку $(-1;1)$ перпендикулярно к прямой $3x-y+2=0$.

Сводная таблица

угловые коэффициенты прямые
Если угловые коэффициенты двух линейных функций равны, то прямые, являющиеся их графиками, параллельны Параллельные прямые имеют одинаковый наклон.
Если угловые коэффициенты двух линейных функций не равны, то прямые, являющиеся их графиками, пересекаются Если прямые пересекаются, то их наклоны не равны
Если произведение угловых коэффициентов равно (-1), то прямые, являющиеся их графиками, перпендикулярны. Если прямые перпендикулярны, то произведение их наклонов всегда = -1.
Если прямая параллельна оси ординат, то формула не применима (возникает деление на 0), и для таких прямых угловой коэффициент не определён.

Задачи – угловой коэффициент на бумаге в клетку

Определить угловой коэффициент прямой:

Геометрия 9 класс, Мерзляк

Расстояние от точки до прямой

Когда прямая на плоскости задана уравнением $ax + by + c = 0$, где a, b и c — такие вещественные константы, что a и b не равны нулю одновременно, и расстояние от прямой до точки $(x_0,y_0)$ равно

$ operatorname {distance} (ax+by+c=0,(x_{0},y_{0}))={frac {|ax_{0}+by_{0}+c|}{sqrt {a^{2}+b^{2}}}}.$

Точка на прямой, наиболее близкая к $(x_0,y_0)$, имеет координаты

$ x={frac {b(bx_{0}-ay_{0})-ac}{a^{2}+b^2}}$ и
$ y={frac {a(-bx_{0}+ay_{0})-bc}{a^2+b^2}}$.

Геометрическое доказательство

Получить уравнение прямой, проходящей через две точки помогут созданные нами калькуляторы. Предлагаем найти каноническое и параметрическое уравнение прямой, а также уравнение прямой с угловым коэффициентом как на плоскости, так и в пространстве.

Прямая – это бесконечная линия, по которой проходит кратчайший путь между любыми двумя её точками.

Уравнения прямой, проходящей через две точки могут быть следующих видов:

  • каноническое уравнение,
  • параметрическое уравнение,
  • общее уравнение прямой,
  • уравнение прямой с угловым коэффициентом,
  • уравнение прямой в полярных координатах и другие.

Для получения уравнений введите координаты двух точек прямой. Онлайн-калькулятор найдет уравнения и выдаст результат с подробным решением.

Каноническое уравнение прямой на плоскости

{dfrac{x-x_a}{x_b-x_a} = dfrac{y-y_a}{y_b-y_a}}

xa и ya – координаты первой точки A,

xb и yb – координаты второй точки B

Параметрическое уравнение прямой на плоскости

{begin{cases} x=l cdot t + x_a \ y=m cdot t + y_a end{cases}}

xa, ya – координаты точки, лежащей на прямой,

{l;m} – координаты направляющего вектора прямой,

t – произвольный параметр, аналогичный параметру в векторно-параметрическом уравнении.

Каноническое уравнение прямой в пространстве

{dfrac{x-x_a}{x_b-x_a} = dfrac{y-y_a}{y_b-y_a} = dfrac{z-z_a}{z_b-z_a}}

xa, ya и za – координаты первой точки A,

xb, yb и zb – координаты второй точки B

Параметрическое уравнение прямой в пространстве

{ begin{cases} x=l cdot t + x_a \ y=m cdot t + y_a \ z=n cdot t + z_a end{cases} }

xa, ya и za – координаты точки, лежащей на прямой,

{l;m;n} – координаты направляющего вектора прямой,

t – произвольный параметр, аналогичный параметру в векторно-параметрическом уравнении.

Пример нахождения уравнения прямой, проходящей через две точки

Найдем уравнения прямой, проходящей через точки A(1,2) и B(3,8).

Каноническое уравнение прямой

Каноническое уравнение прямой, проходящей через две точки имеет вид {dfrac{x-x_a}{x_b-x_a} = dfrac{y-y_a}{y_b-y_a}}

Подставим в формулу координаты точек A и B: {dfrac{x-1}{3-1} = dfrac{y-2}{8-2}}

Получаем каноническое уравнение прямой: {dfrac{x-1}{2} = dfrac{y-2}{4}}

Уравнение прямой с угловым коэффициентом

Из канонического уравнения получаем уравнение прямой с угловым коэффициентом: {y=3x-1}

Параметрическое уравнение прямой

Параметрическое уравнение прямой имеет вид:

{ begin{cases} x=l cdot t + x_a \ y=m cdot t + y_a end{cases} }

где {x_a, y_b} – координаты точки, лежащей на прямой, {{l;m}} – координаты направляющего вектора прямой, t – произвольный параметр, аналогичный параметру в векторно-параметрическом уравнении. В качестве координат используем координаты точки {A(x_a, y_b)}.

Найдем координаты направляющего вектора:

overline{AB} = {x_b – x_a; y_b – y_a} = {3-1; 8-2} = {2; 6}

Получаем параметрическое уравнение:

begin{cases} x=2 t + 1 \ y=6 t + 2 end{cases}

Используем калькулятор для проверки полученного ответа.

Добавить комментарий